(3.238.36.32) 您好!臺灣時間:2021/02/27 09:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李宗原
研究生(外文):Tsung-Yuan Li
論文名稱:通用擴散波數取樣磁振造影評估化療對乳癌患者大腦結構聯結體與神經心理學之影響
論文名稱(外文):Evaluation in chemotherapy effects on brain structural connectome and neuropsychologic assessment of breast cancer survivors with generalized q-sampling MRI
指導教授:翁駿程翁駿程引用關係
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:醫學影像暨放射科學系碩士班
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:51
中文關鍵詞:乳腺癌化學治療通用擴散波數取樣影像基於體素之統計分析圖論分析多元回歸分析
外文關鍵詞:Breast cancerChemotherapyGeneralized q-sampling imagingVoxel-based statistical analysisGraph theoretical analysisMultiple regression analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:33
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
癌症是台灣人十大死因之首,癌症中,乳腺癌的罹病人數多,藉由適當的治療,使乳腺癌病患存活率提高,然而,此族群接受治療後,身心變化獲得重視。除了患者本身罹病的身心壓力之外,治療方式亦會造成患者的身心變化,包括大腦結構的改變或認知功能與情緒的影響,甚至嚴重影響患者的生活品質。化學治療藥物的直接或間接神經毒性可能造成認知變化,以前的研究集中在化療對患者大腦結構的晚期作用;而本研究對化療於患者大腦結構的早期作用感興趣。此外,我們嘗試使用通用擴散波數取樣影像(Generalized q-sampling imaging, GQI)來取代擴散張量影像(Diffusion tensor imaging, DTI)做擴散影像分析,以得知乳腺癌已化療患者或乳腺癌未化療患者的大腦結構是否有損傷。本研究為橫向式研究(Cross-sectional study),於台中榮民總醫院及嘉義長庚紀念醫院收案,分別招募三組受試者:乳腺癌化療組、乳腺癌未化療組及健康控制組。所有受試者皆接受擴散磁振造影檢查及神經心理學測試。本研究影像分析分為三大部分,分別是基於體素之統計分析(Voxel-based statistical analysis)、圖論分析(Graph theoretical analysis)與多元回歸分析(Multiple regression analysis)。分析結果顯示乳腺癌化療組部分腦區之Generalized fractional anisotropy (GFA)與Normalized quantitative anisotropy (NQA)顯著降低,如:Left superior corona radiata、Left middle temporal gyrus,提供創傷後壓力症候群(Post-traumatic stress disorder, PTSD)及化學治療後,腦損傷的進一步證據。藉由連結GQI擴散指標與認知功能量表,顯示化療確實會影響大腦白質完整性及造成認知表現下降。此外,亦發現乳腺癌化療組之特徵路徑長度(Characteristic path length)變長,表示其大腦網路整合能力較差。乳腺癌患者化療後,大腦結構之GFA或NQA下降,或拓樸網路特性的變化,未來或許能成為監測化療藥物引起神經毒性(Neurotoxicity)的一個神經病理學生物指標。
Breast neoplasms cases are the most common cancer in women in Taiwan. Advances in cancer treatments have resulted in significantly improved survival rates but are often associated with side effects, such as cognitive decline, that may reduce the quality of life. Cognitive deficits were most pronounced in executive function and verbal memory domains. Both direct and indirect neurotoxicity from cytotoxic agents may underlie the cognitive changes.
The previous studies focused on the late effect of the brain by chemotherapy in the last decade. Our study interested in the early effect of the brain by chemotherapy. Since diffusion tensor imaging (DTI) is associated with restrictions in the resolution of crossing fibers, we tried to use generalized q-sampling imaging (GQI) that can overcome these difficulties and is advantageous over DTI for the tractography of the fiber bundle.
This cross-sectional study included three groups: breast cancer survivors who had completed their chemotherapy, breast cancer patient who didn’t received chemotherapy and healthy control group. All participants underwent diffusion MRI exam and neuropsychologic assessments. We have three parts of our image analysis, which are voxel-based statistical analysis, graph theoretical analysis, multiple regression analysis.
Compared to the control group, results from voxel-based analysis showed significantly lower GFA and NQA in the breast cancer group (p < 0.05). Differences of brain regions included left superior corona radiata and left middle temporal gyrus. This study provides further evidence of brain injury results from chemotherapy and post-traumatic stress disorder. We have shown changes in cerebral white matter of patients after chemotherapy by linking GQI indices with decreased cognitive functioning. In addition, it has also been found that the characteristic path length of the breast cancer chemotherapy group increases, indicating that the brain network integration gets worse. Changes in GFA, NQA and network topological properties may therefore serve as a neuropathologic biomarker for treatment-induced neurotoxicity.
中文摘要 i
Abstract ii
目錄 iii
第一章、 緒論……………………………………………………………………1
第一節、 研究動機 1
第二節、 研究主題 2
第二章、 文獻回顧 3
第一節、 台灣乳腺癌患者之現況 3
第二節、 乳腺癌患者之情緒探討 4
第三節、 乳腺癌患者之認知功能 6
2.3.1. 認知功能的定義 6
2.3.2. 癌症患者之認知功能 6
第四節、 近幾年乳腺癌患者的腦部擴散磁振影像分析 9
第五節、 通用擴散波數取樣磁振造影(Generalized q-sampling MRI)簡介 …………………………………………………………………..12
2.5.1. Generalized q-sampling imaging 12
2.5.2. GQI之擴散指標(Diffusion indices) 13
第六節、 圖論分析(Graph theoretical analysis)簡介 14
2.6.1. 圖形理論(Graph theory) 14
2.6.2. 拓樸網路參數 16
2.6.3. 拓樸網路效率 18
2.6.4. 小世界屬性網路(Small-worldness network) 19
第三章、 研究材料與方法 20
第一節、 研究設計 20
第二節、 研究招募之受試者 21
第三節、 受試者納入與排除標準 23
第四節、 實驗實施程序 24
3.4.1. 收案流程 24
3.4.2. 臨床上不良反應之處理方法 24
3.4.3. 經費及來源 24
第五節、 神經心理學測試工具 25
3.5.1. 施測量表 25
3.5.2. 量表意義 25
第六節、 擴散磁振影像參數 28
3.6.1. 台中榮民總醫院之擴散磁振影像參數 28
3.6.2. 嘉義長庚紀念醫院之擴散磁振影像參數 28
第七節、 影像分析方法 29
3.7.1. Voxel-based statistical analysis 29
3.7.2. Graph theoretical analysis 29
3.7.3. Multiple regression analysis 30
第四章、 研究結果 31
第一節、 基於體素之統計分析(Voxel-based statistical analysis)之結果 31
4.1.1. 台中榮民總醫院 31
4.1.2. 嘉義長庚紀念醫院 32
第二節、 圖論分析(Graph theoretical analysis)之結果 36
4.2.1. 台中榮民總醫院 36
4.2.2. 嘉義長庚紀念醫院 38
第三節、 多元回歸分析(Multiple regression analysis)之結果 40
4.3.1. 台中榮民總醫院 40
4.3.2. 嘉義長庚紀念醫院 42
第五章、 討論 43
第一節、 Voxel-based statistical analysis與Multiple regression analysis之結果討論 43
第二節、 Graph theoretical analysis之結果討論 45
第六章、 結論 47
第七章、 參考文獻 48
圖目錄…………………………………………………………………………………v
表目錄 vi
Achard, S., & Bullmore, E. (2007). Efficiency and cost of economical brain functional networks. PLoS Comput Biol, 3(2), e17. doi:10.1371/journal.pcbi.0030017
Ahles, T. A., Saykin, A. J., Furstenberg, C. T., Cole, B., Mott, L. A., Titus-Ernstoff, L., . . . Silberfarb, P. M. (2005). Quality of life of long-term survivors of breast cancer and lymphoma treated with standard-dose chemotherapy or local therapy. J Clin Oncol, 23(19), 4399-4405. doi:10.1200/jco.2005.03.343
Ahles, T. A., Saykin, A. J., McDonald, B. C., Li, Y., Furstenberg, C. T., Hanscom, B. S., . . . Kaufman, P. A. (2010). Longitudinal assessment of cognitive changes associated with adjuvant treatment for breast cancer: impact of age and cognitive reserve. J Clin Oncol, 28(29), 4434-4440. doi:10.1200/jco.2009.27.0827
Andryszak, P., Wiłkość, M., Izdebski, P., & Żurawski, B. (2017). A systemic literature review of neuroimaging studies in women with breast cancer treated with adjuvant chemotherapy. Contemporary Oncology, 21(1), 6-15. doi:10.5114/wo.2017.66652
Asher, A. (2011). Cognitive dysfunction among cancer survivors. Am J Phys Med Rehabil, 90(5 Suppl 1), S16-26. doi:10.1097/PHM.0b013e31820be463
Bruno, J., Hosseini, S. M., & Kesler, S. (2012). Altered resting state functional brain network topology in chemotherapy-treated breast cancer survivors. Neurobiol Dis, 48(3), 329-338. doi:10.1016/j.nbd.2012.07.009
Burgess, C., Cornelius, V., Love, S., Graham, J., Richards, M., & Ramirez, A. (2005). Depression and anxiety in women with early breast cancer: five year observational cohort study. Bmj, 330(7493), 702. doi:10.1136/bmj.38343.670868.D3
de Ruiter, M. B., Reneman, L., Boogerd, W., Veltman, D. J., Caan, M., Douaud, G., . . . Schagen, S. B. (2012). Late effects of high-dose adjuvant chemotherapy on white and gray matter in breast cancer survivors: converging results from multimodal magnetic resonance imaging. Hum Brain Mapp, 33(12), 2971-2983. doi:10.1002/hbm.21422
Deprez, S., Amant, F., Smeets, A., Peeters, R., Leemans, A., Van Hecke, W., . . . Sunaert, S. (2012). Longitudinal assessment of chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning. J Clin Oncol, 30(3), 274-281. doi:10.1200/jco.2011.36.8571
Dumas, J. A., Makarewicz, J., Schaubhut, G. J., Devins, R., Albert, K., Dittus, K., & Newhouse, P. A. (2013). Chemotherapy altered brain functional connectivity in women with breast cancer: a pilot study. Brain Imaging Behav, 7(4), 524-532. doi:10.1007/s11682-013-9244-1
Feldman, G., Hayes, A., Kumar, S., Greeson, J., & Laurenceau, J.-P. (2006). Mindfulness and Emotion Regulation: The Development and Initial Validation of the Cognitive and Affective Mindfulness Scale-Revised (CAMS-R). Journal of Psychopathology and Behavioral Assessment, 29(3), 177. doi:10.1007/s10862-006-9035-8
Hegel, M. T., Moore, C. P., Collins, E. D., Kearing, S., Gillock, K. L., Riggs, R. L., . . . Ahles, T. A. (2006). Distress, psychiatric syndromes, and impairment of function in women with newly diagnosed breast cancer. Cancer, 107(12), 2924-2931. doi:10.1002/cncr.22335
Horowitz, M., Wilner, N., & Alvarez, W. (1979). Impact of Event Scale: a measure of subjective stress. Psychosom Med, 41(3), 209-218.
Humphries, M. D., Gurney, K., & Prescott, T. J. (2006). The brainstem reticular formation is a small-world, not scale-free, network. Proc Biol Sci, 273(1585), 503-511. doi:10.1098/rspb.2005.3354
Jim, H. S., Donovan, K. A., Small, B. J., Andrykowski, M. A., Munster, P. N., & Jacobsen, P. B. (2009). Cognitive functioning in breast cancer survivors: a controlled comparison. Cancer, 115(8), 1776-1783. doi:10.1002/cncr.24192
Kaiser, M., & Hilgetag, C. C. (2006). Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS Comput Biol, 2(7), e95. doi:10.1371/journal.pcbi.0020095
Kesler, S. R., Watson, C. L., & Blayney, D. W. (2015). Brain network alterations and vulnerability to simulated neurodegeneration in breast cancer. Neurobiol Aging, 36(8), 2429-2442. doi:10.1016/j.neurobiolaging.2015.04.015
Koppelmans, V., de Groot, M., de Ruiter, M. B., Boogerd, W., Seynaeve, C., Vernooij, M. W., . . . Breteler, M. M. (2014). Global and focal white matter integrity in breast cancer survivors 20 years after adjuvant chemotherapy. Hum Brain Mapp, 35(3), 889-899. doi:10.1002/hbm.22221
Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks. Phys Rev Lett, 87(19), 198701. doi:10.1103/PhysRevLett.87.198701
Latora, V., & Marchiori, M. (2003). Economic small-world behavior in weighted networks. Eur. Phys. J. B, 32(2), 249-263.
Newman, M. E. J. (2003). The Structure and Function of Complex Networks. SIAM Review, 45(2), 167-256. doi:10.1137/s003614450342480
Phillips, K. M., Jim, H. S., Small, B. J., Laronga, C., Andrykowski, M. A., & Jacobsen, P. B. (2012). Cognitive functioning after cancer treatment: a 3-year longitudinal comparison of breast cancer survivors treated with chemotherapy or radiation and noncancer controls. Cancer, 118(7), 1925-1932. doi:10.1002/cncr.26432
Reuter-Lorenz, P. A., & Cimprich, B. (2013). Cognitive function and breast cancer: promise and potential insights from functional brain imaging. Breast Cancer Res Treat, 137(1), 33-43. doi:10.1007/s10549-012-2266-3
Shilling, V., & Jenkins, V. (2007). Self-reported cognitive problems in women receiving adjuvant therapy for breast cancer. Eur J Oncol Nurs, 11(1), 6-15. doi:10.1016/j.ejon.2006.02.005
Sporns, O., & Zwi, J. D. (2004). The small world of the cerebral cortex. Neuroinformatics, 2(2), 145-162. doi:10.1385/ni:2:2:145
Strogatz, S. H. (2001). Exploring complex networks. Nature, 410(6825), 268-276. doi:10.1038/35065725
Vardy, J., Rourke, S., & Tannock, I. F. (2007). Evaluation of cognitive function associated with chemotherapy: a review of published studies and recommendations for future research. J Clin Oncol, 25(17), 2455-2463. doi:10.1200/jco.2006.08.1604
Wagner, L. I., Sweet, J., Butt, Z., Lai, J. S., & Cella, D. (2009). Measuring patient self-reported cognitive function: Development of the Functional Assessment of Cancer Therapy–Cognitive Function Instrument (Vol. 7).
Wang, L., Apple, A. C., Schroeder, M. P., Ryals, A. J., Voss, J. L., Gitelman, D., . . . Wagner, L. I. (2016). Reduced prefrontal activation during working and long-term memory tasks and impaired patient-reported cognition among cancer survivors postchemotherapy compared with healthy controls. Cancer, 122(2), 258-268. doi:10.1002/cncr.29737
Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of /`small-world/'' networks. Nature, 393(6684), 440-442.
Yeh, F. C., Wedeen, V. J., & Tseng, W. Y. (2010). Generalized q-sampling imaging. IEEE Trans Med Imaging, 29(9), 1626-1635. doi:10.1109/tmi.2010.2045126
Zigmond, A. S., & Snaith, R. P. (1983). The hospital anxiety and depression scale. Acta Psychiatr Scand, 67(6), 361-370.
郭乃文, 劉秀枝, 王珮芳, 廖光淦, 甄瑞興, 林恭平, . . . 徐道昌. (1988). 「簡短式智能評估」之中文施測與常模建立. [Chinese Version and Norms of the Mini-Mental State Examination]. 中華民國復健醫學會雜誌(16), 52-59.
郭冠岑. (2014). 神經追蹤參數於穩定之大腦白質網路重建. (碩士), 國立陽明大學, 台北市.
陳幸琪. (2010). 女性乳癌病人的心理復原力經驗. (碩士), 國立成功大學, 台南市.
曾亦徽. (2015). 以前瞻性評估乳癌病人術後生活品質之長期改變趨勢:系統性回顧、統合分析. (碩士), 高雄醫學大學, 高雄市.
羅畯義. (2012). 大腦結構網路圖形理論分析. (博士), 國立陽明大學, 台北市.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔