跳到主要內容

臺灣博碩士論文加值系統

(44.192.26.226) 您好!臺灣時間:2024/09/13 10:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂尚霖
研究生(外文):Shang-lin LU
論文名稱:整合顧客需求與預測以提升存貨管理
論文名稱(外文):Integrating Customer Demand and Forecast to Enhance Inventory Management
指導教授:黃惠民黃惠民引用關係
指導教授(外文):Hui-Ming Wee
學位類別:碩士
校院名稱:中原大學
系所名稱:工業與系統工程研究所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:98
中文關鍵詞:供應鏈管理、限制理論、緩衝管理、需求拉動補貨、指數加權移動平均
外文關鍵詞:Supply chain managementtheory of constraintsbuffer managementdemand-pull strategyexponentially weighted moving average
相關次數:
  • 被引用被引用:1
  • 點閱點閱:233
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,供應鏈的活動影響了社會和環境,為了避免在供應鏈下游提出需求後發生缺貨的問題,上游端會建立庫存系統來確保能供應下游的需求變動,因此存補貨管理無疑是供應鏈管理中重要其中一個環節。相較於傳統補貨策略需要較多且複雜的參數運算求出最佳解,本研究利用限制理論(Theory of Constraints, TOC)搭配需求拉動補貨(Demand-Pull)與緩衝管理(Buffer Management)並輔以指數加權移動平均法(Exponentially Weighted Moving Average, EWMA),只需要參考顧客即時需求資訊與需求趨勢便能做出補貨的策略。
本研究主要考量的產品為具有生命週期短、需求變動大特性之半導體封裝產業,因此利用指數加權移動平均法(Exponentially Weighted Moving Average, EWMA)整合顧客提供之實際需求預測(Forecast)與顧客實際需求量(Demand)掌握顧客需求變動趨勢。並觀察在庫量水位於之緩衝區域搭配EWMA指標正、負向需求趨勢管理緩衝與調整訂購量。藉由EWMA特性能反映時間內曲線小幅度變化,能快速反應改善補貨策略。本研究以國內某封裝廠實際案例分析,並依照不同產品需求模式提供權重,在需求變異大(小)、預測變異大(小)、需求與預測差距大(小)之產品特性中,評估出本研究方法適用性。統整分析後結果顯示本研究確實能適用且加強限制理論補貨策略之應用,達到整體庫存量降低之效果。

關鍵字:供應鏈管理、限制理論、緩衝管理、需求拉動補貨、指數加權移動平均
In recent years, supply chain activities play an important role in society and environment. In order to avoid the supply chain downstream demand running out of stock problems, the upstream end of the inventory system is controlled to monitor the downstream demand changes. Therefore, the replenishment management within the supply chain is very important. Compared with the traditional replenishment strategy, which requires more complex parameter operations to find the optimal solution, this study uses the Theory of Constraints (TOC) and demand-pull (Buffer Management). Supplemented by an Exponentially Weighted Moving Average (EWMA) strategy, one can replicate and refer to the customer''s immediate demand information and demand trends.
In this study, we consider the semiconductor packaging industry which is characterized by short life cycle and large demand fluctuation. Therefore, we use the Exponentially Weighted Moving Average (EWMA) to integrate customer demand forecast with customer actual demand to monitor the trend of changes in customer demand. We then observe in the buffer zone the amount of inventory in the zone. EWMA will indicate positive and negative demand trend; management can then adjust the order quantity. EWMA features can reflect the small changes in the trend and quickly adjust the replenishment strategy. In this study, the actual data of a domestic packaging plant is used. Different weights and some parameter variations are done for different demand characteristics of the products. They are large (small) demand variations, large (small) forecast variations, large (small) demand and forecast variations. The results of our model in this study not only strengthen the theory of behind the replenishment policy, it also reduces the overall inventory cost.

Keywords:Supply chain management, theory of constraints, buffer management, demand-pull strategy, exponentially weighted moving average
中文摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VII
第一章 緒論 1
1.1研究背景 1
1.2研究動機 3
1.3研究目的 4
1.4研究方法與步驟 5
1.5論文章節架構 6
第二章 文獻探討 8
2.1供應鏈管理相關文獻 8
2.1.1供應鏈之意義及其演進 14
2.1.2供應鏈管理的整合 16
2.2限制理論相關文獻 17
2.2.1限制理論補貨策略 19
2.2.1.1需求拉動補貨(Demand-Pull) 19
2.2.1.2緩衝管理 20
2.2.1.3初始目標緩衝與調整參數建立 22
2.3指數加權移動平均相關文獻 26
2.3.1指數加權移動平均方法 26
2.3.2指數加權移動平均EWMA方法之應用 27
第三章 整合預測與需求EWMA之限制理論補貨模式 30
3.1基本假設 31
3.2利用EWMA結合實際需求與預測資訊決定緩衝調整時機 33
3.2.1 TOC緩衝目標訂定 33
3.2.2 EWMA參數與計算公式 34
3.2.3 補貨量與目標緩衝調整管理範例 36
3.2.4 EWMA結合TOC補貨模式圖 38
3.3績效衡量指標 40
3.4案例說明 41
第四章 案例與資料分析 49
4.1基本假設條件 49
第五章 結論 80
5.1方法比較 80
5.2結論與方向 81
5.3未來研究改善方向 83
5.4產學合作心得 84
參考文獻 85


圖目錄
圖1-1研究步驟 7
圖2.1供應鏈模式Poirier & Reiter(1996) 9
圖2.1限制理論五個步驟(Goldratt&Cox,1984) 17
圖2.2存貨管理衝突圖(李榮貴&張勝鴻,2005) 18
圖2.3緩衝管理三區(李榮貴&張盛鴻,2005) 20
圖2.4緩衝管理調整圖 21
圖2-5每期分配權重(α=0.2),引用自李沐謙(2011) 26
圖3.1紅、黃、綠緩衝區建立 33
圖3-3 EWMA動向指標結合TOC補貨模式流程圖 38
圖3-4決定權重流程圖 39
圖3-5數據模擬 43
圖3-6本研究補貨模式之在庫量變化圖(X產品) 44
圖3-7項彥華(2012)toc補貨模式 44
圖3-8傳統TOC補貨模式 45
圖3-9本研究、項彥華、TOC補貨模式在庫量曲線比較 45
圖3.10本研究、項彥華、傳統TOC (X產品)平均庫存長條圖 46
圖4.1 A產品實際需求與需求預測折線圖 51
圖4.2 A產品在庫量比較折線圖 51
圖4.3A產品績效改善長條圖 53
圖4.3 B產品實際需求與需求預測折線圖 55
圖4.4 B產品在庫量比較折線圖 55
圖4.5 B產品績效改善長條圖 57
圖4.5 C產品實際需求與需求預測折線圖 59
圖4.6 C產品在庫量比較折線圖 59
圖4.7C產品績效改善長條圖 61
圖4.7實際需求與需求預測折線圖 64
圖4.8 D產品在庫量折線圖 64
圖4.9 E產品實際需求與需求預測折線圖 69
圖4.10 E產品在庫量折線圖 69
圖4.11 E產品績效改善長條圖 71
圖4.11 F產品實際需求與需求預測折線圖 74
圖4.12 F產品在庫量比較折線圖 74
圖4.13 F產品績效改善長條圖 76



表目錄

表2.1供應鏈管理文獻整理表 10
表2.2限制理論存貨管理相關文獻彙整 22
表2.3指數加權移動平均 27
表3.1符號說明 32
表3-2補貨量與緩衝管理規範 37
表3-3顧客13週未來需求預測值 42
表3-4本研究補貨模式績效表現整理表 46
表3-5本研究與項彥華績效指標比較 47
表3-6本研究與傳統TOC績效指標比較 47
表4.1本研究與傳統TOC績效比較 52
表4.2本研究與項彥華(2012)績效比較 52
表4.3本研究與傳統TOC績效比較 56
表4.4本研究與項彥華(2012)績效比較 56
表4.5本研究與傳統TOC績效比較 60
表4.6本研究與項彥華(2012)績效比較 60
表4.7本研究與項彥華(2012)、傳統TOC假設不同缺貨與存貨成本比較表 61
表4.8本研究與傳統TOC績效比較 65
表4.9本研究與項彥華(2012)績效比較 65
表4.10本研究與項彥華(2012)、傳統TOC假設不同缺貨與存貨成本比較表 66
表4.11本研究與傳統TOC績效比較 70
表4.13本研究與項彥華(2012)、傳統TOC假設不同缺貨與存貨成本比較表 71
表4.14本研究與傳統TOC績效比較 75
表4.15本研究與項彥華(2012)績效比較 75
表4.16本研究與項彥華(2012)、傳統TOC假設不同缺貨與存貨成本比較表 76
表4.17顧客產品類型分類 78
表5.1補貨策略比較表 80
1.Anderson, David, Lee, Hau (1999). “The Internet-enabled Supply Chain: From the First Click to the Last Mile”. Achieving Supply Chain Excellence through Technology, Vol. 2, pp.1-6.
2.Abbas, N., Riaz, M., & Does, R. J. M. M. (2011). Enhancing the Performance of EWMA Charts. Quality and Reliability Engineering International, 27(6), 821-833.
3.APICS series on constraints management.(1998)
4.Abbasi, S. A., Riaz, M., Miller, A., Ahmad, S., & Nazir, H. Z. (2015). EWMA Dispersion Control Charts for Normal and Non-normal Processes. Quality and Reliability Engineering International, 31(8), 1691-1704.
5.Akhundjanov, S. B., & Pascual, F. (2015). Moving range EWMA control charts for monitoring the Weibull shape parameter. Journal of Statistical Computation and Simulation, 85(9), 10.1080/00949655.2014.907574
6.Charles, C. P. and Stephen, E. R. (1996), Supply Chain Optimization, Apple Tuttle Mori Agency.
7.Chopra, S. and Meindl, P. (2007). “Supply Chain Management: Strategy”, Planning and Operation, Vol. 3.
8.Collins, T. (1999), “Striking it big together, Supply Management”, Vol. 4(18), pp.28-30.
9.Cooper, M. C., Lambert, D. M. and Pagh, J. D. (1998). “Supply Chain Management: Implementation Issues & Research Opportunities”. The International Journal of Logistics Management, Vol. 9(2), pp.1-19.
10.Chang, Y. C., Chang, K. H., & Sun, W. C. (2015). Enhancement of Inventory Management for the Wafer Manufacturing Industry by Combining Market Demand Forecast and Demand-Pull Replenishment. Journal of Testing and Evaluation, 43(4), 948-963.
11.Chou, Y. C., Lu, C. H., & Tang, Y. Y. (2012). Identifying inventory problems in the aerospace industry using the theory of constraints. International Journal of Production Research, 50(16), 4686-4698.
12.Chang, Y. C., Chang, K. H., & Huang, C. W. (2014). Integrate market demand forecast and demand-pull replenishment to improve the inventory management effectiveness of wafer fabrication. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 228(4), 617-636.
13.Chang, Y. C., Chang, K. H., & Lei, Y. C. (2014). Probe of the Replenishment Strategy and Grouping Rule in the Semiconductor Industry. Journal of Testing and Evaluation, 42(2), 484-497.
14.Chang, Y. C., Chang, K. H., & Sun, W. C. (2015). Enhancement of Inventory Management for the Wafer Manufacturing Industry by Combining Market Demand Forecast and Demand-Pull Replenishment. Journal of Testing and Evaluation, 43(4), 948-963.
15.Chou, Y. C., Lu, C. H., & Tang, Y. Y. (2012). Identifying inventory problems in the aerospace industry using the theory of constraints. International Journal of Production Research, 50(16), 4686-4698.
16.Crowder, R. G. (1989). Speech-Perception by Ear and Eye - a Paradigm for Psychological Inquiry - Massaro,Dw. Behavioral and Brain Sciences, 12(4), 760-760.
17.Ellram, L.M. (1991). “Supply Chain Management- The Industrial Organization Prespective”, International Journal of Physical Distribution &Logistics Management , Vol. 21(1), pp.13-22.
18.Gupta, M., Chahal, H., Kaur, G., & Sharma, R. (2010). Improving the weakest link: A TOC-based framework for small businesses. Total Quality Management & Business Excellence, 21(8), 863-883.
19.Gupta, M., & Andersen, S. (2012). Revisiting local TOC measures in an internal supply chain: a note. International Journal of Production Research, 50(19), 5363-5371.
20.Govindan, K., et al. (2014) “Impact of supply chain management practices on sustainability”, Journal of Cleaner Production, Vol. 85, pp.212-225.
21.Houlihan, J. (1984). “Supply Chain Management, Proceeding of the 19th International Technical Conference of the British Production and Inventory Control Society”, pp.101-110.
22.Hsu, C. C., & Su, C. T. (2011). An Adaptive Forecast-Based Chart for Non-Gaussian Processes Monitoring: With Application to Equipment Malfunctions Detection in a Thermal Power Plant. Ieee Transactions on Control Systems Technology, 19(5), 1245-1250.
23.Hu, M. T. M., White, S. J., Chaudhuri, K. R., Morris, R. G., Bydder, G. M., & Brooks, D. J. (2001). Correlating rates of cerebral atrophy in Parkinson''s disease with measures of cognitive decline. Journal of Neural Transmission, 108(5), 571-580.
24.Hull, J. (1998). Who needs cash? Fortune, 138(8), 30-31.
25.Jiang, X. Y., & Wu, H. H. (2013). Optimization of setup frequency for TOC supply chain replenishment system with capacity constraints. Neural Computing & Applications, 23(6), 1831-1838.
26.Kalakota, R. and Whinston, A. B. (1997). “Electronic commerce: A manager''s guide. Addison-Wesley”, Vol. 1.
27.Kannan, V. R. and Tan, K. C. (2005). “Just in Time, Total Quality Management, and Supply Chain Management: Understanding Their Linkages and Impact on Business Performance”. The International Journal of Management Science, Vol. 33, pp.153-162.
28.Kozlenkova, I.V., et al. (2015). “The Role of Marketing Channels in Supply Chain Management”, Journal of Retailing.
29.Kristianto, Y., et al. (2012). “A decision support system for integrating manufacturing and product design into the reconfiguration of the supply chain networks”, Decision Support Systems, Vol. 52(4), pp.790-801.
30.Lee, H.L. and Billington, C. (1993) “Material Management in Decentralized Supply Chain”, Operation Research, Vol. 41(5), pp.835-847.
31.Lazariv, T., Okhrin, Y., & Schmid, W. (2015). Behavior of EWMA type control charts for small smoothing parameters. Computational Statistics & Data Analysis, 89, 115-125.
32.Leng, K. J., & Wang, Y. X. (2010). Research on Inventory Control Policies for Nonstationary Demand based on TOC. International Journal of Computational Intelligence Systems, 3, 114-128.
33.Mentzer, J. T. (2004). “Fundamentals of Supply Chain Management”. Sage Publications.
34.McMullen, Jr., T. B., Introduction to the Theory of Constraints Management System. St. Lucie Press /APICS series on constraints management.(1998)
35.Montgomery, R. L., Haemmerlie, F. M., & Edwards, M. (1991). Social, Personal, and Interpersonal Deficits in Socially Anxious People. Journal of Social Behavior and Personality, 6(4), 859-872.
36.Manikas, A., Gupta, M., & Boyd, L. (2015). Experiential exercises with four production planning and control systems. International Journal of Production Research, 53(14), 4206-4217.
37.Page, M. (1989). “How to Sweeten Your Supply Chain”, Proceedings of BPICS Annual Congerence, Vol. 5(3), pp.21-26.
38.Poirier, C. C., & Reiter, S. E. (1996). Supply chain optimization: Building the strongest total business network. San Francisco: Berrett-Koehler Publishers.
39.Pandey, V., Garg, S., Shankar, R. (2010). “Impact of information sharing on competitive strength of Indian manufacturing enterprises: An empirical study”, Business Process Management Journal, Vol. 16, pp.226-243.
40.Pan, J. N., Li, C. I., & Wu, J. J. (2016). A new approach to detecting the process changes for multistage systems. Expert Systems with Applications, 62, 293-301.
41.Park, J., & Jun, C. H. (2015). A new multivariate EWMA control chart via multiple testing. Journal of Process Control, 26, 51-55. doi: 10.1016/j.jprocont.2015.01.007
42.Rasmusen, Eric (1989). “Games and Information”. Basil Blackwell.
43.Ross, David F. (1997). “Competing through Supply Chain Management: Creating Market-Winning Strategies Through Supply Chain Partnership”, Chapman & Hall.
44.Simchi-Levi, D., Philip Kaminsky, and Edith Simchi-Levi. (2001). “Designing and Managing the Supply Chain: Concepts, Strategies and Case Studies”, McGraw-Hill Publication.
45.Simchi-Levi, D., Philip Kaminsky, and Edith Simchi-Levi. (2004). “Managing the Supply Chain: The Definitive Guide for the Business Professional”, McGraw-Hill.
46.Stevens, G. C. (1989), “Integrating the Supply Chain”, Internatoinal Journal of Physical Distribution and Materials Management , Vol. 19(8), pp.3-8.
47.Stump, B., & Badurdeen, F. (2012). Integrating lean and other strategies for mass customization manufacturing: a case study. Journal of Intelligent Manufacturing, 23(1), 109-124.
48.Thomas, D. J., and Griffin, P. M. (1996). Coordinated supply chain management, European Journal of Operational Research, Vol. 94, pp.1-15.
49.Weber, C. A., Current, J. R., & Benton, W. C. (1991) “Vendor Selection Criteria and Methods”, European Journal of Operational Research, Vol. 50(1), pp.2-18.
50.Weber, M., Hiete, M., Lauer, L. and Rentz, O. (2010). “Low cost country sourcing and its effects on the total cost of ownership structure for a medical devices manufacturer”, Journal of Purchasing and Supply Management, Vol. 16, pp.4-16.
51.Whiteside, M., & Lucas, S. (1990). United-States Immigration Controls. Lancet, 335(8685), 356-356.
52.Wu, H. H., Chen, C. P., Tsai, C. H., & Tsai, T. P. (2010). A study of an enhanced simulation model for TOC supply chain replenishment system under capacity constraint. Expert Systems with Applications, 37(9), 6435-6440.
53.Wu, H. H., Huang, H. H., & Jen, W. T. (2012). A study of the elongated replenishment frequency of TOC supply chain replenishment systems in plants. International Journal of Production Research, 50(19), 5567-5581.
54.Wu, H. H., Lee, A. H. I., & Tsai, T. P. (2014). A two-level replenishment frequency model for TOC supply chain replenishment systems under capacity constraint. Computers & Industrial Engineering, 72, 152-159.
55.Ye, H., Huang, L. L., Chen, S. D., & Zhong, J. J. (2004). Pulsed electric field stimulates plant secondary metabolism in suspension cultures of Taxus chinensis. Biotechnology and Bioengineering, 88(6), 788-795.
56.Yuan, K. J., Chang, S. H., & Li, R. K. (2003). Enhancement of Theory of Constraints replenishment using a novel generic buffer management procedure. International Journal of Production Research, 41(4), 725-740.
57.陳家祥、陳叡宜,2003,“資訊分享對供應鏈績效影響之研究-從供應商角色度探討”,企業管理學報,第56期,頁111-146。
58.黃惠民、謝志光,2000,物料管理與供應鏈導入,滄海書局。
59.蘇雄義,2000,物流與運籌管理,華泰文化事業公司。
60.蘇雄義,2008,供應鏈管理-原理、程序與實務,智勝出版社。
61.李榮貴,1996,從目標一書談限制管理之應用,限制管理,限制管理教育發展中心。
62.吳鴻輝、李榮貴,1995,利用限制理論落實改革,管理雜誌 225。
63.王晃三、顏貽楨,2002,限制理論的問題管理模式,中華民國品質學會第 38 屆年會暨第 8 屆全國品質管理研討會。
64.周秉翰,2009,供應鏈雙贏合作模式建立~ TOC 方法,交大工業工程與管理學系碩士論文。
65.李榮貴、張盛鴻,2005,” TOC 限制理論”,中國生產力中心。
66.黃兆偉,2010,限制理論;需求拉動補貨策略;需求預測;半導體供應鏈,交大工業工程與管理學系,碩士論文。
67.項彥華,2011,結合歷史需求EWMA值與TOC補貨模式改善半導體存貨管理,交大工業工程與管理學系,碩士論文。
68.梁舒雯,2012,利用EWMA結合歷史與市場預測資訊改善半導體產業之存貨管理,交大工業工程與管理學系,碩士論文。
69.吳德南,2015,短壽命週期產品之TOC拉式補貨緩衝管理機制設計,明新科技大學工業工程與管理系,碩士論文。
70.朱昌鎮,2016,TOC 限制理論配銷供應管理研討─以某網通製造A公司為研究對象,中央大學企管碩士班,碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top