跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/19 22:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪國勛
研究生(外文):Guo-Xun Hong
論文名稱:利用不同選擇比之吸附劑分離純化發酵液中正丁醇
論文名稱(外文):Separation and Purification of n-Butanol from the Fermentation Broth by using adsorbent with different Selectivity
指導教授:鍾財王鍾財王引用關係
指導教授(外文):Tsair-Wang Chung
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:119
中文關鍵詞:丁醇吸附沸石ZSM-5SAPO-34選擇比純度
外文關鍵詞:ButanolAdsorptionZeoliteZSM-5SAPO-34SelectivityPurity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:138
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
自從工業革命以來,人類使用大量化石燃料,隨著化石燃料儲存量減少,二氧化碳排放量增加,全球暖化日益嚴重,發展生質能是現今能源發展重要的課題,以利達到地球永續發展。近年來,隨著近無碳損纖維素生質丁醇生產技術日益成熟,生質丁醇勢必成為良好的生質能源,生質丁醇比生質酒精能多產25%的能量且丁醇與水不互溶可減少油品相分離等問題,性質上比酒精更接近汽油,可添加更多比例進入汽油。然而,發酵液中丁醇產率過低,且傳統蒸餾分離純化技術十分耗能,突顯出分離純化技術的重要。本研究利用節能的多段吸附分離純化技術且吸附劑可以重複利用,是個有潛力的分離技術。本實驗先利用不同矽鋁比的沸石ZSM-5(Zeolite Socony Mobil-5)從發酵液中吸附丁醇,實驗結果可以知道高矽鋁比ZSM-5沸石具有高的丁醇吸附量,但由於ZSM-5不只會吸附丁醇也會吸附少量的乙醇和丙酮。因此,實驗最後利用SAPO-34吸附劑具有可吸附乙醇與丙酮,不太吸附丁醇的特性來提高丁醇純度。本研究發現SAPO-34吸附劑在操作時間3小時吸附乙醇與丙酮具有最高的選擇比。本研究提出的多段吸附方法,產物中正丁醇的純度可高達99.52wt%。
Since the industrial revolution, human beings have consumed a lot of fossil fuels. Along with the reduction of fossil fuel storage and the surge of carbon dioxide emissions, global warming is worsening. Therefore, developing the biomass energy is an important issue for energy development in order to reach the sustainable development of the planet. In recent years, with the maturity in Carbon Neutral Cellulosic Butanol Production Technology, bio-butanol is bound to be a good biomass energy. Compared to bio-ethanol, bio-butanol can generate more than 25% of energy. Furthermore, bio-butanol and water is immiscible thanks to the character of bio-butanol being closer to oil and allowing more addition into oil, contributing to the decrease the problem of oil skimming. However, the low production rate of butanol in fermentation and the extremely energy-consuming skill in the traditional distillation separation purity, highlight the importance of distillation separation purity technology. This research used the energy-saving technology of adsorption separation to purity and adsorbent can reusable, which is a high potential of separation technology. In this experiment the zeolite called ZSM-5(Zeolite Socony Mobil-5) is used. ZSM-5 of different silica-aluminum ratio is used to adsorb butanol in fermentation broth. The result showed that ZSM-5 with high silica-aluminum ratio can adsorb more butanol. However, since ZSM-5 not only adsorbs butanol, but also adsorbs a little amount of ethanol and acetone. As a result, the experiment takes the advantage of the characters of the SAPO-34 adsorbent to adsorb ethanol and acetone to increase the purity of butanol. The research discovered that SAPO-34 created the highest selectivity of ethanol and acetone in the operation time of three hours. Through the method used in the research, the purity of n-butanol in the production can reach up to 98.52wt%.
總目錄
摘要 I
Abstract II
致謝 IV
總目錄 V
圖目錄 VIII
表目錄 XII
第一章 緒論 1
第二章 文獻回顧與理論背景 4
2-1 能源與危機 4
2-1-1 溫室效應 6
2-1-2 生質能 9
2-2 生質丁醇 12
2-2-1 生質丁醇 12
2-2-2 ABE發酵液與其發展概況 14
2-2-3 丁醇分離純化技術分析 17
2-3 吸附理論 27
2-3-1 等溫吸附曲線 29
2-3-2 Langmuir 等溫吸附方程式 32
2-3-3 Freundlich 等溫吸附方程式 34
2-3-4 影響吸附行為之因素 36
2-4 吸附劑 39
2-4-1 從發酵液中吸附之吸附劑 43
2-4-2 從脫附液中吸附之吸附劑 47
第三章 材料與實驗方法 48
3-1 實驗內容 48
3-2 實驗藥品 50
3-2-1 吸附劑 50
3-2-2 模擬發酵液與脫附液 51
3-3 實驗儀器 52
3-4 實驗流程 55
3-5 實驗吸附量計算方法 57
第四章 結果與討論 58
4-1 吸附劑前處理與吸附平衡條件 58
4-2 吸附劑之特性分析 61
4-2-1 ZSM-5沸石特性分析 61
4-2-2 SAPO-34沸石特性分析 64
4-3 ZSM-5對模擬發酵液(單、多成分)的吸附討論 67
4-3-1 不同矽鋁比ZSM-5在單成分下吸附行為 67
4-3-2 單成分溶液(丙酮、丁醇、乙醇)在ZSM-5的吸附比較 72
4-3-3 不同矽鋁比ZSM-5在競爭吸附下之比較 74
4-4 SAPO-34吸附劑在不同吸附質情況下的比較 79
4-4-1 SAPO-34在吸附質有無水下的比較 80
4-4-2 SAPO-34模擬溶液(單成分、多成分)下的吸附情形 83
4-5 ZSM-5與SAPO-34吸附劑再生吸附測試 86
4-5-1 ZSM-5吸附劑再生吸附測試 86
4-5-2 SAPO-34吸附劑再生吸附測試 88
4-6 ZSM-5與SAPO-34分離純化模擬發酵液測試 89
第五章 結論 91
未來展望 93
參考文獻 94
附錄一 98
附錄二 101

圖目錄
Figure 1-1-1 Simplified product formation pathway by solventogenic Clostridium species[6] 2
Figure 2-1-1 Basic energy classification structural chart[13] 5
Figure 2-1 2 The schematic of greenhouse[14] 7
Figure 2-1 3 Total annual anthropogenic GHG emissions by carbon dioxide from 1950 to 2010[16] 8
Figure 2-1 4 The carbon cycle system of biomass energy[19] 11
Figure 2-2-1 Simplified product formation pathway by solventogenic Clostridium species[6] 14
Figure 2-2 2 Downstream distillation unit of the Butanol[30] 18
Figure 2-2 3 Schematic diagram of butanol removal from fermentation broth by gas stripping[6] 20
Figure 2-2 4 The schematic of pervaporation[35] 22
Figure 2-2 5 Schematic diagram of butanol separation from fermentation broth by pervaporation[6] 23
Figure 2-2 6 Membrane swelling in different pure organic solutions at 298 K[34] 23
Figure 2-2 7 Schematic diagram of the adsorption experimental[40] 25
Figure 2-2 8 Experimental adsorption uptakes of ABE on KA-I resin at 298K[38] 26
Figure 2-3-1 IUPAC classification of adsorption isotherm[42] 31
Figure 2-3-2 The classification of liquid-solid adsorption on (I) Linear (II) Langmuir (III) BET (IV) Freundlich isotherm models[42] 31
Figure 2-3-3 The different kind of situation on Freundlich isotherm model[42] 35
Figure 2-4 1 The isotherm of different adsorbents[36] 46
Figure 2-4 2 Adsorbed amounts after 3 h of equilibration time for C1-C8 47
1-alcohols on SAPO-34 at 298 K[49] 47
Figure 3-1 1 Experimental flow chart 49
Figure 4-1 1 The adsorption equilibrium for ZSM-5(SiO2/Al2O3=80) at 20°C[43] 59
Figure 4-1 2 Single-component uptake curves of (●) methanol, (○) ethanol, (■) 1-propanol, (◇) 1-butanol, and (▲) 1-pentanol at room temperature and an external concentration of 0.02 g/g (diluted in tert-butanol) on SAPO-34[50] 60
Figure 4-1 3 The uptake of Acetone, Butanol and Ethanol at different times diluted in tert-butanol on SAPO-34 60
Figure 4-2 1 SEM diagram (a) ZSM-5(45881) (b) ZSM-5(45882) (c)ZSM-5(45883) 62
Figure 4-2 2 SEM diagram of SAPO-34 65
Figure 4-2 3 EDX element analysis peak of SAPO-34 65
Figure 4-3-1 The isotherms of single component for Langmuir model and Freundlich model at 293K (a) Acetone (b) Butanol (c) Ethanol 70
Figure 4-3-2 The isotherms of three kinds of ZSM-5 (a) SiO2/Al2O3=50 (b) SiO2/Al2O3=80 (c) SiO2/Al2O3=300 for Langmuir an Freundlich model at 293K 73
Figure 4-3-3 The isotherms of multi-component for Langmuir model at 293K (a) SiO2/Al2O3=50 (b) SiO2/Al2O3=80 (c) SiO2/Al2O3=300 75
Figure 4-3-4 The isotherms of multi-component for Freundlich model at 293K (a) SiO2/Al2O3=50 (b) SiO2/Al2O3=80 (c) SiO2/Al2O3=300 76
Figure 4-4-1 The isotherms of single component diluted in tert-butanol and water for (a) Langmuir model (b) Freundlich model at 298K 81
Figure 4-4-2 The isotherms of single and multi component diluted in tert-butanol for (a) Langmuir model (b) Freundlich model at 298K 84
Figure 4-5 1 Butanol uptake of ZSM-5(SiO2/Al2O3=300) at once to five times reused time in ABE solution 87
Figure 4-5 2 Acetone and Ethanol uptake of SAPO-34 at once to five times reused time in ABE solution diluted in t-butanol 88
Figure 4-6-1 The purity of n-Butanol from the Fermentation Broth by using different adsorbents 90

表目錄
Table 1-1-1 Energy requirement estimates per kilogram of butanol[11] 3
Table 2-1 1 The Greenhouse gases produced by human activities[15] 8
Table 2-2 1 Energy density, vapor pressure and density value of gasoline, diesel oil, ethanol and n-butanol[21] 13
Table 2-2 2 List of some native and genetically-modified clostridia microorganisms with corresponding typical fermentation broth final ABE concentrations[6] 16
Table 2-2 3 Azeotropes during distillation of ABE-water mixture[21] 19
Table 2-3 1 Comparison of adsorption mechanism[41] 28
Table 2-4 1 The adsorbent characteristic of butanol separation 43
Table 2-4 2 The Si/Al ratio and adsorption capacity of the zeolites[43] 46
Table 3-2 1 The physical of adsorbents 50
Table 3-2 2 The chemicals of model fermentation 51
Table 4-2 1 EDX element analysis of ZSM-5[43] 63
Table 4-2 2 The surface characteristic of ZSM-5[43] 63
Table 4-2 3 EDX element analysis of SAPO-34 66
Table 4-2 4 The surface characteristic of SAPO-34 66
Table 4-3 1 The regression parameters of ZSM-5 adsorbents in single component using Langmuir model and Freundlich model 71
Table 4-3 2 The selectivity of butanol/acetone and butanol/ethanol on different ZSM-5 77
Table 4-3 3 The regression parameters of ZSM-5 adsorbents in multi-component using Langmuir model and Freundlich model 78
Table 4-4 1 The regression parameters of SAPO-34 adsorbents using Langmuir model and Freundlich model in single component 82
Table 4-4 2 The regression parameters of SAPO-34 adsorbents using Langmuir model and Freundlich model in multi-component 85
1.Jones , D. T.; Woods, D. R., Acetone-butanol fermentation revisited. Microbiological 1986, 50, 484-524.
2.魏茂國, 纖維素丁醇技術. 工業技術與資訊月刊 2013, 262, 32-35.
3.周仕凱; 許梅娟, 新能源—生物產丁醇. 科學發展 2009, 433, 26-31.
4.Peter, D., New insights and novel developments in clostridial acetone/butanol/isopropanol fermentation. Appl Microbiol Biotechnol 1998, 49, 639-648.
5.Ezeji, T. C.; Qureshi, N.; Blaschek, H. P., Butanol fermentation research: upstream and downstream manipulations. Chem Rec 2004, 4, (5), 305-14.
6.Abdehagh, N.; Tezel, F. H.; Thibault, J., Separation techniques in butanol production: Challenges and developments. Biomass and Bioenergy 2014, 60, 222-246.
7.Oudshoorn, A.; van der Wielen, L. A. M.; Straathof, A. J. J., Adsorption equilibria of bio-based butanol solutions using zeolite. Biochemical Engineering Journal 2009, 48, (1), 99-103.
8.Nielsen, D. R.; Prather, K. J., In situ product recovery of n-butanol using polymeric resins. Biotechnol Bioeng 2009, 102, (3), 811-21.
9.Nielsen, L.; Larsson, M.; Holst, O.; Mattiasson, B., Adsorbents for extractive bioconversion applied to the acetone-butanol fermentation. Applied Microbiology and Biotechnology 1998, 28, (4), 335-339.
10.Maddox, I. S., Use of silicalite for the adsorption of n-butanol from fermentation liquors. Biotechnology Letters 1982, 4, (11), 759-760.
11.Oudshoorn, A.; van der Wielen, L. A. M.; Straathof, A. J. J., Assessment of Options for Selective 1-Butanol Recovery from Aqueous Solution. Industrial & Engineering Chemistry Research 2009, 48, 7325-7336.
12.伊原賢, 石油之後,主導人類未來100年命運的新能源霸主:頁岩氣. 臉譜文化: 2013.
13.陳維新, 能源槪論 高立出版集團: 2006.
14.What is Climate Change? http://www.nps.gov/goga/naturescience/climate-change-causes.htm
15.魏國彥; 許晃雄, 全球環境變遷導論. 教育部環境保護小組: 1997.
16.Boden, T. A.; Marland, G.; Andres, R. J., Global, Regional, and National Fossil-Fuel CO2 Emissions. In Carbon Dioxide Information Analysis Center, O. R. N. L., U.S. Department of Energy, Oak Ridge, Tenn., Ed. U.S.A., 2010.
17.蔡詩珊, 淺談生質能. 綠基會通訊 2008, 12-15.
18.Biofuels. http://biofuel.org.uk/
19.ANNOUNCING NEW ENERGY FROM BIOMASS COURSE. http://berc.berkeley.edu/announcing-new-energy-from-biomass-course/
20.Jin, C.; Yao, M.; Liu, H.; Lee, C.-f. F.; Ji, J., Progress in the production and application of n-butanol as a biofuel. Renewable and Sustainable Energy Reviews 2011, 15, (8), 4080-4106.
21.Kujawska, A.; Kujawski, J.; Bryjak, M.; Kujawski, W., ABE fermentation products recovery methods—A review. Renewable and Sustainable Energy Reviews 2015, 48, 648-661.
22.Keis, S.; Shaheen, R.; Jones, D. T., Emended descriptions of Clostridium acetobutylicum and Clostridium beijerinckii, and descriptions of Clostridium saccharoperbutylacetonicum sp. nov. and Clostridium saccharobutylicum sp. nov. Int J Syst Evol Microbiol 2001, 51, (Pt 6), 2095-103.
23.Chen, Y.; Zhou, T.; Liu, D.; Li, A.; Xu, S.; Liu, Q.; Li, B.; Ying, H., Production of butanol from glucose and xylose with immobilized cells of Clostridium acetobutylicum. Biotechnology and Bioprocess Engineering 2013, 18, (2), 234-241.
24.He, Q.; Chen, H., Improved efficiency of butanol production by absorbed lignocellulose fermentation. J Biosci Bioeng 2013, 115, (3), 298-302.
25.Wu, Y. D.; Xue, C.; Chen, L. J.; Bai, F. W., Effect of zinc supplementation on acetone-butanol-ethanol fermentation by Clostridium acetobutylicum. J Biotechnol 2013, 165, (1), 18-21.
26.Qureshi, N.; Blaschek, H. P., Butanol production using Clostridium beijerinckii BA101 hyper-butanol producing mutant strain and recovery by pervaporation. Applied Biochemistry and Biotechnology 2000, 225-235.
27.Thaddeus C. Ezeji; Karcher, P. M.; Qureshi, N.; Blaschek, H. P., Improving performance of a gas stripping-based recovery system to remove butanol from Clostridium beijerinckii fermentation. Bioprocess and Biosystems Engineering 2005, 27, (3), 207-214.
28.Chen, C.-K.; Blaschek, H. P., Acetate enhances solvent production and prevents degeneration in Clostridium beijerinckii BA101. Applied Microbiology and Biotechnology 1999, 52, (2), 170-173.
29.Berk, Z., Chapter 13-Distillation. In: Berk Z, editor. Food process engineering and technology. San Diego: Academic Press 2009, 295-315.
30.Roffer, S.; Blanch, H. W.; Wilke, C. R., Extractive Fermentation of Acetone and Butanol: Process Design and Economic Evaluation. Biotechnology Progress 1987, 3, (3), 131-140.
31.Matsumura, M.; Kataoka, H.; M. Sueki, K. A., Energy saving effect of pervaporation using oleyl alcohol liquid membrane in butanol purification. 1988, 3, (2), 93-100.
32.Green, E. M., Fermentative production of butanol--the industrial perspective. Curr Opin Biotechnol 2011, 22, (3), 337-43.
33.Qureshi, N.; Ezeji, T. C., Butanol, ‘a superior biofuel’ production from agricultural residues (renewable biomass): recent progress in technology. Biofuels, Bioproducts and Biorefining 2008, 2, (4), 319-330.
34.Zhou, H.; Su, Y.; Chen, X.; Wan, Y., Separation of acetone, butanol and ethanol (ABE) from dilute aqueous solutions by silicalite-1/PDMS hybrid pervaporation membranes. Separation and Purification Technology 2011, 79, (3), 375-384.
35.王大銘, 滲透蒸發技術之發展. 國立臺灣大學「台大工程」學刊 2002, 84, 119-127.
36.Abdehagh, N.; Tezel, F. H.; Thibault, J., Adsorbent screening for biobutanol separation by adsorption: kinetics, isotherms and competitive effect of other compounds. Adsorption 2013, 19, (6), 1263-1272.
37.Lin, X.; Wu, J.; Jin, X.; Fan, J.; Li, R.; Wen, Q.; Qian, W.; Liu, D.; Chen, X.; Chen, Y.; Xie, J.; Bai, J.; Ying, H., Selective separation of biobutanol from acetone-butanol-ethanol fermentation broth by means of sorption methodology based on a novel macroporous resin. Biotechnol Prog 2012, 28, (4), 962-72.
38.Lin, X.; Wu, J.; Fan, J.; Qian, W.; Zhou, X.; Qian, C.; Jin, X.; Wang, L.; Bai, J.; Ying, H., Adsorption of butanol from aqueous solution onto a new type of macroporous adsorption resin: Studies of adsorption isotherms and kinetics simulation. Journal of Chemical Technology & Biotechnology 2012, 87, (7), 924-931.
39.Cousin Saint Remi, J.; Baron, G.; Denayer, J., Adsorptive separations for the recovery and purification of biobutanol. Adsorption 2012, 18, (5-6), 367-373.
40.Abdehagh, N.; Gurnani, P.; Tezel, F. H.; Thibault, J., Adsorptive separation and recovery of biobutanol from ABE model solutions. Adsorption 2015, 21, (3), 185-194.
41.王冠翔. 探討非傳統吸附材去除酒精中微量水分之研究. 中原大學, 2008.
42.近藤精一; 石川達雄; 安部郁夫, 吸附科學. 化學科工業出版社 2007.
43.張傑能. 發酵液中吸附分離純化正丁醇研究. 中原大學, 2014.
44.Faisal, A.; Zarebska, A.; Saremi, P.; Korelskiy, D.; Ohlin, L.; Rova, U.; Hedlund, J.; Grahn, M., MFI zeolite as adsorbent for selective recovery of hydrocarbons from ABE fermentation broths. Adsorption 2013, 20, (2-3), 465-470.
45.Lin, X.; Li, R.; Wen, Q.; Wu, J.; Fan, J.; Jin, X.; Qian, W.; Liu, D.; Chen, X.; Chen, Y.; Xie, J.; Bai, J.; Ying, H., Experimental and Modeling Studies on the Sorption Breakthrough
Behaviors of Butanol from Aqueous Solution in a Fixed-bed of KA-I
Resin. Biotechnology and Bioprocess Engineering 2013, 18, 223-233.
46.Flanigen, E. M.; Bennett, J. M.; Grose, R. W.; Cohen, J. P.; Patton, R. L.; Kirchner, R. M.; J.V.Smith, Silicalite, A new hydrophobic crystalline silica molecular-sieve. nature 1978, 271, 512-516.
47.Saravanan, V.; Waijers, D. A.; Ziari, M.; Noordermeer, M. A., Recovery of 1-butanol from aqueous solutions using zeolite ZSM-5 with a high Si/Al ratio; suitability of a column process for industrial applications. Biochemical Engineering Journal 2010, 49, (1), 33-39.
48.Oudshoorn, A.; van der Wielen, L. A. M.; Straathof, A. J. J., Desorption of butanol from zeolite material. Biochemical Engineering Journal 2012, 67, 167-172.
49.Remy, T.; Cousin Saint Remi, J.; Singh, R.; Webley, P. A.; Baron, G. V.; Denayer, J. F. M., Adsorption and Separation of C1−C8 Alcohols on SAPO-34. The Journal of Physical Chemistry C 2011, 115, (16), 8117-8125.
50.Cousin Saint Remi, J.; Baron, G. V.; Denayer, J. F. M., Nonuniform Chain-Length-Dependent Diffusion of Short 1-Alcohols in SAPO-34 in Liquid Phase. The Journal of Physical Chemistry C 2013, 117, (19), 9758-9765.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊