跳到主要內容

臺灣博碩士論文加值系統

(44.192.38.248) 您好!臺灣時間:2022/11/30 21:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳品赫
研究生(外文):CHEN, PIN-HE
論文名稱:運用客觀分析搭配混合型疊代重組法評估電腦斷層胸部檢查之影像品質
論文名稱(外文):Evaluation the Image Quality of Chest CT Examination by Using Objective Analysis with Hybrid Iterative Reconstruction
指導教授:鄭凱元鄭凱元引用關係
指導教授(外文):CHENG, KAI-YUAN
口試委員:陳佳惠陳拓榮
口試委員(外文):CHEN, CHIA-HUICHEN, TOU-RONG
口試日期:2017-07-03
學位類別:碩士
校院名稱:中臺科技大學
系所名稱:醫學影像暨放射科學系暨研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:80
中文關鍵詞:胸部電腦斷層劑量降低客觀分析疊代重組法
外文關鍵詞:Chest CTdose reductionobjective analysisiDose4
相關次數:
  • 被引用被引用:1
  • 點閱點閱:223
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的是運用客觀分析法對於多切面電腦斷層儀搭配多功能胸部假體以及iDose4疊代重組技術以探討成人胸部電腦斷層掃描輻射劑量及影像品質評估。
本研究使用電腦斷層以成人胸部電腦斷層之掃描參數進行多功能胸部假體掃描,成人胸部電腦斷層掃描參數為120 kVp及180 mAs,進行劑量調控每次降低40 mAs,最多降低至20 mAs。劑量調控後各參數掃描所得之影像,分別以反濾波投影法以及iDose4疊代重組法的Level 1~6進行影像後處理,處理後的影像運用訊號雜訊比(SNR)、均方根誤差(RMSE)及峰值訊號雜訊(PSNR)比進行影像評估。
各個掃描參數所得電腦斷層劑量指標分別為14.4、11.8、9.2、6.5、3.9及1.3 mGy,不同levels與FBP影像相比雜訊減少為Level 1為12 %;Level 2為18 %;Level 3為25 %;Level 4為32 %;Level 5為38 %;Level 6為47 %。
使用iDose系統重組在標準劑量和調控mAs下提供更好的胸部電腦斷層影像品質,iDose的使用下可以允許67%的劑量降低,三種客觀分析結果皆表示越高的iDose4 Level有較少的影像雜訊且與原始影像差異度越小,運用RMSE與PSNR能有效且快速的計算降低劑量的容許值,客觀分析後得知使用Level 5或6的Level來做影像的重組,會有較低的影像雜訊與較佳的影像品質。

Hybrid iterative reconstruction (iDose4) is introduced as a computed tomography (CT) image reconstruction technique by Philips Healthcare. The aim of this study was to evaluate the image quality by using Chest Phantom with iDose4.
A phantom (multipurpose Chest Phantom N1 “LUNGMAN”) was performed by using parameters of adult chest CT, the protocol of 120 kVp and 180 mAs. For dose reduction, the kVp remained the same, and the mAs was reduced by 40 mAs each time, up to 20 mAs. All image data was reconstructed by FBP and iDose4 level 1-6 to calculate the signal to noise ratio (SNR) , peak signal to noise ratio (PSNR) and root means square error (RMSE) for image quality evaluation.
The CTDIvol was showed 14.4, 11.8, 9.2, 6.5, 3.9 and 1.3 mGy for each scanning protocol. Noise reduction compared with FBP and each iDose4 level 1-6 were 12 %, 18 %, 25 %, 32 %, 38 % and 47 %, respectively.
The data slowed that the chest CT image quality can be improved at standard protocol and controlled mAs by using iDose4, and the maximum dose reduction was up to 67 %. RMSE and PSNR showed that Level 5 and Level 6 have less image noise, better image quality and smaller different between original and reconstruction image.

摘 要 I
目錄 III
圖目錄 VI
表目錄 VIII
第一章 前言 1
1.1 研究背景 1
1.2 研究動機 3
1.3 研究目的 4
1.4 論文架構 5
第二章 文獻回顧 6
2.1 電腦斷層劑量對人體傷害風險 6
2.2 電腦斷層降低劑量方法 8
2.3 電腦斷層影像重組法 9
2.3.1 反投影法 9
2.3.1 濾波反投影法 10
2.3.2 疊代重組法 11
2.4 各類疊代演算法 12
2.4.1 ASiR 13
2.4.2 iDose 14
2.4.3 SAFIRE 16
2.4.4 AIDR 3D 18
2.5 客觀影像品質分析法 19
第三章 材料與方法 22
3.1 實驗設計 22
3.2研究設備 24
3.2.1 128切電腦斷層掃描儀 24
3.2.2 多功能胸部假體 25
3.3 電腦斷層之掃描參數 27
3.4 電腦斷層CT Number驗證 28
3.5 影像品質評估 29
第四章 結果與討論 31
4.1 輻射劑量差異度 31
4.2 影像品質評估 33
4.2.1 CT值及訊號雜訊比評估 33
4.2.2 均方根誤差 42
4.2.3峰值訊號雜訊比 48
4.3 相關文獻比較 54
第五章 結論 59
第六章 未來展望 60
參考文獻 61


1.Yeh, D.-M., H.-Y. Tsai, Y.-S. Tyan, Y.-C. Chang, L.-K. Pan, and T.-R. Chen, The Population Effective Dose of Medical Computed Tomography Examinations in Taiwan for 2013. PLOS ONE, 2016. 11(10): p. e0165526.
2.Takx, R.A.P., U.J. Schoepf, A. Moscariello, M. Das, G. Rowe, S.O. Schoenberg, C. Fink, and T. Henzler, Coronary CT angiography: Comparison of a novel iterative reconstruction with filtered back projection for reconstruction of low-dose CT—Initial experience. European Journal of Radiology, 2013. 82(2): p. 275-280.
3.Laqmani, A., J.H. Buhk, F.O. Henes, T. Klink, S. Sehner, H.C. von Schultzendorff, D. Hammerle, H.D. Nagel, G. Adam, and M. Regier, Impact of a 4th generation iterative reconstruction technique on image quality in low-dose computed tomography of the chest in immunocompromised patients. Rofo, 2013. 185(8): p. 749-57.
4.Desai, G.S., J.M. Fuentes Orrego, A.R. Kambadakone, and D.V. Sahani, Performance of iterative reconstruction and automated tube voltage selection on the image quality and radiation dose in abdominal CT scans. J Comput Assist Tomogr, 2013. 37(6): p. 897-903.
5.Lee, S.H., M.J. Kim, C.S. Yoon, and M.J. Lee, Radiation dose reduction with the adaptive statistical iterative reconstruction (ASIR) technique for chest CT in children: an intra-individual comparison. Eur J Radiol, 2012. 81(9): p. e938-43.
6.Klink, T., V. Obmann, J. Heverhagen, A. Stork, G. Adam, and P. Begemann, Reducing CT radiation dose with iterative reconstruction algorithms: the influence of scan and reconstruction parameters on image quality and CTDIvol. Eur J Radiol, 2014. 83(9): p. 1645-54.
7.F. E. Ali, I.M.E.-D., A. A. Saad and F. E. Abd El-Samie, Curvelet fusion of MR and CT image. Progress In Electromagnetics Research C, 2008. 3: p. 215-224.
8.Mathews, J.D., A.V. Forsythe, Z. Brady, M.W. Butler, S.K. Goergen, G.B. Byrnes, G.G. Giles, A.B. Wallace, P.R. Anderson, T.A. Guiver, P. McGale, T.M. Cain, J.G. Dowty, A.C. Bickerstaffe, and S.C. Darby, Cancer risk in 680 000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ : British Medical Journal, 2013. 346.
9.Boice, J.D., Jr., Radiation epidemiology and recent paediatric computed tomography studies. Ann ICRP, 2015. 44(1 Suppl): p. 236-48.
10.行政院原子能委員會, 105年度醫療院所輻射防護暨醫療曝露品保作業管制與檢查概況. 2016.
11.Smith-Bindman, R., J. Lipson, R. Marcus, and et al., Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Archives of Internal Medicine, 2009. 169(22): p. 2078-2086.
12.Brenner , D.J. and E.J. Hall Computed Tomography — An Increasing Source of Radiation Exposure. New England Journal of Medicine, 2007. 357(22): p. 2277-2284.
13.Pearce, M.S., J.A. Salotti, M.P. Little, K. McHugh, C. Lee, K.P. Kim, N.L. Howe, C.M. Ronckers, P. Rajaraman, A.W. Craft, L. Parker, and A. Berrington de González, Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. The Lancet, 2012. 380(9840): p. 499-505.
14.Huang, W.Y., C.H. Muo, C.Y. Lin, Y.M. Jen, M.H. Yang, J.C. Lin, F.C. Sung, and C.H. Kao, Paediatric head CT scan and subsequent risk of malignancy and benign brain tumour: a nation-wide population-based cohort study. Br J Cancer, 2014. 110(9): p. 2354-60.
15.Cohen, M.D., ALARA, image gently and CT-induced cancer. Pediatr Radiol, 2015. 45(4): p. 465-70.
16.McCollough, C.H., M.R. Bruesewitz, and J.M. Kofler, CT Dose Reduction and Dose Management Tools: Overview of Available Options. RadioGraphics, 2006. 26(2): p. 503-512.
17.高上凱, 醫學成像系統. 清華大學出版社有限公司, 2000.
18.黃雅婕, 柴發順, 劉燕霜, 林招膨, 陳薪喨, and 黃昭源, 濾波反投影法與疊代影像重建法在單光子射出電腦斷層的骨骼掃描之比較. 台灣應用輻射與同位素雜誌, 2006. 2(1): p. 53-61.
19.Singh, S., M.K. Kalra, J. Hsieh, P.E. Licato, S. Do, H.H. Pien, and M.A. Blake, Abdominal CT: comparison of adaptive statistical iterative and filtered back projection reconstruction techniques 1. Radiology, 2010. 257(2): p. 373-383.
20.Prakash, P., M.K. Kalra, S.R. Digumarthy, J. Hsieh, H. Pien, S. Singh, M.D. Gilman, and J.A. Shepard, Radiation dose reduction with chest computed tomography using adaptive statistical iterative reconstruction technique: initial experience. J Comput Assist Tomogr, 2010. 34(1): p. 40-5.
21.Love, A., M.L. Olsson, R. Siemund, F. Stalhammar, I.M. Bjorkman-Burtscher, and M. Soderberg, Six iterative reconstruction algorithms in brain CT: a phantom study on image quality at different radiation dose levels. Br J Radiol, 2013. 86(1031): p. 20130388.
22.Janet Cochrane Miller, D.P., Iterative Image Reconstruction Method (ASIR): Lowering CT Radiation Dose and Improving Image Quality. Raiology Rounds, 2009. 7(10).
23.Singh, S., M.K. Kalra, M.D. Gilman, J. Hsieh, H.H. Pien, S.R. Digumarthy, and J.A. Shepard, Adaptive statistical iterative reconstruction technique for radiation dose reduction in chest CT: a pilot study. Radiology, 2011. 259(2): p. 565-73.
24.Niu, Y.T., D. Mehta, Z.R. Zhang, Y.X. Zhang, Y.F. Liu, T.L. Kang, J.F. Xian, and Z.C. Wang, Radiation dose reduction in temporal bone CT with iterative reconstruction technique. AJNR Am J Neuroradiol, 2012. 33(6): p. 1020-6.
25.Ploussi, A., E. Alexopoulou, N. Economopoulos, S.I. Argentos, V. Tsitsia, I. Arapakis, S. Kordolaimi, I. Seimenis, and E.P. Efstathopoulos, Patient radiation exposure and image quality evaluation with the use of iDose4 iterative reconstruction algorithm in chest–abdomen–pelvis CT examinations. Radiation Protection Dosimetry, 2014. 158(4): p. 399-405.
26.Funama, Y., K. Taguchi, D. Utsunomiya, S. Oda, Y. Yanaga, Y. Yamashita, and K. Awai, Combination of a low tube voltage technique with the hybrid iterative reconstruction (iDose) algorithm at coronary CT angiography. Journal of computer assisted tomography, 2011. 35(4): p. 480-485.
27.Yang, W.J., F.H. Yan, B. Liu, L.F. Pang, L. Hou, H. Zhang, Z.L. Pan, and K.M. Chen, Can Sinogram-Affirmed Iterative (SAFIRE) Reconstruction Improve Imaging Quality on Low-Dose Lung CT Screening Compared With Traditional Filtered Back Projection (FBP) Reconstruction? Journal of Computer Assisted Tomography, 2013. 37(2): p. 301-305.
28.Raupach, K.G.R., SAFIRE: Sinogram Affirmed Iterative Reconstruction - White Paper. 2012.
29.Kalra, M.K., M. Woisetschläger, N. Dahlström, S. Singh, S. Digumarthy, S. Do, H. Pien, P. Quick, B. Schmidt, M. Sedlmair, J.-A.O. Shepard, and A. Persson, Sinogram-Affirmed Iterative Reconstruction of Low-Dose Chest CT: Effect on Image Quality and Radiation Dose. American Journal of Roentgenology, 2013. 201(2): p. W235-W244.
30.Hwang, H.J., J.B. Seo, H.J. Lee, S.M. Lee, E.Y. Kim, S.Y. Oh, and J.-E. Kim, Low-Dose Chest Computed Tomography With Sinogram-Affirmed Iterative Reconstruction, Iterative Reconstruction in Image Space, and Filtered Back Projection: Studies on Image Quality. Journal of Computer Assisted Tomography, 2013. 37(4): p. 610-617.
31.Ohno, Y., D. Takenaka, T. Kanda, T. Yoshikawa, S. Matsumoto, N. Sugihara, and K. Sugimura, Adaptive iterative dose reduction using 3D processing for reduced- and low-dose pulmonary CT: comparison with standard-dose CT for image noise reduction and radiological findings. AJR Am J Roentgenol, 2012. 199(4): p. W477-85.
32.Yamada, Y., M. Jinzaki, T. Hosokawa, Y. Tanami, H. Sugiura, T. Abe, and S. Kuribayashi, Dose reduction in chest CT: Comparison of the adaptive iterative dose reduction 3D, adaptive iterative dose reduction, and filtered back projection reconstruction techniques. European Journal of Radiology. 81(12): p. 4185-4195.
33.黃耀德, 牙科電腦斷層攝影與64切/4切電腦斷層攝影之頭頸部輻射劑量評估. 中臺科技大學放射科學研究所, 2008.
34.Lee, J.-W., E.-S. Kim, J. Choi, and D.C. Kweon, Measurement of X-ray for the dose area product and spectrum by the added filtration in Rando phantom. Radiation Effects and Defects in Solids, 2014. 169(2): p. 165-174.
35.Lin, S.-C., Y.-C. Lin, W.-S. Feng, J.-M. Wu, and T.-J. Chen, A novel medical image quality index. Journal of digital imaging, 2011. 24(5): p. 874-882.
36.Yu, W. and L. Zeng, A Novel Weighted Total Difference Based Image Reconstruction Algorithm for Few-View Computed Tomography. PLOS ONE, 2014. 9(10): p. e109345.
37.Song, J.S., J.M. Lee, J.Y. Sohn, J.H. Yoon, J.K. Han, and B.I. Choi, Hybrid iterative reconstruction technique for liver CT scans for image noise reduction and image quality improvement: evaluation of the optimal iterative reconstruction strengths. Radiol Med, 2015. 120(3): p. 259-67.
38.Bongartz G, Golding SJ, and Juri AG, European guidelines on quality criteria for computed tomography. EUR: 16262EN, 1999.
39.healthcare, P., iDose4 iterative reconstruction technique-white paper. 2011.
40.Hou, Y., J. Zheng, Y. Wang, M. Yu, M. Vembar, and Q. Guo, Optimizing radiation dose levels in prospectively electrocardiogram-triggered coronary computed tomography angiography using iterative reconstruction techniques: a phantom and patient study. PLoS One, 2013. 8(2): p. e56295.
41.Kim, H., C.M. Park, Y.S. Song, S.M. Lee, and J.M. Goo, Influence of radiation dose and iterative reconstruction algorithms for measurement accuracy and reproducibility of pulmonary nodule volumetry: A phantom study. European journal of radiology, 2014. 83(5): p. 848-857.
42.Mathieu, K.B., H. Ali, P.S. Fox, M.C.B. Godoy, R.F. Munden, P.M. de Groot, and T. Pan, Radiation dose reduction for CT lung cancer screening using ASIR and MBIR: a phantom study. Journal of Applied Clinical Medical Physics, 2014. 15(2).
43.von Falck, C., V. Bratanova, T. Rodt, B. Meyer, S. Waldeck, F. Wacker, and H.O. Shin, Influence of sinogram affirmed iterative reconstruction of CT data on image noise characteristics and low-contrast detectability: an objective approach. PLoS One, 2013. 8(2): p. e56875.
44.Yamashiro, T., T. Miyara, O. Honda, H. Kamiya, K. Murata, Y. Ohno, N. Tomiyama, H. Moriya, M. Koyama, and S. Noma, Adaptive iterative dose reduction using three dimensional processing (AIDR3D) improves chest CT image quality and reduces radiation exposure. PloS one, 2014. 9(8): p. e105735.
45.Ohno, Y., A. Yaguchi, T. Okazaki, K. Aoyagi, H. Yamagata, N. Sugihara, H. Koyama, T. Yoshikawa, and K. Sugimura, Comparative evaluation of newly developed model-based and commercially available hybrid-type iterative reconstruction methods and filter back projection method in terms of accuracy of computer-aided volumetry (CADv) for low-dose CT protocols in phantom study. European Journal of Radiology, 2016. 85(8): p. 1375-1382.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top