(3.238.96.184) 您好!臺灣時間:2021/05/08 04:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:黃偉凱
研究生(外文):Wei-Kai Huang
論文名稱:風道效應對鰭柱-多孔性介質散熱座於空氣衝擊噴流下之熱傳影響實驗研究
論文名稱(外文):The wind duct effect on heat transfer characteristics of fin-porous medium heat sinks under the impinging air jet flow
指導教授:鄭澤明鄭澤明引用關係曾憲中曾憲中引用關係
指導教授(外文):Tzer-Ming JengSheng-Chung Tzeng
口試委員:劉建宏鄭澤明曾憲中
口試委員(外文):Chien-Hung LiuTzer-Ming JengSheng-Chung Tzeng
口試日期:2017-06-29
學位類別:碩士
校院名稱:建國科技大學
系所名稱:機械工程系暨製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:95
中文關鍵詞:風道效應散熱座熱傳金屬多孔介質衝擊冷卻風扇驅動冷流
外文關鍵詞:Wind duct effectHeat sinkHeat transferMetal porous mediaImpinging coolingFan-driving coolant
相關次數:
  • 被引用被引用:0
  • 點閱點閱:94
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本研究以實驗方法觀察風道效應對鰭柱-多孔性介質散熱座於空壓機及馬達風扇驅動之正向衝擊流下之熱傳特性,散熱座本體是鋁合金鰭柱(鰭片)陣列,在鰭柱間堆疊銅珠或嵌入發泡鋁材,形成8種測試塊構型;風道構型採用具延伸式噴嘴之半侷限式垂直風道,變動風道長度及侷限阻隔長度計可得9種風道模式。實驗結果證明風道與侷限阻隔對不同散熱座的熱傳影響呈現出多種變化,當空壓機提供氣源時,鳍片(柱)與金屬多孔介質結合之散熱座比純粹鳍片(柱)或純粹金屬多孔介質散熱座平均高出約56%的整體熱傳能力,尤其是5片片狀鳍片內嵌發泡鋁材與5×5方形鳍柱內嵌堆疊黃銅粒的散熱座,甚至比純粹鳍片(柱)散熱座平均高出約70%的熱傳;當馬達風扇提供氣源時,則是鰭片(柱)結合發泡鋁材的散熱座有最佳的熱傳表現,其次則是5片鰭片散熱座、5×5方形鰭柱散熱座與純粹發泡鋁材散熱座,它們整體熱傳較鰭片(柱)結合發泡鋁材的散熱座略低約8.6%,再其次則是鰭片(柱)結合堆疊黃銅粒散熱座,其熱傳較鰭片(柱)結合發泡鋁材的散熱座下降約達30%,最差熱傳為純粹堆疊黃銅粒散熱座,熱傳較鰭片(柱)結合發泡鋁材散熱座減少達70%。
This work experimentally investigated the effects of wind duct and extended nozzle on the heat transfer characteristics of the fins/porous-media heat sinks normally under the impinging air flow driven by air compressor or motor fan. Total eight heat sinks made of various fin array and porous media and nine wind ducts combined with different duct length and extended-nozzle length were employed herein. The experimental results indicated that the effects of the wind duct and extended nozzle on the overall heat transfer were various. When the impinging air flow was driven by the air compressor, the overall heat transfer capacities of the heat sinks combining the fins and porous media were generally higher than those of pure finned heat sinks or pure porous-media heat sinks by around 56%. The total Nusselt numbers of the heat sink with five plate fins and al-foam blocks and the heat sink with 5×5 square pin fins and packed brass beads were even higher than those of the pure finned heat sinks by about 70%. When the impinging air flow was produced by the motor fan, the heat sinks combining fins with aluminum foams had the best heat transfer. The total Nusselt number of the heat sink with five plate fins, 5×5 square pin fins or pure aluminum foams was about 8.6% lower than that of the heat sink combining fins with aluminum foams. Compared with the heat sinks combining fins with aluminum foams, the heat transfer performance of heat sinks combining fins with packed brass beads were reduced by 30%. The heat transfer capacity of pure packed-brass-beads heat sink was even reduced by 70%.
目 錄
頁次
中文摘要 I
英文摘要 II
致謝 III
目錄 IV
表目錄 VI
圖目錄 VII
符號說明 X
第一章 緒論 1
1-1研究背景 1
1-2問題描述 2
1-3文獻回顧 3
1-3-1加熱平板於衝擊噴流下之熱傳研究 3
1-3-2鰭片(柱)散熱座於衝擊噴流下之熱傳研究 4
1-3-3多孔介質散熱座於衝擊噴流下之熱傳研究 6
1-4研究目標 11
1-5研究架構 12

第二章 研究方法 13
2-1熱傳實驗設備 13
2-1-1氣源供應系統 13
2-1-2實驗測試段 14
2-1-3實驗測試塊 14
2-1-4熱量供應與資料擷取系統 15
2-2數據整理 16
2-3不確定性分析 18
2-4實驗測試例 22
第三章 結果與討論 36
3-1以空壓機提供冷流之熱傳結果 36
3-2以馬達風扇提供冷流之熱傳結果 39
第四章 結論與未來展望 63
4-1結論 63
4-2未來展望 66
參考文獻 67
附錄A 實驗工作流體(空氣)性質參數 73
附錄B 實驗儀器設備 74
附錄C 電木物理性能表 76
附錄D 作者簡歷 77

1.羅翊文,噴嘴幾何形狀與多孔材貼附層對平板衝擊熱傳之影響,碩士論文,大葉大學機械與自動化工程學系,彰化,台灣,2010。
2.M.A.R. Sharif, Heat transfer from an isothermally heated flat surface due to twin oblique slot-jet impingement, Procedia Engineering, Vol. 56, pp. 554-550, 2013.
3.蔡書堯,合成噴流衝擊於平板之熱傳研究,碩士論文,國立交通大學機械工程系所,新竹,台灣,2013。
4.張宗瀚,漸擴管應用於合成噴流之平板衝擊熱傳研究,碩士論文,國立交通大學機械工程系所,新竹,台灣,2014。
5.Y. Ma, Z.X. Xia, Z.B. Luo, X. Deng, X. Ma, Numerical investigation on microelectronic chip cooling using multiple orifice synthetic jet actuator based on theory field synergism, Procedia Engineering, Vol. 126, pp. 602-606, 2015.
6.B.T. Kannan, S. Sundararaj, Steady state jet impingement heat transfer from axisymmetric plates with and without grooves, Procedia Engineering, Vol. 127, pp. 25-32, 2015.
7.J. Lee, Z. Ren, P. Ligrani, D. Fox Michael, H.K. Moon, Crossflows from jet array impingement cooling: Hole spacing, target plate distance, Reynolds number effects, International Journal of Thermal Sciences, Vol. 88, pp. 7-18, 2015.
8.T.M. Jeng, W.T. Hsu, Experimental study of mixed convection heat transfer on the heated plate with the circular-nozzle synthetic jet, International Journal of Heat and Mass Transfer, Vol. 97, pp. 559-568, 2016.
9.L. Guoneng, X. Zhihua, Z. Youqu, G. Wenwen, D. Cong, Experimental study on convective heat transfer from a rectangular flat plate by multiple impinging jets in laminar cross flows, International Journal of Thermal Sciences, Vol. 108, pp. 123-131, 2016.
10.Ş.M. Simionescu, N.O. Tănase, D. Broboană, C. Bălan, Impinging air jets on flat surfaces at low reynolds numbers, Energy Procedia, Vol. 112, pp. 194-203, 2017.
11.蔡芳明,高速衝擊噴流對於散熱片之熱傳分析,碩士論文,國立臺南大學機電系統工程研究所碩士班,台南,台灣,2009。
12.李岳鴻,噴流應用於散熱鰭片之熱傳分析,碩士論文,遠東科技大學機械工程研究所,台南,台灣,2012。
13.張正儒,塔式散熱器性能提升之實驗與數值整合分析,博士論文,國立臺灣科技大學機械工程系,台北,台灣,2014。
14.R. Yakut, K. Yakut, F. Yesildal, A. karabey, Experimental and numerical investigations of impingement air jet for a heat sink, Procedia Engineering, Vol. 157, pp. 3-12, 2016.
15.A. Husain, M. Ariz, N.Z.H. Al-Rawahi, M.Z. Ansari, Thermal performance analysis of a hybrid micro-channel, -pillar and -jet impingement heat sink, Applied Thermal Engineering, Vol. 102, pp. 989-1000, 2016.

16.A.S. Waleed, A.D. Amer, H.M. Thompson, A numerical investigation of thermal airflows over strip fin heat sinks, International Communications in Heat and Mass Transfer, Vol. 75, pp. 183-191, 2016.
17.T.H. Kim, K.H. Do, S.J. Kim, Closed-form correlations of pressure drop and thermal resistance for a plate fin heat sink with uniform air jet impingement, Energy Conversion and Management, Vol. 136, pp. 340-349, 2017.
18.U.S. Gill, W.J. Minkowycz, Boundary and inertia effects on conjugate mixed convection heat transfer from a vertical plate fin in a high-porosity porous medium, Int. J. Heat Mass Transfer, Vol. 31, pp. 419-427, 1988.
19.T.A. Rizk, C. Kleinstreuer, Forced convective cooling of a linear array of blocks in open and porous matrix channels, Heat Transfer Engineering, Vol. 12, pp. 40-47, 1991.
20.W.S. Fu, H.C. Huang, Thermal performances of different shape porous blocks under an Impinging Jet, Int. J. Heat Mass Transfer, Vol. 40, pp. 2261-2272, 1997.
21.A. Bhattacharya, R.L. Mahajan, Finned metal foam heat sinks for electronics cooling in forced convection, ASME J. Electronic Packaging, Vol. 124 pp. 155-163, 2002.
22.T.M. Jeng, S.C. Tzeng, Numerical study of confined slot jet impinging on porous metallic foam heat sink, International Journal of Heat and Mass Transfer, Vol. 48, pp. 4685-4694, 2005.
23.S.Y. Kim, M.H. Lee, K.S. Lee, Heat removal by aluminum-foam heat sinks in a multi-air jet impingement, IEEE Transactions on Components and Packaging Technologies, Vol. 28, pp. 142-148, 2005.
24.周芳俊,具限制出口多孔性散熱器熱傳特性研究,碩士論文,國立中正大學機械工程所,嘉義,台灣,2005。
25.S.C. Tzeng, Spatial thermal regulation of aluminum foam heat sink using a sintered porous conductive pipe, Int. J. Heat Mass Transfer, Vol. 50, pp. 117-126, 2007.
26.施威宏,多孔性電子散熱器衝擊流流場及熱傳研究,博士論文,國立中正大學機械工程所,嘉義,台灣,2007。
27.C.T. Degroot, A.G. Straatman, L.J. Betchen, Modeling forced convection in finned metal foam heat sinks, ASME J. Electronic Packaging, Vol. 131, pp. 021001-1 - 021001-10, 2009.
28.C.T. Degroot, D. Gateman, A.G. Straatman, The effect of thermal contact resistance at porous-solid interfaces in finned metal foam heat sinks, ASME J. Electronic Packaging, Vol. 132, pp. 041007-1 - 041007-7, 2010.
29.黃瓊瑤,具堆疊黃銅粒之鰭柱散熱座於侷限式矩形衝擊噴流下之熱傳特性實驗研究,碩士論文,建國科技大學機械工程系暨製造科技研究所,彰化,台灣,2011。
30.廖文傑,在強制衝擊氣流下多孔質熱沉對矩形發熱元件散熱增強之研究,碩士論文,國立臺北科技大學能源與冷凍空調工程系碩士班,台北,台灣,2011。
31.M.L. Hwang, Y.T. Yang, Numerical simulation of turbulent fluid flow and heat transfer characteristics in metallic porous block subjected to a confined slot jet, Int. J. Thermal Sciences, Vol. 55, pp. 31-39, 2012.
32.周彥儀,具發泡銅材填充之鰭柱散熱座於侷限式矩形衝擊噴流下之熱傳特性實驗研究,碩士論文,建國科技大學機械工程系暨製造科技研究所,彰化,台灣,2012。
33.S.E. Mahgoub, Forced convection heat transfer over a flat plate in a porous medium, Ain Shams Engineering Journal, Vol. 4, pp. 605-613, 2013.
34.S.S. Feng, J.J. Kuang, T. Wen, T.J. Lu, K. Ichimiya, An experimental and numerical study of finned metal foam heat sinks under impinging air jet cooling, Int. J. Heat Mass Transfer, Vol. 77, pp. 1063-1074, 2014.
35.邱煥鈞,多孔材性質對半圓球凹面衝擊冷卻之影響,碩士論文,大葉大學機械與自動化工程學系,彰化,台灣,2014。
36.C. Byon, Heat transfer characteristics of aluminum foam heat sinks subject to an impinging jet under fixed pumping power, International Journal of Heat and Mass Transfer, Vol. 84, pp. 1056-1060, 2015.
37.T.M. Jeng, S.C Tzeng, Q.Y. Huang, Heat transfer performance of the pin–fin heat sink filled with packed brass beads under a vertical oncoming flow, International Journal of Heat and Mass Transfer, Vol. 86, pp. 531-541, 2015.
38.O. Manca, L. Cirillo, S. Nardini, B. Buonomo, D. Ercole, Experimental investigation on fluid dynamic and thermal behavior in confined impinging round jets in aluminum foam, Energy Procedia, Vol. 101, pp. 1095-1102, 2016.
39.G.N. Ellison, Thermal computations for electronic equipment, Van Nostrand Reinhold Company, New York, pp. 29-45, 1984.
40.R.J. Moffat, Contributions to the theory of single-sample uncertainty analysis, ASME J. Fluids Engineering, Vol. 104, pp. 250-258, 1982.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔