(3.238.7.202) 您好!臺灣時間:2021/03/01 21:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃筠茹
研究生(外文):Yun-Ru Huang
論文名稱:骨植體表面功能修飾性質之研究
論文名稱(外文):Characterization of surface-functionalizedosteo-implants
指導教授:丁信智
指導教授(外文):Shinn-Jyh Ding
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:口腔科學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:47
中文關鍵詞:表面修飾骨植體矽酸鈣抑菌性能
外文關鍵詞:Surface modificationbone implantsantibacterial properties
相關次數:
  • 被引用被引用:1
  • 點閱點閱:33
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了修復人體骨缺損,以骨植體做為骨替換材料已成為不可或缺的生醫材料。其為了加速骨骼和身體組織骨癒合進行骨植體表面修飾的研究越來越多。其也發現當骨植體植入人體時,骨癒合的成功取決於細菌感染有關。近年來,氧化鋯骨植體被廣泛應用,然而由於惰性表面,氧化鋯在植入後的生物活性差值入後材料與骨組織間無法產生化學結合。根據文獻,本實驗使用氧化鋯作為表面修飾塗層基材,其表面添加鈣矽其幫助骨骼癒合,使用硝酸銅5%、2%、1%,硝酸銀0.001%,幾丁聚醣1%、0.5%、0.1%,幾丁寡醣10%、5%、1%,幾丁聚醣四級銨1%加入不同比例的銨劑,作為抑菌劑以抑制細菌生長。通過SEM、XRD、FTIR、XPS和微生物進行分析。實驗結果顯示,各層元素分析在XRD與FTIR可發現Zircona與Poly-dopamine和鈣矽元素,無法顯示抑菌層元素,但從XPS分析能確定表面塗層元素,後續塗層抑菌測試透過存活率以及細菌貼附表面形貌圖兩項分析得到一致的結果,各組培養24小時均能有效抑制細菌生長更隨著濃度提高抑制細菌越高,與控制組相比具有顯著差異,其幾丁聚醣四級銨與幾丁聚醣兩組結果顯示較相似的。幾丁寡醣10% 與0.5%幾丁聚醣相似,幾丁聚醣四級銨與幾丁聚醣提供比幾丁寡醣具有更好抑制細菌效果,硝酸銀相似於硝酸銅組,其抑制細菌效果比幾丁聚醣四級銨與幾丁聚醣好。
The bone implants has become an indispensable material for reconstruction of cortical bone. A variety of surface modification techniques on implants have been developed to achieve the accelerated bone healing. However, the success of bone healing depends on bacterial infection when implant is implanted into human body. Recently, zirconia material is widely used in clinical applications, but it has a poor antibacterial efficacy. In this study, copper nitrate, silver nitrate, chitosan polysaccharide (CS), chitosan oligosaccharide (COS), and chitosan quaternary ammonium (QTS) were used as antibacterial top layers whereas calcium silicate interlayer was used for osteogenesis. The characterization of the coated layers on the ZrO2 substrates was performed, including SEM, XRD, FTIR, XPS, and antibacterial test. The experimental results showed that the use of XRD and FTIR was difficult to clarify coating composition, whereas the XPS analysis could determine the surface coating differences. The antimicrobial analyses including viability and morphology examinations consistently demonstrated the antibacterial efficacy of the used coating layers. Each group of antibacterial agents cultivated for 24 hours can effectively reduce the growth of bacteria. As expected, the higher concentration of the agent, the more effective was found. It has quite difference as compared to control group. The antibacterial effectiveness of QTS and CS were similar to each other, and COS had a lower effectively than CS. The Ag and Cu, layer had a greater antibacterial efficacy than QTS and CS.
誌謝...........................................................I
摘要..........................................................II
ABSTRACT....................................................III
目錄..........................................................IV
圖目錄............................................... .......VII
表目錄......................................................VIII
第一章
緒論................................................... .......1
1-1研究背景....................................................1
1-2研究目的............................................. ......2
第二章 文獻回顧............................................... 3
2-1 生醫材料.................................................. 3
2-2 骨替代材料................................................ 5
2-3 骨生醫材料................................................ 6
2-4 植體表面修飾.............................................. 6
2-5 植體表面修飾方法.................................... .......7
2-5-1 電漿表面處理...................................... ......9
2-5-2 滴塗層................................................. 10
2-6 骨替代目標............................................... 10
2-7 表面修飾材料....................................... ......12
2-7-1聚多巴胺.......................................... ......12
2-7-2 幾丁聚醣......................................... ......13
2-7-3 幾丁聚醣衍生物................................... ......15
2-7-4 矽酸鈣................................................. 16
2-7-5 銅、銀離子............................................. 17
第三章 實驗材料與方法................................... ......19
3-1 人工植體表面修飾................................... .......19
3-2 材料合成................................................. 20
3-2-1 聚多巴胺層............................................. 20
3-2-2 矽酸鈣層........................................ .......20
3-2-3 抑菌層.......................................... .......21
3-3 基本性質分析............................................. 22
3-3-1 粉體分析............................................... 22
3-3-2 液體分析............................................... 23
3-3-3 塗層表面分析......................................... ..23
3-3-4 塗層微生物測試........................................ .24
第四章 實驗結果............................................. .26
4-1 粉體分析FTIR............................................. 26
4-2 液體分析-微生物試驗....................................... 27
4-2-1 混濁度測試............................................. 27
4-2-2 生存率測試............................................. 28
4-2-3 培養基測試............................................. 29
4-3 塗層表面元素分析.......................................... 31
4-3-1 表面形貌............................................... 31
4-3-2 XRD............................................ .......34
4-3-3 FTIR ................................................. 35
4-3-4 XPS................................................... 36
4-3-5塗層抑菌性.............................................. 37
第五章 討論.................................................. 40
第六章 結論.................................................. 42
參考文獻..................................................... 43
[1] M. R. Costa, V. C. da Silva, M. N. Miqui, A. P. V. Colombo, and J. A. Cirelli, "Effects of ultrasonic, electric, and manual toothbrushes on subgingival plaque composition in orthodontically banded molars," American Journal of Orthodontics and Dentofacial Orthopedics, vol. 137, pp. 229-235, 2010.
[2] 趙夫健, 陳偉凡, 黃自坤, 呙陽, 張林, 石連水, "氧化锆陶瓷表面Ag-TiO2抗菌薄膜的制備及性能," 材料導報, pp. 65-68, 2014.
[3] C. K. Yang, I. L. Ho, S. F. Wang, P. R. Ko, J. C. Yang, and S. Y. Lee, "The Surface Modification of Zirconia Dental Implants Prepared by Ceramic Injection Molding (CIM)," 中國礦冶工程學會, pp. 95-100, 101.12.
[4] R. Depprich, H. Zipprich, M. Ommerborn, C. Naujoks, H.-P. Wiesmann, S. Kiattavorncharoen, et al., "Osseointegration of zirconia implants compared with titanium: an in vivo study," Head & Face Medicine, vol. 4, 2008.
[5] Z. Ozkurt and E. Kazazoglu, "Zirconia Dental Implants: A Literature Review," Journal of Oral Implantology, vol. 37, pp. 367-376, 2011.
[6] M. Liu, J. Zhou, Y. Yang, M. Zheng, J. Yang, and J. Tan, "Surface modification of zirconia with polydopamine to enhance fibroblast response and decrease bacterial activity in vitro: A potential technique for soft tissue engineering applications," Colloids and Surfaces B: Biointerfaces, vol. 136, pp. 74-83, 12/1/ 2015.
[7] T. Albrektsson, P. I. Branemark, H. A. Hansson, and J. Lindstrom, "Osseointegrated Titanium Implants:Requirements for Ensuring a Long-Lasting, Direct Bone-to-Implant Anchorage in Man," Acta Orthopaedica Scandinavica, vol. 52, pp. 155-170, 2009.
[8] L. Treccani, T. Yvonne Klein, F. Meder, K. Pardun, and K. Rezwan, "Functionalized ceramics for biomedical, biotechnological and environmental applications," Acta Biomaterialia, vol. 9, pp. 7115-7150, 2013.
[9] M. Rinaudo, "Chitin and chitosan: Properties and applications," Progress in Polymer Science, vol. 31, pp. 603-632, 2006.
[10] X. Liu, C. Ding, and Z. Wang, "Apatite formed on the surface of plasma-sprayed wollastonite coating immersed in simulated body " Biomaterials, 2001
[11] 陳松青,宋信文, "生醫材料簡介," 生物產業技術概論, 2003.
[12] 江亭儀, 溶液pH值及氧化鉍對矽酸鈣骨水泥性質之影響台中市: 中山醫學大學, 2013.
44
[13] 陳璻涵, "矽酸鈣/幾丁聚醣塗覆聚乳酸奈米纖維膜協同作用對於體外成骨的加乘效應," 牙科與口腔科, 中山醫學大學, 2016.
[14] X. Liu, P. K. Chu, and C. Ding, "Surface modification of titanium, titanium alloys, and related materials for biomedical applications," Materials Science and Engineering: R: Reports, vol. 47, pp. 49-121, 2004.
[15] L. Treccani, T. Yvonne Klein, F. Meder, K. Pardun, and K. Rezwan, "Functionalized ceramics for biomedical, biotechnological and environmental applications," Acta Biomater, vol. 9, pp. 7115-50, Jul 2013.
[16] X. Wang, Y. Zhou, L. Xia, C. Zhao, L. Chen, D. Yi, et al., "Fabrication of nano-structured calcium silicate coatings with enhanced stability, bioactivity and osteogenic and angiogenic activity," Colloids and Surfaces B: Biointerfaces, vol. 126, pp. 358-366, 2015.
[17] P. Zhang-yi, Y. Jie, C. Cong, and D. Yu-qi, "Bacteria biomembrane formation and anti-bacterial surface modification of implants " Journal of Clinical Rehabilitative Tissue Engineering Research, vol. Vol.14, pp. 8090-8094, October 22, 2010
[18] C.-K. Wei and S.-J. Ding, "Dual-functional bone implants with antibacterial ability and osteogenic activity," J. Mater. Chem. B, vol. 5, pp. 1943-1953, 2017.
[19] 陳璽竹, "表面處理技術於人工牙根的應用," 金屬中心金屬製程研發處熔鑄組.
[20] C.-C. Wu, C.-K. Wei, C.-C. Ho, and S.-J. Ding, "Enhanced Hydrophilicity and Biocompatibility of Dental Zirconia Ceramics by Oxygen Plasma Treatment," Materials, vol. 8, pp. 684-699, 2015.
[21] 陳克紹, 陳素真, 洪翠禪, and 廖淑娟, "表面電漿改質技術在生物醫學工程之應用," 化工技術, vol. 第17卷, p. 1~16, 2009年.
[22] 吳耀庭, 黃曉鳳, and 溫俊祥, "電漿表面處理在生醫材料應用," 工業材料雜誌, vol. 212期, 93年8月.
[23] M. Eslamian and F. Zabihi, "Ultrasonic Substrate Vibration-Assisted Drop Casting (SVADC) for the Fabrication of Photovoltaic Solar Cell Arrays and Thin-Film Devices," Nanoscale Res Lett, vol. 10, 2015.
[24] M. Binda, "Deposition and patterning techniques for Organic Semiconductors," Organic Electronics: principles, devices and applications, November 15-18th, 2011.
[25] R. A. Bhatt and T. D. Rozental, "Bone Graft Substitutes," Hand Clinics, vol. 28, pp. 457-468, 2012.
[26] "A I5-year study of osseointegrated implants," Int. J. Oral Surg, vol. 10 387-45 416, 1981.
[27] 劉媛媛, 李果, 任家銀, 趙書平, 聶晶, and 王虎, "奈米膜種植體-骨界面的骨整合研究," 國際口腔醫學雜誌, vol. 第39 卷2012.
[28] W.-B. Tsai, W.-T. Chen, H.-W. Chien, W.-H. Kuo, and M.-J. Wang, "Poly(dopamine) coating of scaffolds for articular cartilage tissue engineering," Acta Biomaterialia, vol. 7, pp. 4187-4194, 2011.
[29] L. Zongguang, Q. Shuxin, and W. Jie, "Application of Polydopamine on Surface Modification of Biomaterials," vol. Progress in Chemistry, p. 212 ~219, 2015.
[30] H. Lee, S. M. Dellatore, W. M. Miller, and P. B. Messersmith, "Mussel-Inspired Surface Chemistry for Multifunctional Coatings," Science, vol. 318, pp. 426-430, 2007.
[31] C.-C. Ho and S.-J. Ding, "Novel SiO2/PDA hybrid coatings to promote osteoblast-like cell expression on titanium implants," J. Mater. Chem. B, vol. 3, pp. 2698-2707, 2015.
[32] 吳彰哲黃,湘寧, "幾丁質," 科學發展, 2010.4.
[33] 鄭人華, "溶膠凝膠法製備鈣矽磷/幾丁聚醣複合材之特性研究," 碩士, 口腔材料科學研究所, 中山醫學大學, 台中市.
[34] S. Aiba, "Studies on chitosan: 4. Lysozymic hydrolysis of partially N-acetylated chitosans," Int J Biol Macromol, vol. 14, pp. 225-8, Aug 1992.
[35] M. Rinaudo, M. Milas, and P. Le Dung, "Characterization of chitosan. Influence of ionic strength and degree of acetylation on chain expansion," Int J Biol Macromol, vol. 15, pp. 281-5, Oct 1993.
[36] G. A. F. Roberts, Chitin chemistry. London: Macmillan, 1992.
[37] 林怡伶, "化學修飾雙性幾丁聚醣衍生物及其持水性質研究," 碩士, 材料科學與工程系所, 國立交通大學, 新竹市, 2005.
[38] 李佩琪, 許芳瑜, 楊雯珺, and 詹錦豐, "高分子水溶性幾丁聚醣的抗氧化及抗菌活性," 弘光學報67期, 2012.
[39] 劉. 楠, 陳西廣, 劉成聖, 孟祥红, and 于樂軍, "殼聚醣抑菌性能研究發展," 中國海洋大學, vol. 第10 期, 2005.
[40] P. A. Norowski, H. S. Courtney, J. Babu, W. O. Haggard, and J. D. Bumgardner, "Chitosan coatings deliver antimicrobials from titanium implants: a preliminary study," Implant Dent, vol. 20, pp. 56-67, Feb 2011.
[41] I. Younes and M. Rinaudo, "Chitin and chitosan preparation from marine sources. Structure, properties and applications," Mar Drugs, vol. 13, pp. 1133-74, Mar 02 2015.
[42] 劉楠, 晨曦廣, 劉呈聖, 孟祥红, and 于樂軍, "Development of antibacterial
46
activity of chitosan," science scope, vol. 29:10, p. 90~92, 2005.
[43] H. Tan, R. Ma, C. Lin, Z. Liu, and T. Tang, "Quaternized Chitosan as an Antimicrobial Agent: Antimicrobial Activity, Mechanism of Action and Biomedical Applications in Orthopedics," International Journal of Molecular Sciences, vol. 14, p. 1854, 2013.
[44] D. de Britto, R. Celi Goy, S. P. Campana Filho, and O. B. G. Assis, "Quaternary Salts of Chitosan: History, Antimicrobial Features, and Prospects," International Journal of Carbohydrate Chemistry, vol. 2011, pp. 1-12, 2011.
[45] 夏文水 and 陳潔, "甲殼素和殼聚醣的化學改性及其應用," 無錫輕工業學院學報, vol. 13:2, 1994.
[46] H. Tan, R. Ma, C. Lin, Z. Liu, and T. Tang, "Quaternized Chitosan as an Antimicrobial Agent: Antimicrobial Activity, Mechanism of Action and Biomedical Applications in Orthopedics," International Journal of Molecular Sciences, vol. 14, pp. 1854-1869, 2013.
[47] R. Tang, Y. Zhang, Y. Zhang, and Z. Yu, "Synthesis and characterization of chitosan based dye containing quaternary ammonium group," Carbohydrate Polymers, vol. 139, pp. 191-196, 2016.
[48] Q. Huang, X. Liu, T. A. Elkhooly, R. Zhang, Z. Shen, and Q. Feng, "A novel titania/calcium silicate hydrate hierarchical coating on titanium," Colloids Surf B Biointerfaces, vol. 134, pp. 169-77, Oct 1 2015.
[49] H. Hu, Y. Qiao, F. Meng, X. Liu, and C. Ding, "Enhanced apatite-forming ability and cytocompatibility of porous and nanostructured TiO2/CaSiO3 coating on titanium," Colloids and Surfaces B: Biointerfaces, vol. 101, pp. 83-90, 2013.
[50] S. Xu, K. Lin, Z. Wang, J. Chang, L. Wang, J. Lu, et al., "Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics," Biomaterials, vol. 29, pp. 2588-2596, 2008.
[51] 張純誠 and 湯宏仁, "金屬銅(Metalliccopper)在感染管制的應用" 感染控制雜誌, vol. 22:6 p. 326~329, 2012.12.
[52] L. Zhao, H. Wang, K. Huo, L. Cui, W. Zhang, H. Ni, et al., "Antibacterial nano-structured titania coating incorporated with silver nanoparticles," Biomaterials, vol. 32, pp. 5706-5716, 2011.
[53] 蔡蕙青, "交聯化反應對幾丁聚醣-三聚磷酸鈉薄膜物性之影響," 食品科技研究所, 臺灣大學, 2013.
[54] Y. Cheng, A. A. Nada, C. M. Valmikinathan, P. Lee, D. Liang, X. Yu, et al., "In situ gelling polysaccharide-based hydrogel for cell and drug delivery in tissue engineering," Journal of Applied Polymer Science, vol. 131, pp. n/a-n/a, 2014.
47
[55] "Properties of Chitosan Coatings on Titanium Substrates for Implants."
[56] B.-C. Wu, S.-C. Huang, and S.-J. Ding, "Comparative osteogenesis of radiopaque dicalcium silicate cement and white-colored mineral trioxide aggregate in a rabbit femur model," Materials, vol. 6, pp. 5675-5689, 2013.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔