跳到主要內容

臺灣博碩士論文加值系統

(44.210.85.190) 您好!臺灣時間:2022/12/10 12:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:潘龍發
研究生(外文):PAN, LUNG-FA
論文名稱:冠狀動脈臨床攝影參數的最佳化 : 利用田口動態分析與3個自製假體的定量評估
論文名稱(外文):Optimization of the Clinical Coronary Angiography Parameter : a Quantitative Evaluation Using Taguchi Dynamic Analysis and 3 PMMA Indigenous Phantoms
指導教授:潘榕光
指導教授(外文):PAN, LUNG-KWANG
口試委員:陳健懿林定邦林傑彬陸正昌
口試委員(外文):CHEN, CHIEN-YILIN,DING-BANGLIN, JYE-BINLU, CHENG-CHANG
口試日期:2017-01-10
學位類別:博士
校院名稱:中臺科技大學
系所名稱:醫學影像暨放射科學系暨研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:142
中文關鍵詞:冠狀動脈疾病田口動態分析法左後側位造影身體質量指數臨床驗證
外文關鍵詞:Coronary Artery DiseaseTaguchi Dynamic Analysis MethodSpider ViewBody Mass IndexClinical Verification
相關次數:
  • 被引用被引用:0
  • 點閱點閱:232
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
此研究是利用田口動態分析法與三個PMMA自製假體對冠狀動脈臨床攝影參數的最佳化做定量評估。主要部分是根據前期研究的臨床驗證過程中所得的建議,以不同的身體質量指數(BMI)定義制定了三個PMMA模擬假體。以具有不同的身體質量指數(BMI)的模擬假體提供田口動態最佳化的過程中特殊的需求,進而能成功取得最佳造影參數組合。在臨床診斷過程中患者身體的大小對雙軸X光心導管儀的空間分辨率具有顯著差異是關鍵且重要的,並從先前研究得知田口的靜態分析法僅能夠滿足一個尺寸假體的最佳化。而田口的動態分析可以有效地提供輸入需求和輸出標準之間的最佳靈敏度,且能呈現高度的再現性以及實驗過程中較低的隨機誤差。因此,田口的動態分析法的獨特特性是優於靜態的分析方法,能根據各種尺寸的模擬假體分析出最佳的操作參數。本研究依照ICRU48號報告標準製作50 kg ( BMI:21.62 )、70 kg ( BMI:24.22 )及90 kg ( BMI:27.80 )三個模型假體,模擬冠狀動脈攝影的左後側位造影術(Spider View),並依照田口方法歸納為18 組(L18)定出六項控制因子:(A)Filter的使用與否:是、否。(B)左側位攝影角度:LAO 50°、LAO 60°、LAO 70°。(C)後側位攝影角度:CAU 20°、CAU 25°、CAU30°。(D)攝影時尖峰電壓:70、90、110 kVp。(E)攝影時電流與時間:1.1、1.3、1.5 mAs。(F)攝影時管球與偵測平板之距離:108、115、123cm。照射後的影像會以隨機的順序分別交由三位資深心臟內科醫師進行評分,且每張影像重複評分三次以降低主觀認定所造成的誤差。 結果顯示最佳影像品質攝影參數組合(A)50 kg假體為:不使用濾片、LAO 50°、CAU 30°、110 kVp、11 mAs、SID 108 cm;(B)70 kg假體為:不使用濾片、LAO 70°、CAU 30°、110 kVp、11 mAs、SID 108 cm;(C)90 kg假體為:不使用濾片、LAO 50°、CAU 30°、110 kVp、11 mAs、SID 108 cm;而動態最佳化之組合為:不使用濾片、LAO 60°、CAU 30°、110 kVp、11 mAs、SID 108 cm。經變異數分析得到重要因子為:尖峰管電壓、左斜側位與朝尾角度。在許多的討論除了集中在顯著參數因子、參數因子之間的交互作用以及超過100個病人的臨床驗證的過程,也對心導管室檢查過程中職業人員所接受的輻射劑量進行評估以探討相關領域的研究。

This work had accomplished the optimization of the clinical coronary angiography parameters using Taguchi dynamic analysis and 3 PMMA indigenous phantoms. The major part of the thesis dissertation was adopted three PMMA phantoms, which were defined and customized according to the different body mass index (BMI), as well as the dynamic robust designation with clinical verification in reality. The phantom with various sizes can fulfill the special demands during the optimization process, in doing so, the phantom was replaced one by one to simulate the patient’s body with different weights. This was essential and critical in clinical diagnosis, since the size of patient’s body cause significant difference of the spatial resolution that was acquired from the bi-plane X-ray exposure. The dynamic analysis of Taguchi could effectively provide either optimal sensitivity between input demand and output criteria, high reproducibility, or low random error among experimental process. Moreover, the unique feature of the dynamic analysis making its superiority to static one was that the optimal recommendation of operating parameters was defined according to various sizes of phantom whereas the one recommended from static can only fulfill one size. Once the size is off the suggested region then the optimal recommendation was also held. Three PMMA phantoms, 50kg (BMI: 21.62), 70kg (BMI: 24.22) and 90kg (BMI: 27.80), were used to simulate the imaging of Spider View in coronary angiography according to ICRU48 report and 18 groups of 6 parameters were defined according to Taguchi suggestion as (A) with or without filter, (B) Left-side photographic angle: LAO 50°, LAO 60°, LAO 70°, (C) posterior lateral photography angle: CAU 20°, CAU 25°, CAU30°, (D) Spike voltage during shooting: 70, 90, 110 kVp, (E) Current and time during photography: 1.1, 1.3, 1.5 mAs, and (F) the distance between the tube and image multiplier tube: 108,115,123cm. the acquired exposed imagings were then graded by well-trained radiologists in doubled-blinded process to suppress the bias. Results indicated that (A) no filter tablets, LAO 50°, CAU 30°, 110 kVp, 11 mAs, and SID 108 cm for 50 Kg, (B) no filter tablets, LAO 70°, CAU 30°, 110 kVp, 11 mAs, and SID 108 cm for 70Kg, and (C) no filter tablets, LAO 50 °, CAU 30 °, 110 kVp, 11 mAs, and SID 108 cm for 90Kg; whereas for the dynamic combination, no filter, LAO 60°, CAU 30°, 110 kVp, 11 mAs, and SID 108 cm. The correlated ANOVA inspection also implied that the significant parameters are peak voltage, left oblique side and tail angle among all. Many discussions were focused on the dominant parameters, cross interactions among parameters, and clinical verification according to over 100 patients in reality. The accompanied exposed dosees of the cardiac laboratory staffs within the examination were also evaluated to explore the investigation in correlated fields.
目 錄
中文摘要 I
ABSTRACT III
誌 謝 V
文章架構 VI
目 錄 VII
圖目錄 XII
表目錄 XIII
論文正文 1
第一章 前言 1
1-1 研究背景 1
1-2 研究動機 5
1-3 研究目的 6
第二章 背景回顧與文獻分析 8
2-1 冠狀動脈疾病臨床診療之概論 8
2-1-1 定義 8
2-1-2 病理 8
2-1-3 臨床症狀 8
2-1-3-1 心絞痛 8
2-1-3-2 急性心肌梗塞 9
2-1-3-3 心臟衰竭 10
2-1-3-4 心律不整 10
2-1-3-5 猝死 10
2-1-4 發生率 10
2-1-5 診斷檢查 11
2-1-5-1 心電圖 11
2-1-5-2 胸部X光攝影 11
2-1-5-3 心肌酵素檢查 12
2-1-5-4 運動心電圖(Tread-mill exercise test) 12
2-1-5-5 鉈-201心肌造影(Thallium-201myocardial perfusion scan) 12
2-1-5-6 電腦斷層冠狀動脈血管攝影(MDCT Angiography) 12
2-1-5-7 冠狀動脈攝影 12
2-1-6 治療方式 13
2-1-6-1 改變危險因子 13
2-1-6-2 藥物治療 13
2-1-6-3 血管修復術PTCA 13
2-1-6-4 支架(基本金屬支架、塗藥支架、塗藥膜架) 13
2-1-6-5 冠狀動脈繞道手術 13
2-1-6-6 持續研究 13
2-2 田口方法之概論 14
2-2-1 田口方法之沿革 14
2-2-2 田口方法之概念 15
2-2-3 實驗方法之種類 17
2-2-3-1 試誤法(trial and error) 17
2-2-3-2 單因子實驗法(one-factor-at-a-time experiments) 17
2-2-3-3 全因子實驗法(full factorial experiments) 17
2-2-3-4 田口直交表(Taghchi orthogonal arrays) 17
2-2-3-5 動、靜態田口(Dynamic - Static Taghchi) 18
2-2-4 田口之名詞介紹 19
2-2-4-1 穩健設計(robust design) 19
2-2-4-2 品質特性(quality characteristics) 19
2-2-4-3 因子(factor) 19
2-2-4-4 水準(level) 19
2-2-4-5 交互作用(interaction) 19
2-2-4-6 自由度(degree of freedom, DOF) 19
第三章 田口實驗規劃原理 23
3-1 田口的基本理論 23
3-1-1 田口方法之理論 23
3-1-2 品質機能之損失 23
3-2 品質設計三階段 24
3-2-1 系統設計 24
3-2-2 參數設計 25
3-2-3 容差設計 25
3-3 實驗參數的種類 25
3-3-1 信號因子 26
3-3-2 控制因子 26
3-3-3 雜訊因子 26
3-3-3-1 外部雜訊因子 27
3-3-3-2 零件間雜訊因子 27
3-3-3-3 內部雜訊因子 27
3-4 實驗設計之步驟 27
3-4-1 選定品質特性 28
3-4-2 判定品質特性之理想值 28
3-4-3 列出影響品質特性的因子 28
3-4-4 定出信號因子的水準 28
3-4-5 定出控制因子的水準 28
3-4-6 定出干擾因子水準 28
3-4-7 選擇適當的直交表並安排完整的實驗計劃 28
3-4-8 執行實驗且記錄實驗數據 28
3-4-9 資料分析 28
3-4-10 確認實驗 28
3-5 選擇適當直交表 29
3-6 選擇信號雜訊比 30
3-6-1 望目特性值 31
3-6-1-1 望目特性第一型 31
3-6-1-2 望目特性第二型 31
3-6-1-3 望目特性第三型 31
3-6-2 望小特性值 31
3-6-3 望大特性值 32
3-6-4 原點直線型特性值 33
3-6-4-1 原點直線型第一 33
3-6-4-2 原點直線型第二型 33
3-6-5 動態田口分析法 33
3-7 應用變異數分析 34
3-8 田口方法之總結 37
3-8-1 用成本損失來定義品質 37
3-8-2 用線外品管來改進品質 37
3-8-3 使用田口方法之直交表 37
3-8-4 使用信號/雜訊比之設計 37
3-8-5 使用變異數分析之計算 37
3-8-6 確認最佳參數組合實驗 38
第四章 材料與方法 39
4-1 實驗設備 39
4-1-1 飛利浦心血管X光系統(Philips Cardiovascular X-ray System) 39
4-1-2 客製化擬人壓克力假體 40
4-1-3 心血管金屬假體 40
4-2 實驗設計理念 41
4-2-1 調整參數之選定 41
4-2-1-1 Filter的使用與否 41
4-2-1-2 攝影角度 (projection angles) 42
4-2-1-3 攝影角度 (projection angles) 42
4-2-1-4 攝影時尖峰電壓 (kVp) 42
4-2-1-5 攝影時電流與時間 (mAs) 42
4-2-1-6 攝影時管球與影像倍增管之距離(SID) 43
4-2-2 選定田口直交表 44
4-3 實驗規劃流程 46
4-3-1 研究對象 46
4-3-2 影像品質評估標準 46
4-3-3 統計之工具與方法 48
4-4 確認驗證實驗 48
4-5 心導管室職業人員所接受輻射劑量的評估 49
第五章 結果 51
5-1 靜態田口分析結果 51
5-1-1 體重50公斤、BMI 21.62擬人假體 51
5-1-1-1 照射影像結果 52
5-1-1-2 醫師評分結果 53
5-1-1-3 因子反應分析 53
5-1-1-4 變異數分析 (ANOVA) 56
5-1-1-5 體重50公斤、BMI 21.62假體驗證實驗 57
5-1-2 體重70公斤、BMI 24.22擬人假體 59
5-1-2-1 照射影像結果 60
5-1-2-2 醫師評分結果 61
5-1-2-3 因子反應分析 61
5-1-2-4 變異數分析 (ANOVA) 64
5-1-3 體重90公斤、BMI 27.80擬人假體 67
5-1-3-1 照射影像結果 68
5-1-3-2 醫師評分結果 69
5-1-3-3 因子反應分析 69
5-1-3-4 變異數分析 (ANOVA) 72
5-1-3-5 體重90公斤、BMI 27.80假體驗證實驗 73
5-2 動態田口分析結果 75
5-2-1 醫師評分結果 76
5-2-2 因子反應分析 76
5-2-3 動態假體驗證實驗 79
5-3 心導管室職業人員所接受輻射劑量分析結果 80
第六章 討論 84
6-1 冠狀動脈心導管檢查及氣球擴張術 84
6-2 因子反應分析及其重要性 88
6-2-1 體重50公斤、BMI 21.62擬人假體 88
6-2-2 體重70公斤、BMI 24.22擬人假體 89
6-2-3 體重90公斤、BMI 27.80擬人假體 89
6-2-4 動態田口分析法 90
6-3 變異數分析 91
6-3-1 體重50公斤、BMI 21.62擬人假體 91
6-3-2 體重70公斤、BMI 24.22擬人假體 92
6-3-3 體重90公斤、BMI 27.80擬人假體 93
6-3-4 變異數分析之綜合討論 93
6-4 最佳化設定之驗證與臨床參數比較 95
6-4-1 體重50公斤、BMI 21.62擬人假體 95
6-4-2 體重70公斤、BMI 24.22擬人假體 97
6-4-3 體重90公斤、BMI 27.80擬人假體 98
6-4-4 動態田口分析法 100
6-5 醫師之間評分誤差分析 102
6-5-1 體重50公斤、BMI 21.62擬人假體 103
6-5-2 體重70公斤、BMI 24.22擬人假體 105
6-5-3 體重90公斤、BMI 27.80擬人假體 107
6-6 職業人員所接受輻射劑量的評估分析 108
第七章 結論 114
第八章 未來之展望 116
參考文獻 117


1.衛生福利部統計處,歷年死因統計 http://www.mohw.gov.tw/CHT/DOS/Statistic.aspx?f_list_no=312&fod_list_no=6201
2.LEE RJ, Predictors of Long-term Outcomes of Elective Stent Implantation for Unprotected Left Main Coronary Artery Disease, 2006 Electronic Theses and Dissertations System.
3.Prescott E, et al.(1998). Smoking and risk of myocardial infarction in women and men: longitudinal population study. BMJ, 316(7137), 1043-1047
4.Moore SM, et al. (2007). The contributions of psychological disposition and risk factor status to health following treatment for coronary artery disease. Eur J Cardiovasc Nurs, 6(2), 137-45.
5.張小平、姜紅、賴建峰、胡鎮祥 (1998). 冠心病危險因素與冠狀動脈病變程度的關係 . 中華醫學雜誌,78(1),49-51。
6.Wasserman J, et al. (2000). Gender-Specific Effects of modifiable health risk factor on coronary heart disease and related expenditures. Journal of occupation Environment Medicine, 42(11), 1060-1069.
7.Chieffo A, et al. (2005). Early and mid-term results of drug-eluting stent implantation in unprotected left main. Circulation , 111:791-795.
8.Cameron AC, et al.(1995) Recurrences of angina after coronary artery bypass surgery: predictors and prognosis (CASS Registry). J Am Coll Cardiol , 26:895-899.
9.Valgimigli M, et al. (2005). Short- and long-term clinical outcome after drug-eluting stent implantation for the percutaneous treatment of left main coronary artery disease: insights from the Rapamycin-Eluting and Taxus Stent Evaluated At Rotterdam Cardiology Hospital registries (RESEARCH and T-SEARCH). Circulation, 111:1383-1389.
10.Kelley MP, et al. (2003) One-year clinical outcomes of protected and unprotected left main coronary artery stenting. Eur Heart J , 24:1554-1559.
11.李輝煌,田口方法:品質設計的原理與實務,高利圖書有限公司,2008/01
12.Chen CY, et al. (2010). Optimizing the TLD-100 readout system for various radiotherapy beam doses using the Taguchi methodology, Applied Radiation and Isotopes, Volume 68, Issue 3, 481-488
13.Aman A, et al. (2008). Optimizing power consumption for CNC turned parts using response surface methodology and Taguchi's technique—A comparative analysis , Journal of Materials Processing Technology, Volume 200, Issues 1-3, 373-384
14.Mark T, et al. (1991). Parameter design using the Taguchi methodology, Microelectronic Engineering, Volume 10, Issues 3-4, 277-286
15.Gui MH, et al. (2009). The comparison of coronary angiographic profiles between diabetic and nondiabetic patients with coronary artery disease in a Chinese population, Diabetes Research and Clinical Practice, Volume 85, Issue 2, 213-219
16.Attila N, et al. (2008). International Journal of Cardiology, Volume 131, Issue 1, 45-50
17.Gijs MJM, et al. (2008). Journal of the American College of Cardiology, Volume 51, Issue 16, 1588-1596
18.Jaume F, et al. (2008). Extent of myocardial ischemia during coronary occlusion in single vessel disease. A comparison between patients with exercise-induced angina and patients with recurrent angina at rest , International Journal of Cardiology, Volume 127, Issue 3, 433-435
19.Ralf Z, et al. (2007). Acute myocardial infarction occurring in versus out of the hospital: patient characteristics and clinical outcome, Journal of the American College of Cardiology, Volume 35, Issue 7, 1820-1826
20.Yariv G, et al. (2009). Smoking Status and Long-Term Survival After First Acute Myocardial Infarction: A Population-Based Cohort Study, Journal of the American College of Cardiology, Volume 54, Issue 25, 2382-2387
21.James D, et al. (2009). Acute Heart Failure Syndromes in Patients With Coronary Artery Disease: Early Assessment and Treatment, Journal of the American College of Cardiology, Volume 53, Issue 3, 254-263
22.Thor U, et al. (2004). Prognostic value of osteoprotegerin in heart failure after acute myocardial infarction, Journal of the American College of Cardiology, Volume 44, Issue 10, 1970-1976
23.Rosanio S, et al. (2007). Sudden death prophylaxis in heart failure, International Journal of Cardiology, Volume 119, Issue 3, 291-296
24.Moussa I, et al. (1992). Michael Rodriguez, Jeffrey Froning, Victor F. Froelicher ,Prediction of severe coronary artery disease using computerized ECG measurements and discriminant function analysis,Journal of Electrocardiology, Volume 25, Supplement 1, 49-58
25.Mullen JC, et al. (2002). Troponin T and I are not reliable markers of cardiac transplant rejection,European Journal of Cardio-Thoracic Surgery, Volume 22, Issue 2, 233-237
26.Giuliani I, et al. (2002). Determination of cardiac troponin I forms in the blood of patients with unstable angina pectoris,Clinical Biochemistry, Volume 35, Issue 2, 111-117
27.Sabharwal NK, et al. (2007). A randomized trial of exercise treadmill ECG versus stress SPECT myocardial perfusion imaging as an initial diagnostic strategy in stable patients with chest pain and suspected CAD: Cost analysis,Journal of Nuclear Cardiology, Volume 14, Issue 2, 174-186
28.Oumeskour B, et al. (1990). Progression of CAD after PTCA,Journal of Molecular and Cellular Cardiology, Volume 22, Supplement 4, S46
29.Meier P, et al. (2007). Coronary Collateral Function Long After Drug-Eluting Stent Implantation,Journal of the American College of Cardiology, Volume 49, Issue 1, 15-20
30.Wang MH, et al. (2008). Short-term Follow-up Results of Drug-eluting Stenting in Premature Coronary Artery Disease Patients with Multiple Atherosclerotic Risk Factors , Kae-Woei Liang, Journal of the Chinese Medical Association, Volume 71, Issue 7, 342-346
31.Domanski MJ, et al. (2000). The Post-CABG Trial Investigators,Prognostic factors for atherosclerosis progression in saphenous vein grafts : The postcoronary artery bypass graft (post-CABG) trial,Journal of the American College of Cardiology, Volume 36, Issue 6, 1877-1883
32.Barker TB, et al. (1990). The concept of quality. In: Engineering quality by design , Marcel Dekker, Inc. , Chapt 1.
33.Ross PJ, et al. (1996). Orthogonal array selection and utilization. In: Taguchi techniques for quality engineering , McGraw-Hill Inc. Second ed. , Chapt 3.
34.Dhavlikar MN, et al. (2003). Combined Taguchi and dual response method for optimization of a centerless grinding operation,Journal of Materials Processing Technology, Volume 132, Issues 1-3, 90-94
35.Lochner RH, et al.(1990). Two-level experiments: Full factorial designs. In:Designing for quality-An introduction to the best of Taguchi and westernmethods of statistical experimental design. Kraus Organization Limited., Chapt 3.
36.Mohapatra PKD, et al. (2009). Tannase production by Bacillus licheniformis KBR6: Optimization of submerged culture conditions by Taguchi DOE methodology,Food Research International, Volume 42, Issue 4, 430-435
37.Fowlkes WY, et al. (1995). Selection of the quality characteristics. In:Engineering methods for robust product design-Using Taguchi methods in technology and product development. Addison-Wesley Publishing Company, Chapt 8.
38.Dawson B, et al.(2001). Basic & Clinical Biostatistics. McGraw-Hill Inc.Third ed. , Chapt 2.
39.Bryne DM, et al. (1989). The Taguchi approach to parameter design. In:Taguchi methods applications in world industry, edited by Bendell A,Disney J, Pridmore WA. Springer-Verlag New York, Inc.,Chapt .2.102
40.Dhavlika MN, et al. (2003). Combined Taguchi and dual response method for optimization of a centerless grinding operation. Journal of Materials Processing Technology;132(1-3):90-94.
41.Lochner RH, et al. (1990). Designing for quality-An introductionto the best of Taguchi and western methods of statistical xperimental design. Kraus Organization Limited.
42.潘龍發,應用田口方法評量Spider View造影之最佳調整參數,碩士論文,中臺科技大學放射科學研究所,2011。
43.蔡媛歆,應用田口方法評量肋下像造影之最佳調整參數,碩士論文,中臺科技大學放射科學研究所,2012。
44.Kuon E, , et al.(2002). Significant Reduction of Radiation Exposure to Operator and Staff During Cardiac Interventions by Analysis of Radiation Leakage and Improved Lead Shielding. AJC , 89:44–49.
45.Best PJM, et al. (2011). SCAI Consensus Document on Occupational Radiation Exposure to the Pregnant Cardiologist and Technical Personnel. Catheterization and cardiovascular interventions, 77:232-241.
46.McCormick VA, et al.(2002). Reducing Radiation Dose in the Cardiac Catheterization Laboratory by Design Alterations and Staff Education. AJC ,90:903-905.
47.Georges JL, et al.(2009). Reduction of radiation delivered to patients undergoing invasive coronary procedures. Effect of a programme for dose reduction based on radiation-protection training. Archives of Cardiovascular Disease , 102:821-827.
48.Chida K, et al. (2013). Occupational Dose in Interventional Radiology Procedures. AJR ,200:138-141.
49.Ghani JA, et al. (2004). Application of Taguchi method in the optimization of end milling parameters. J Mater Process Technol, 145: 84-92.
50.Barker TB, et al. (1989). Quality engineering by design: Taguchi’s philosophy. In:Taguchi methods applications in world industry, edited by Bendell A,Disney J, Pridmore WA. Springer-Verlag New York, Inc. ,Chapt 2.1.
51.Ross PJ, et al. (1996). Parameter design. In: Taguchi techniques for quality engineering.McGraw-Hill Inc. Second ed., Chapt 7.
52.Lakshminarayanan AK, et al. (2008). Process parameters optimization for friction stir welding of RDE-40 aluminium alloy using Taguchi technique,Transactions of Nonferrous Metals Society of China, Volume 18, Issue 3, 548-554
53.Bounou M, et al. (1995). Improving the quality of an optimal power flow solution by Taguchi method,International Journal of Electrical Power & Energy Systems, Volume 17, Issue 2, 113-118
54.Lochner RH, et al. (1990). Taguchi inner and outer arrays. In: Designing for quality-An introduction to the best of Taguchi and western methods of statistical experimental design. Kraus Organization Limited. , Chapt 6.
55.Ross PJ.(1996). The design of experiment process. In: Taguchi techniques forquality engineering. McGraw-Hill Inc. Second ed. , Chapt 2.
56.Wu SJ, et al. (20085). Robust design of microbubble drag reduction in a channel flow using the Taguchi method,Ocean Engineering, Volume 35, Issues 8-9, 856-863
57.Cheng CC, et al. (2003). Fabrication optimisation of carbon fiber electrode with Taguchi method,Biosensors and Bioelectronics, Volume 18, Issue 7, 847-855
58.Ross PJ.(1996). The design of experiment process. In: Taguchi techniques for quality engineering. McGraw-Hill Inc. Second ed. , Chapt 2.
59.Khoei AR, et al. (2002). Design optimisation of aluminium recycling processes using Taguchi technique,Journal of Materials Processing Technology, Volume 127, Issue 1, 96-106
60.Das PK, et al. (2009). Tannase production by Bacillus licheniformis KBR6: Optimization of submerged culture conditions by Taguchi DOE methodology,Food Research International, Volume 42, Issue 4, 430-435
61.Berk J, et al. (2000). ANOVA, Taguchi, and Other Design of Experiments Techniques: Finding needles in haystacks…,Quality Management for the Technology Sector, 106-123
62.Fowlkes WY, et al. (1995). Introduction to quality engineering. In:Engineering methods for robust product design-Using Taguchi methods intechnology and product development , Addison-Wesley Publishing Company, Chapt 1.
63.Bucci JA, et al. (2008). Skin dosimetry with new MOSFET detectors,Radiation Measurements, Volume 43, Issues 2-6, 929-932
64.Ozbay E, et al. (2009). Investigating mix proportions of high strength self compacting concrete by using Taguchi method,Construction and Building Materials, Volume 23, Issue 2, 694-702
65.ICRU-48. Phantoms and computational models in therapy, diagnosis and protection ICRU-48. Bethesda: International Commission on Radiation Units and Measurement, 1992.
66.ALOKA PDM-122, MYDOSE mini, Hitachi Aloka Medical, Ltd. Japan http://www.perspectiveinstruments.co.uk/html/mydose_epd.html
67.Attix FH, Introduction to Radiological Physics and Radiation Dosimetry, WILEY-VCH Verlag GmbH & Co. KGaA, 2004, ISBN:9783527617135, DOI:10.1002/9783527617135.
68.Kavas H, et al. (1978). Effect of mAs and kVp on resolution and on image contrast. Oral Surgery, Oral Medicine, Oral Pathology ,46(3):454-461.
69.Agarwal S, et al. (2014). Relationship of Beam Angulation and Radiation Exposure in the Cardiac Catheterization Laboratory. JACC, Cardiovascular Interventions;7(5):558-566
70.H. Romdhani, L. Kendall’s tau for hierarchical data. Journal of Multivariate Analysis 2014; 128: 210-225.
71.Pan LF, Annual working load for medical staff in cardiac catheterization laboratory, report no. 102A08, Taichung Armed Forces General Hospital, Taiwan. 2014.
72.Radiation protection and regulation in Taiwan. Radiation protection association, ROC, 1st ed., Da-Tang, Tsin-Chu, 2014.
73.Turner, JE, Atoms, radiation, and radiation protection. Wiley-VCH Verlag GmbH & Co. KGaA 3rd, 2007 ISBN 978-3-527-40606-7.
74.Vano E, et al. (2014). Occupational radiation doses in interventional cardiology: a 15-year follow-up. BJR ,79: issue 941, DOI: http://dx.doi.org/10.1259/bjr/26829723.
75.Sanchez RM, et al. (2012). Staff Doses in Interventional Radiology: A National Survey. Journal of Vascular and Intervetional Radiology , 23(11):1496-1501.
76.Khan RK, et al. (2013). Occupational dose from external ionizing radiation in interventional cardiology. Bangladesh Journal of Physics , 14:17-22.
77.Mortozavi SMJ, et al. (2012). Are Radiation Exposure Levels Used in Cardiology Dangerous? Journal of Biomedical Physics and Engineering , 2(3):116-119.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊