|
1.Murray, R. W., Chemically modified electrodes. Accounts of Chemical Research 1980, 13 (5), 135-141. 2.Xu, C.; Cai, H.; He, P.; Fang, Y., Electrochemical detection of sequence-specific DNA using a DNA probe labeled with aminoferrocene and chitosan modified electrode immobilized with ssDNA. The Analyst 2001, 126 (1), 62-65. 3.Viana, E. R. C.; Pereira, F. C.; Zanoni, M. V. B., Electrochemical reduction and determination of Cibacron Blue F3GA at poly-l-lysine modified glassy carbon electrode. Dyes and Pigments 2006, 71 (2), 145-152. 4.Wu, C.; Sun, D.; Li, Q.; Wu, K., Electrochemical sensor for toxic ractopamine and clenbuterol based on the enhancement effect of graphene oxide. Sensors and Actuators B: Chemical 2012, 168, 178-184. 5.Lin, K.-C.; Hong, C.-P.; Chen, S.-M., Simultaneous determination for toxic ractopamine and salbutamol in pork sample using hybrid carbon nanotubes. Sensors and Actuators B: Chemical 2013, 177, 428-436. 6.Anson, F. C.; Shigeharat, K.; Saveant, J. M., New Model for the Interior of Polyelectrolyte Coatings on Electrode Surfaces. hanisms of Charge Transport through Protonated Poly(L-lysine) Films Containing FeIII(edta)− and FeII(edta)2- as Counterions. Journal of the American Chemical Society 1983, 105 (5), 1096-1106. 7.Wang, J.; Zhang, S.; Zhang, Y., Fabrication of chronocoulometric DNA sensor based on gold nanoparticles/poly(l-lysine) modified glassy carbon electrode. Analytical Biochemistry 2010, 396 (2), 304-309. 8.Baskar, S.; Liao, C.-W.; Chang, J.-L.; Zen, J.-M., Electrochemical synthesis of electroactive poly(melamine) with mechanistic explanation and its applicability to functionalize carbon surface to prepare nanotube–nanoparticles hybrid. Electrochimica Acta 2013, 88, 1-5. 9.Wang, J.; Pedrero, M.; Sakslund, H.; Hammerich, O.; Pingarron, J., Electrochemical activation of screen-printed carbon strips. The Analyst 1996, 121 (3), 345. 10.Fanjul-Bolado, P.; Hernández-Santos, D.; Lamas-Ardisana, P. J.; Martín-Pernía, A.; Costa-García, A., Electrochemical characterization of screen-printed and conventional carbon paste electrodes. Electrochimica Acta 2008, 53 (10), 3635-3642. 11.Su, W.-Y.; Wang, S.-M.; Cheng, S.-H., Electrochemically pretreated screen-printed carbon electrodes for the simultaneous determination of aminophenol isomers. Journal of Electroanalytical Chemistry 2011, 651 (2), 166-172. 12.Monterroso, S. C. C.; Carapuça, H. M.; Duarte, A. C., Mixed polyelectrolyte coatings on glassy carbon electrodes: Ion-exchange, permselectivity properties and analytical application of poly-l-lysine–poly(sodium 4-styrenesulfonate)-coated mercury film electrodes for the detection of trace metals. Talanta 2006, 68 (5), 1655-1662. 13.Shan, C.; Yang, H.; Han, D.; Zhang, Q.; Ivaska, A.; Niu, L., Water-soluble graphene covalently functionalized by biocompatible poly-L-lysine. Langmuir 2009, 25 (20), 12030-12033. 14.Zhao, W.; Wu, X. Q.; Lu, Z. Q.; Hou, W. J.; Li, H. X., Electrochemical studies of chloroperoxidase on poly-l-lysine film modified GC electrode. Chinese Chemical Letters 2010, 21 (1), 93-96. 15.Tsai, T.-H.; Wang, S.-H.; Chen, S.-M., Electrodeposited indigotetrasulfonate film onto glutaraldehyde-cross-linked poly-l-lysine modified glassy carbon electrode for detection of dissolved oxygen. Journal of Electroanalytical Chemistry 2011, 659 (1), 69-75. 16.Liao, N.; Zhuo, Y.; Chai, Y. Q.; Xiang, Y.; Han, J.; Yuan, R., Reagentless electrochemiluminescent detection of protein biomarker using graphene-based magnetic nanoprobes and poly-l-lysine as co-reactant. Biosensors and Bioelectronics 2013, 45 (1), 189-194. 17.Niedziałkowski, P.; Ossowski, T.; Zięba, P.; Cirocka, A.; Rochowski, P.; Pogorzelski, S. J.; Ryl, J.; Sobaszek, M.; Bogdanowicz, R., Poly-l-lysine-modified boron-doped diamond electrodes for the amperometric detection of nucleic acid bases. Journal of Electroanalytical Chemistry 2015, 756, 84-93. 18.Pereira, F. C.; Bergamo, E. P.; Stradiotto, N. R.; Zanoni, M. V. B.; Fogg, A. G., Modification of Glassy Carbon Electrodes with a Poly-L-Lysine/Glutaraldehyde Film. Electroanalysis 2004, 16 (17), 1439-1443. 19.Ma, H.; Zhang, L.; Pan, Y.; Zhang, K.; Zhang, Y., A Novel Electrochemical DNA Biosensor Fabricated with Layer-by-Layer Covalent Attachment of Multiwalled Carbon Nanotubes and Gold Nanoparticles. Electroanalysis 2008, 20 (11), 1220-1226. 20.Martínez-Paredes, G.; González-García, M. B.; Costa-García, A., In situ electrochemical generation of gold nanostructured screen-printed carbon electrodes. Application to the detection of lead underpotential deposition. Electrochimica Acta 2009, 54 (21), 4801-4808. 21.Liu, S.; Lin, Q.; Zhang, X.; He, X.; Xing, X.; Lian, W.; Huang, J., Electrochemical immunosensor for salbutamol detection based on CS-Fe3O4-PAMAM-GNPs nanocomposites and HRP-MWCNTs-Ab bioconjugates for signal amplification. Sensors and Actuators B: Chemical 2011, 156 (1), 71-78. 22.Saha, K.; Agasti, S. S.; Kim, C.; Li, X.; Rotello, V. M., Gold nanoparticles in chemical and biological sensing. Chemical Reviews 2012, 112 (5), 2739-2779. 23.Liu, L.; Du, J.; Li, S.; Yuan, B.; Han, H.; Jing, M.; Xia, N., Amplified voltammetric detection of dopamine using ferrocene-capped gold nanoparticle/streptavidin conjugates. Biosensors and Bioelectronics 2013, 41 (1), 730-735. 24.Xia, N.; Deng, D.; Zhang, L.; Yuan, B.; Jing, M.; Du, J.; Liu, L., Sandwich-type electrochemical biosensor for glycoproteins detection based on dual-amplification of boronic acid-gold nanoparticles and dopamine-gold nanoparticles. Biosensors and Bioelectronics 2013, 43 (1), 155-159. 25.Elshafey, R.; Tavares, A. C.; Siaj, M.; Zourob, M., Electrochemical impedance immunosensor based on gold nanoparticles-protein G for the detection of cancer marker epidermal growth factor receptor in human plasma and brain tissue. Biosensors and Bioelectronics 2013, 50, 143-149. 26.Duan, J.; He, D.; Wang, W.; Liu, Y.; Wu, H.; Wang, Y.; Fu, M., Glassy carbon electrode modified with gold nanoparticles for ractopamine and metaproterenol sensing. Chemical Physics Letters 2013, 574, 83-88. 27.Rama, E. C.; González-García, M. B.; Costa-García, A., Competitive electrochemical immunosensor for amyloid-beta 1-42 detection based on gold nanostructurated Screen-Printed Carbon Electrodes. Sensors and Actuators B: Chemical 2014, 201, 567-571. 28.Diba, F. S.; Kim, S.; Lee, H. J., Amperometric bioaffinity sensing platform for avian influenza virus proteins with aptamer modified gold nanoparticles on carbon chips. Biosensors and Bioelectronics 2015, 72, 355-361. 29.Lin, C.-H.; Wu, C.-C.; Kuo, Y.-F., A high sensitive impedimetric salbutamol immunosensor based on the gold nanostructure-deposited screen-printed carbon electrode. Journal of Electroanalytical Chemistry 2016, 768, 27-33. 30.Lien, T. T. N.; Takamura, Y.; Tamiya, E.; Vestergaard, M. d. C., Modified screen printed electrode for development of a highly sensitive label-free impedimetric immunosensor to detect amyloid beta peptides. Analytica Chimica Acta 2015, 892, 69-76.
|