(34.201.11.222) 您好!臺灣時間:2021/02/25 13:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林子琀
研究生(外文):Zi-Han Lin
論文名稱:陳皮粗萃物保護乙醯胺基苯酚誘導肝損傷之潛力評估與Nrf2路徑/表觀遺傳調控機制之探討
論文名稱(外文):Protective effect of aged Citrus peel (Chenpi) against acetaminophen-induced liver injury through regulating Nrf2 pathway and epigenetic modifications
指導教授:蘇正元蘇正元引用關係
指導教授(外文):Zheng-Yuan Su
學位類別:碩士
校院名稱:中原大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:124
中文關鍵詞:乙醯胺基苯酚中藥食材陳皮表觀遺傳學肝臟Nrf2
外文關鍵詞:Acetaminophen (APAP)aged citrus peelChinese herbsepigeneticsliverNrf2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:170
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
肝臟為人體中主要執行解毒及代謝作用的重要器官,當肝功能損傷時會造成代謝障礙並影響到其他臟器的功能,嚴重則危及生命。乙醯胺基苯酚 (acetaminophen, APAP) 為國人常用解熱鎮痛藥物的主要成分,而近年來許多研究發現食用過量 APAP 易造成嚴重的肝腎損傷。本研究乃針對可能具護肝潛力之中藥食材陳皮 (Chenpi, CP) 進行肝臟保健功效評估與其機轉作用探討。首先以 HepG2-C8 細胞評估陳皮熱水粗萃物 (water extract, WE)、乙醇粗萃物 (ethanolic extract, EE) 及熱水萃取後殘渣乙醇粗萃物 (water extraction residue ethanolic extract, WREE) 誘導 ARE-luciferase 活性之能力,其中 CP-WREE (100 μg/mL) 最能有效提升 Nrf2路徑活性。HPLC 結果證實 CP-WREE 富含橘皮素 (tangeretin) 和川陳皮素 (nobiletin),分別為13.4和45 mg/100 g dry extract。CP-WREE 亦對 APAP 誘導小鼠 AML-12 正常肝細胞損傷具有顯著性的保護作用,能降低 APAP 誘導脂質過氧化情形。進一步發現 CP-WREE顯著增加 AML-12 細胞內 Nrf2 與 Nrf2 下游抗氧化/解毒酵素 (HO-1、NQO1 及 UGT1A) mRNA 和蛋白質表現,亦改變表觀遺傳學修飾酵素 (包括 Dnmts、HDACs 及 KDMs) 之蛋白質表現。上述結果顯示,CP-WREE 對 APAP 誘導 AML-12 細胞損傷的保護作用可能透過表觀遺傳調控 Nrf2 /抗氧化路徑,故本研究結果可供日後保健食品開發和生物醫學研究之重要參考。
The liver is a critical organ responsible for the detoxification and metabolism in the human body. Acetaminophen (APAP) is a widely used analgesic and antipyretic drug, but it has been demonstrated that excessive consumption of APAP can cause severe liver and kidney damage. Aged citrus peel (Chenpi, CP) is a Chinese herb with hepatoprotective potential to be usually used as foods in Taiwan. Three extracts of CP were prepared in this study, including water extract (CP-WE), ethanolic extract (CP-EE), and water extraction residue ethanolic extract (CP-WREE). Among these extracts, we found CP-WREE (100 μg/mL) effectively enhanced the Nrf2 pathway in HepG2-C8 cells stably transfected with ARE-luciferase construct. HPLC results showed CP-WREE contains tangeritin and nobiletin (13.4 and 45 mg/100 g dry extract, respectively). CP-WREE (50 μg/mL) also significantly protected mouse AML-12 cells from APAP-induced injury. Furthermore, CP-WREE can increase mRNA and protein levels of Nrf2 and Nrf2 downstream enzymes (HO-1, NQO1, and UGT1A) as well as the protein expressions of some epigenetic modifying enzymes (Dnmts, HDACs, and KDMs). Therefore, these results would open new avenues of approaches for the prevention of liver diseases in human.
中文摘要 I
Abstract II
謝 誌 III
目 錄 IV
表 次 IX
附錄表 IX
圖 次 X
附錄圖 XII
壹、 前言 1
貳、 文獻回顧 2
第一節、 肝臟 (liver) 與肝臟疾病 (liver disease) 2
第二節、 肝臟的解毒及代謝系統 3
第三節、 健康食品之護肝保健功效評估方法 5
一. 針對四氯化碳誘導化學性肝損傷 5
二. 針對常用止痛藥物乙醯胺基苯酚誘導化學性肝損傷 5
三. 針對應用硫代乙醯胺誘導肝纖維化之慢性肝損傷 6
四. 針對應用酒精液態飼料誘導酒精性脂肪肝 6
五. 針對高脂飼料誘導非酒精性脂肪肝 6
第四節、 乙醯胺基苯酚與肝臟代謝機制 7
一. 乙醯胺基苯酚介紹與應用 7
二. 乙醯胺基苯酚代謝機制與肝毒性影響 7
第五節、 自由基與氧化壓力對應Nrf2之護肝作用 9
一. 自由基與活性氧分子之定義 9
二. 自由基來源與氧化壓力生成 9
三. 氧化壓力與發炎反應 10
四. 抗氧化酵素系統作用機制 10
五. Nuclear factor erythroid-2-related factor-2 抗氧化機制 11
六. 天然植物化學物質活化 Nrf2路徑 12
第六節、 表觀遺傳學 (Epigenetics) 13
一. DNA 甲基化 (DNA methylation) 14
二. 組蛋白修飾 (histone modification) 14
第七節、 具護肝潛力之中藥食材 15
一. 陳皮 (citrus peel, CP) 15
二. 決明子 (cassia seed, CS) 17
三. 荷葉 (lotus leaf, LL) 18
四. 牛蒡 (burdock root, BR) 18
參、 研究目的與實驗架構 20
第一節、 研究目的 20
第二節、 實驗設計 20
第三節、 實驗架構 21
肆、 材料與方法 22
第一節、 中藥食材與多甲氧基黃酮類化合物 22
第二節、 實驗細胞株 22
第三節、 實驗藥品與耗材 22
一. 試藥與溶劑 22
二. 細胞培養藥品 23
三. 試劑分析套組 24
四. 抗體 25
五. 即時定量聚合酶連鎖反應引子 26
六. 特異性甲基化聚合酶連鎖反應 27
七. 其他 27
第四節、 實驗用儀器 28
第五節、 實驗方法 31
一. 不同溶劑中藥食材粗萃物之製備 31
二. 中藥食材粗萃物提升細胞內抗氧化能力活性之測試 32
三. 探討中藥食材粗萃物對小鼠AML12正常肝細胞之影響 35
四. 中藥食材粗萃物對APAP誘導AML-12正常肝細胞損傷之影響 45
五. 表觀遺傳學調控機制探討 48
六. 陳皮粗萃物中多甲氧基黃酮類之含量分析 50
七. 統計分析 51
伍、 結果 52
第一節、 具護肝潛力之中藥食材萃取 52
第二節、 以誘導活化 Nrf2-ARE 路徑之篩選平台 (HepG2-C8細胞株) 評估具提升細胞內抗氧化能力之中藥食材粗萃物 52
一. 中藥食材粗萃物對 HepG2-C8細胞生長之影響 52
二. 中藥食材粗萃物活Nrf2-AREs路徑之影響 53
第三節、 中藥食材粗萃物對 APAP 誘導小鼠 AML-12正常肝細胞損傷之保護作用 54
一. 評估針對 AML-12細胞生長低毒性濃度的中藥食材粗萃物對 APAP 誘導 AML-12細胞損傷之保護效果 54
二. CP-WREE 對 AML-12細胞內 Nrf2及其下游抗氧化與解毒酵素基因與蛋白質表現之影響 55
三. CP-WREE 對 APAP 誘導 AML-12細胞內脂質過氧化及抗氧化與解毒代謝系統之影響 57
第四節、 三種萃取方式之陳皮粗萃物中橘皮素 (tangeretin) 和川陳皮素 (nobiletin) 含量之分析 58
陸、 討論 59
第一節、 中藥食材粗萃物誘導 Nrf2-ARE 途徑活性之影響 59
第二節、 CP-WREE 對 AML-12細胞內 Nrf2/抗氧化路徑之影響 59
第三節、 CP-WREE 對 APAP 誘導 AML-12肝細胞損傷之影響 60
第四節、 CP-WREE中可能多甲氧基黃酮類之分析 60
柒、 結論 61
捌、 附錄 82
玖、 參考文獻 97

表 次
表一、 不同中藥食材粗萃物之回收率 62
表二、 陳皮水萃後殘渣乙醇粗萃物 (CP-WREE) 對小鼠 AML-12肝細胞內穀胱甘肽氧化酶 (GPx)、穀胱甘肽還原酶 (GRd) 及穀胱甘肽硫轉移酶 (GST) 活性之影響 63
表三、 陳皮水萃後殘渣乙醇粗萃物 (CP-WREE) 對 APAP 誘導小鼠 AML-12肝細胞內脂質過氧化 (TBARS 生成) 與穀胱甘肽氧化酶 (GPx)、穀胱甘肽還原酶 (GRd) 及穀胱甘肽硫轉移酶 (GST) 活性之影響 64
表四、 不同陳皮粗萃物中橘皮素 (tangeritin) 、川陳皮素 (nobiletin) 及 4''-demethyltangeretin 含量 65
附錄表
附表一、 SDS-PAGE 膠體製備 82
X
圖 次 圖一、 陳皮水萃物 (CP-WE) (A) 與陳皮乙醇粗萃物 (CP-EE) 和水萃後殘渣乙醇粗萃物 (CP-WREE) (B) 對人類 HepG2-C8細胞生存率之影響。 66
圖二、 決明子水萃物 (CS-WE) (A) 與決明子乙醇粗萃物 (CS-EE) 和決明子水萃後殘渣乙醇粗萃物 (CS-WREE) (B) 對人類 HepG2-C8細胞生存率之影響。 67
圖三、 荷葉水萃物 (LL-WE) (A) 與荷葉乙醇粗萃物 (LL-EE) 和荷葉水萃後殘渣乙醇粗萃物 (LL-WREE) (B) 對人類 HepG2-C8細胞生存率之影響。 68
圖四、 牛蒡水萃物 (BR-WE) (A) 與牛蒡乙醇粗萃物 (BR-EE) 和牛蒡水萃後殘渣乙醇粗萃物 (BR-WREE) (B) 對人類 HepG2-C8細胞生存率之影響。 69
圖五、 不同濃度之中藥食材粗萃物誘導 HepG2-C8細胞內 ARE-luciferase 活性之影響。 70 圖六、 陳皮水萃後殘渣乙醇萃出物 (CP-WREE) 對小鼠 AML-12正常肝細胞生存率之影響 (A) 與 APAP 誘導小鼠 AML-12肝細胞損傷之保護作用 (B)。 71 圖七、 荷葉水萃物 (LL-WE) 對小鼠 AML-12正常肝細胞生存率之影響 (A) 與 APAP 誘導小鼠 AML-12肝細胞損傷之保護作用 (B)。 72 圖八、 荷葉乙醇粗萃物(LL-EE)對小鼠AML-12正常肝細胞生存率之影響 (A)與APAP誘導小鼠AML-12肝細胞損傷之保護作用(B)。 73 圖九、 荷葉水萃後殘渣乙醇粗萃物 (LL-WREE) 對小鼠 AML-12正常肝細胞生存率之影響 (A) 與 APAP 誘導小鼠 AML-12肝細胞損傷之保
XI
護作用 (B)。 74 圖十、 牛蒡水萃後殘渣乙醇粗萃物 (BR-WREE) 對小鼠 AML-12正常肝細胞生存率之影響 (A) 與 APAP 誘導小鼠 AML-12肝細胞損傷之保護作用 (B)。 75 圖十一、 陳皮水萃後殘渣乙醇粗萃物 (CP-WREE) 對小鼠 AML-12正常肝細胞內 Nrf2與 Nrf2下游抗氧化與解毒酵素 (HO-1、NQO1和 UGT1A1) mRNA 表現量影響。 76 圖十二、 陳皮水萃後殘渣乙醇粗萃物 (CP-WREE) 對小鼠 AML-12正常肝細胞內 Nrf2與 Nrf2下游抗氧化與解毒酵素 (HO-1、NQO1及 UGT1A1) 蛋白質表現量之影響。 77 圖十三、 陳皮水萃後殘渣乙醇粗萃物(CP-WREE)對小鼠AML-12正常肝細胞內DNA甲基化修飾酵素Dnmts蛋白質表現量之影響。 78 圖十四、 陳皮水萃後殘渣乙醇粗萃物(CP-WREE)對小鼠AML-12正常肝細胞內組蛋白乙醯化和甲基化修飾酵素蛋白質表現量之影響。 79 圖十五、 陳皮水萃後殘渣乙醇粗萃物 (CP-WREE) 對 APAP 誘導小鼠AML-12正常肝細胞損傷型態之影響。 80
圖十六、 CP-WREE經由活化Nrf2路徑和表觀遺傳學調控機制來保護乙醯胺基苯酚所誘導之肝損傷。 81
XII
附錄圖
附圖一、 人體肝臟位置 (Principles of Human Physiology Fifth Edition) 82
附圖二、 肝纖維化 83
附圖三、 肝臟第一/第二階段解毒代謝系統 (Clinical Nutrition: A Functional Approach Second Edition) 84
附圖四、 乙醯胺基苯酚之結構式 84
附圖五、 APAP在肝臟中的解毒代謝機制 85
附圖六、 APAP 產生MPT作用所誘導肝損傷之機制 85
附圖七、 細胞清除氧化劑之機制 86
附圖八、 Nrf2-AREs 抗氧化途徑 87
附圖九、 人參皂甙 Rb1活化Nrf2-AREs路徑 87
附圖十、 表觀遺傳學調控基因表現之機制 88
附圖十一、 DNA甲基化與影響基因表現 89
附圖十二、 組蛋白修飾作用 (Molecular Biology of the Cell Fifth Edition) 90
附圖十三、 組蛋白乙醯化修飾影響基因表現 91
附圖十四、 類黃酮衍生物之結 92
附圖十五、 HepG2-C8 細胞存活率測定之實驗流程圖 93
附圖十六、 ARE-Nrf2活性測定之實驗流程圖 93
附圖十七、 AML-12細胞存活率測定之實驗流程圖 94
附圖十八、 細胞內 mRNA、蛋白質與抗氧酵素系統分析之實驗流程圖 94
附圖十九、 中藥食材粗萃物與APAP共同處理細胞培養之實驗流程圖 95
附圖二十、 陳皮粗萃物 [(A) CP-WE, (B) CP-EE, (C) CP-WREE] 中多甲氧基黃酮類橘皮素(Tangeritin)、川陳皮素(Nobiletin)及4''-demethyltangeretin 之 HPLC 圖譜。 96
王一光。2006。陳皮萃取物抑制內毒素對巨噬細胞與微神經膠細胞誘導發炎蛋白作用探討. 私立中原大學醫學工程研究所碩士論文。
田羽秀。2012。香茹草對乙醯胺基苯酚誘發小鼠肝損傷之抗氧化及護肝作用. 私立輔仁大學營養科學研究所碩士論文。
朱淯維。2003。荷葉乙醇萃取物抗氧化性之探討. 國立台灣大學食品科學研究所碩士論文。
李季螢。2004。荷葉乙醇萃取物對動脈粥裝硬化早期發展之影響. 國立台灣大學食品科學研究所碩士論文。
林語珊。2011。柑橘屬果皮中多甲氧基黃酮之測定及其抑制酪胺酸酶活性之研究. 國立嘉義大學食品科學研究所碩士論文。
吳姿儀。2000。台灣產決明子〈Cassia Torae Semen〉之生藥學研究. 私立中國醫藥大學中國醫藥學院研究所碩士論文。
涂予文。2002。薏仁、山楂、荷葉與陳皮水萃物對倉鼠脂質代謝的影響. 國立台灣大學食品科學研究所碩士論文。
孫雅祺。2011。川陳皮素合併 celecoxib 抑制腸癌細胞生長之機制探討. 國立台灣大學生物資源暨農學院食品科技研究所碩士論文。
陳霈萱。2012。柑橘屬果皮中多甲氧基黃酮及去單甲基多甲氧基黃酮抑制脂肪新生作用. 國立嘉義大學生命科學院食品科學研究所碩士論文。
楊琇涵。2011。加熱對牛蒡根或學成分的影響之研究. 私立嘉南藥理科技大學保健營養研究所碩士論文。
蔡豐吉。2009。牛蒡發酵液對糖尿病大鼠之影響及安全性評估研究. 私立大仁科技大學藥學系製藥科技研究所碩士論文。
賴慶紓。2010。多甲氧基類黃酮之癌症化學預防功效:抑制發炎反應與腫瘤形成. 國立成功大學醫學院環境醫學研究所博士論文。
顏國欽。2003。杜仲葉(Eucommiaulmoides Oliv.leaves)與決明子(Cassia tora L.)水萃取物對四氯化碳誘導大鼠肝損傷之護肝及抗氧化功效評估. 國立中興大學食品科學研究所碩士論文。
Alfadda, A.A., Sallam, R.M., 2012. Reactive oxygen species in health and disease. J Biomed Biotechnol 2012, 936486.
An, Y.W., Jhang, K.A., Woo, S.Y., Kang, J.L., Chong, Y.H., 2016. Sulforaphane exerts its anti-inflammatory effect against amyloid-beta peptide via STAT-1 dephosphorylation and activation of Nrf2/HO-1 cascade in human THP-1 macrophages. Neurobiol Aging 38, 1-10.
Bast, A., Haenen, G.R., Doelman, C.J., 1991. Oxidants and antioxidants: state of the art. Am J Med 91, 2S-13S.
Bellomo, G., Mirabelli, F., DiMonte, D., Richelmi, P., Thor, H., Orrenius, C., Orrenius, S., 1987. Formation and reduction of glutathione-protein mixed disulfides during oxidative stress. A study with isolated hepatocytes and menadione (2-methyl-1,4-naphthoquinone). Biochem Pharmacol 36, 1313-1320.
Bird, A., 2002. DNA methylation patterns and epigenetic memory. Genes Dev 16, 6-21.
Bishayee, A., 2014. The role of inflammation and liver cancer. Adv Exp Med Biol 816, 401-435.
Block, T.M., Mehta, A.S., Fimmel, C.J., Jordan, R., 2003. Molecular viral oncology of hepatocellular carcinoma. Oncogene 22, 5093-5107.
Blough, E.R., Wu, M., 2011. Acetaminophen: beyond pain and Fever-relieving. Front Pharmacol 2, 72.
Bogdanovic, O., Veenstra, G.J., 2009. DNA methylation and methyl-CpG binding proteins: developmental requirements and function. Chromosoma 118, 549-565.
Bosch, F.X., Ribes, J., Diaz, M., Cleries, R., 2004. Primary liver cancer: worldwide incidence and trends. Gastroenterology 127, S5-S16.
Chaiprasongsuk, A., Lohakul, J., Soontrapa, K., Sampattavanich, S., Akarasereenont, P., Panich, U., 2017. Activation of Nrf2 Reduces UVA-Mediated MMP-1 Upregulation via MAPK/AP-1 Signaling Cascades: The Photoprotective Effects of Sulforaphane and Hispidulin. J Pharmacol Exp Ther 360, 388-398.
Chandok, N., Watt, K.D., 2010. Pain management in the cirrhotic patient: the clinical challenge. Mayo Clin Proc 85, 451-458.
Cheng, X., Blumenthal, R.M., 2008. Mammalian DNA methyltransferases: a structural perspective. Structure 16, 341-350.
Cho, H.W., Jung, S.Y., Lee, G.H., Cho, J.H., Choi, I.Y., 2015. Neuroprotective effect of Citrus unshiu immature peel and nobiletin inhibiting hydrogen peroxide-induced oxidative stress in HT22 murine hippocampal neuronal cells. Pharmacogn Mag 11, S284-289.
Cho, I.J., Lee, C., Ha, T.Y., 2007. Hypolipidemic effect of soluble fiber isolated from seeds of Cassia tora Linn. in rats fed a high-cholesterol diet. J Agric Food Chem 55, 1592-1596.
Choi, B.K., Kim, T.W., Lee, D.R., Jung, W.H., Lim, J.H., Jung, J.Y., Yang, S.H., Suh, J.W., 2015. A polymethoxy flavonoids-rich Citrus aurantium extract ameliorates ethanol-induced liver injury through modulation of AMPK and Nrf2-related signals in a binge drinking mouse model. Phytother Res 29, 1577-1584.
Choi, J., Ou, J.H., 2006. Mechanisms of liver injury. III. Oxidative stress in the pathogenesis of hepatitis C virus. Am J Physiol Gastrointest Liver Physiol 290, G847-851.
Chowdhury, M.R., Sagor, M.A., Tabassum, N., Potol, M.A., Hossain, H., Alam, M.A., 2015. Supplementation of Citrus maxima Peel Powder Prevented Oxidative Stress, Fibrosis, and Hepatic Damage in Carbon Tetrachloride (CCl4) Treated Rats. Evid Based Complement Alternat Med 2015, 598179.
Christ, B., Bruckner, S., 2012. Rodent animal models for surrogate analysis of cell therapy in acute liver failure. Front Physiol 3, 78.
Cichoz-Lach, H., Michalak, A., 2014. Oxidative stress as a crucial factor in liver diseases. World J Gastroenterol 20, 8082-8091.
Darst, R.P., Pardo, C.E., Ai, L., Brown, K.D., Kladde, M.P., 2010. Bisulfite sequencing of DNA. Curr Protoc Mol Biol Chapter 7, Unit 7 9 1-17.
de Andrade, K.Q., Moura, F.A., dos Santos, J.M., de Araujo, O.R., de Farias Santos, J.C., Goulart, M.O., 2015. Oxidative Stress and Inflammation in Hepatic Diseases: Therapeutic Possibilities of N-Acetylcysteine. Int J Mol Sci 16, 30269-30308.
De Souza Predes, F., Da Silva Diamante, M.A., Foglio, M.A., Camargo Cde, A., Aoyama, H., Miranda, S.C., Cruz, B., Gomes Marcondes, M.C., Dolder, H., 2014. Hepatoprotective effect of Arctium lappa root extract on cadmium toxicity in adult Wistar rats. Biol Trace Elem Res 160, 250-257.
Den Braver-Sewradj, S.P., den Braver, M.W., Vermeulen, N.P., Commandeur, J.N., Richert, L., Vos, J.C., 2016. Inter-donor variability of phase I/phase II metabolism of three reference drugs in cryopreserved primary human hepatocytes in suspension and monolayer. Toxicol In Vitro 33, 71-79.
Ernawita, Wahyuono, R.A., Hesse, J., Hipler, U.C., Elsner, P., Bohm, V., 2017. In Vitro Lipophilic Antioxidant Capacity, Antidiabetic and Antibacterial Activity of Citrus Fruits Extracts from Aceh, Indonesia. Antioxidants (Basel) 6.
Fraga, C.G., Leibovitz, B.E., Tappel, A.L., 1988. Lipid peroxidation measured as thiobarbituric acid-reactive substances in tissue slices: characterization and comparison with homogenates and microsomes. Free Radic Biol Med 4, 155-161.
G, W.W., L, M.B., D, E.W., R, H.D., Ho, E., 2013. Phytochemicals from cruciferous vegetables, epigenetics, and prostate cancer prevention. AAPS J 15, 951-961.
Gawrieh, S., Opara, E.C., Koch, T.R., 2004. Oxidative stress in nonalcoholic fatty liver disease: pathogenesis and antioxidant therapies. J Investig Med 52, 506-514.
Giannini, E.G., Testa, R., Savarino, V., 2005. Liver enzyme alteration: a guide for clinicians. CMAJ 172, 367-379.
Gill, S.S., Tuteja, N., 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48, 909-930.
Gonzalez-Vallinas, M., Gonzalez-Castejon, M., Rodriguez-Casado, A., Ramirez de Molina, A., 2013. Dietary phytochemicals in cancer prevention and therapy: a complementary approach with promising perspectives. Nutr Rev 71, 585-599.
Gowda, S., Desai, P.B., Hull, V.V., Math, A.A., Vernekar, S.N., Kulkarni, S.S., 2009. A review on laboratory liver function tests. Pan Afr Med J 3, 17.
Grant, D.M., 1991. Detoxification pathways in the liver. J Inherit Metab Dis 14, 421-430.
Gualdani, R., Cavalluzzi, M.M., Lentini, G., Habtemariam, S., 2016. The Chemistry and Pharmacology of Citrus Limonoids. Molecules 21.
Guo, Y., Su, Z.Y., Kong, A.T., 2015. Current Perspectives on Epigenetic Modifications by Dietary Chemopreventive and Herbal Phytochemicals. Curr Pharmacol Rep 1, 245-257.
Gutteridge, J.M., 1994. Biological origin of free radicals, and mechanisms of antioxidant protection. Chem Biol Interact 91, 133-140.
Habig, W.H., Pabst, M.J., Jakoby, W.B., 1974. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249, 7130-7139.
Halliwell, B., 1994. Free radicals and antioxidants: a personal view. Nutr Rev 52, 253-265.
Halliwell, B., 1995. Antioxidant characterization. Methodology and mechanism. Biochem Pharmacol 49, 1341-1348.
Halliwell, B., Cross, C.E., 1994. Oxygen-derived species: their relation to human disease and environmental stress. Environ Health Perspect 102 Suppl 10, 5-12.
He, Z., Li, X., Chen, H., He, K., Liu, Y., Gong, J., Gong, J., 2016. Nobiletin attenuates lipopolysaccharide/Dgalactosamineinduced liver injury in mice by activating the Nrf2 antioxidant pathway and subsequently inhibiting NFkappaBmediated cytokine production. Mol Med Rep 14, 5595-5600.
Hinson, J.A., Roberts, D.W., James, L.P., 2010. Mechanisms of acetaminophen-induced liver necrosis. Handb Exp Pharmacol, 369-405.
Hodges, R.E., Minich, D.M., 2015. Modulation of Metabolic Detoxification Pathways Using Foods and Food-Derived Components: A Scientific Review with Clinical Application. J Nutr Metab 2015, 760689.
Hong, B., Su, Z., Zhang, C., Yang, Y., Guo, Y., Li, W., Kong, A.N., 2016. Reserpine Inhibit the JB6 P+ Cell Transformation Through Epigenetic Reactivation of Nrf2-Mediated Anti-oxidative Stress Pathway. AAPS J 18, 659-669.
Huang, Y., Li, W., Su, Z.Y., Kong, A.N., 2015. The complexity of the Nrf2 pathway: beyond the antioxidant response. J Nutr Biochem 26, 1401-1413.
Isayama, F., Moore, S., Hines, I.N., Wheeler, M.D., 2016. Fas Regulates Macrophage Polarization and Fibrogenic Phenotype in a Model of Chronic Ethanol-Induced Hepatocellular Injury. Am J Pathol 186, 1524-1536.
Ishii, Y., Itoh, K., Morishima, Y., Kimura, T., Kiwamoto, T., Iizuka, T., Hegab, A.E., Hosoya, T., Nomura, A., Sakamoto, T., Yamamoto, M., Sekizawa, K., 2005. Transcription factor Nrf2 plays a pivotal role in protection against elastase-induced pulmonary inflammation and emphysema. J Immunol 175, 6968-6975.
Jaeschke, H., 2000. Reactive oxygen and mechanisms of inflammatory liver injury. J Gastroenterol Hepatol 15, 718-724.
Jaeschke, H., 2015. Acetaminophen: Dose-Dependent Drug Hepatotoxicity and Acute Liver Failure in Patients. Dig Dis 33, 464-471.
Jaeschke, H., Bajt, M.L., 2006. Intracellular signaling mechanisms of acetaminophen-induced liver cell death. Toxicol Sci 89, 31-41.
Jaeschke, H., McGill, M.R., Ramachandran, A., 2012. Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Drug Metab Rev 44, 88-106.
James, L.P., Mayeux, P.R., Hinson, J.A., 2003. Acetaminophen-induced hepatotoxicity. Drug Metab Dispos 31, 1499-1506.
Jaramillo, M.C., Zhang, D.D., 2013. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev 27, 2179-2191.
Je, J.Y., Lee, D.B., 2015. Nelumbo nucifera leaves protect hydrogen peroxide-induced hepatic damage via antioxidant enzymes and HO-1/Nrf2 activation. Food Funct 6, 1911-1918.
Jin, B., Li, Y., Robertson, K.D., 2011. DNA methylation: superior or subordinate in the epigenetic hierarchy? Genes Cancer 2, 607-617.
Kaplowitz, N., 1981. The importance and regulation of hepatic glutathione. Yale J Biol Med 54, 497-502.
Kensler, T.W., Egner, P.A., Agyeman, A.S., Visvanathan, K., Groopman, J.D., Chen, J.G., Chen, T.Y., Fahey, J.W., Talalay, P., 2013. Keap1-nrf2 signaling: a target for cancer prevention by sulforaphane. Top Curr Chem 329, 163-177.
Khorasanizadeh, S., 2004. The nucleosome: from genomic organization to genomic regulation. Cell 116, 259-272.
Kim, H., Ramirez, C.N., Su, Z.Y., Kong, A.N., 2016. Epigenetic modifications of triterpenoid ursolic acid in activating Nrf2 and blocking cellular transformation of mouse epidermal cells. J Nutr Biochem 33, 54-62.
Kim, S.W., Hur, W., Li, T.Z., Lee, Y.K., Choi, J.E., Hong, S.W., Lyoo, K.S., You, C.R., Jung, E.S., Jung, C.K., Park, T., Um, S.J., Yoon, S.K., 2014. Oleuropein prevents the progression of steatohepatitis to hepatic fibrosis induced by a high-fat diet in mice. Exp Mol Med 46, e92.
Korzus, E., 2010. Manipulating the brain with epigenetics. Nat Neurosci 13, 405-406.
Kudoh, K., Uchinami, H., Yoshioka, M., Seki, E., Yamamoto, Y., 2014. Nrf2 activation protects the liver from ischemia/reperfusion injury in mice. Ann Surg 260, 118-127.
Kulis, M., Esteller, M., 2010. DNA methylation and cancer. Adv Genet 70, 27-56.
Lakshmi, A., Subramanian, S.P., 2014. Tangeretin ameliorates oxidative stress in the renal tissues of rats with experimental breast cancer induced by 7,12-dimethylbenz[a]anthracene. Toxicol Lett 229, 333-348.
Lawrence, R.A., Burk, R.F., 1976. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 71, 952-958.
Lee, J.H., Khor, T.O., Shu, L., Su, Z.Y., Fuentes, F., Kong, A.N., 2013. Dietary phytochemicals and cancer prevention: Nrf2 signaling, epigenetics, and cell death mechanisms in blocking cancer initiation and progression. Pharmacol Ther 137, 153-171.
Lee, J.H., Lee, K.R., Su, Z.Y., Boyanapalli, S.S., Barman, D.N., Huang, M.T., Chen, L., Magesh, S., Hu, L., Kong, A.N., 2014. In vitro and in vivo anti-inflammatory effects of a novel 4,6-bis ((E)-4-hydroxy-3-methoxystyryl)-1-phenethylpyrimidine-2(1H)-thione. Chem Res Toxicol 27, 34-41.
Li, S., Tan, H.Y., Wang, N., Zhang, Z.J., Lao, L., Wong, C.W., Feng, Y., 2015. The Role of Oxidative Stress and Antioxidants in Liver Diseases. Int J Mol Sci 16, 26087-26124.
Li, W., Pung, D., Su, Z.Y., Guo, Y., Zhang, C., Yang, A.Y., Zheng, X., Du, Z.Y., Zhang, K., Kong, A.N., 2016. Epigenetics Reactivation of Nrf2 in Prostate TRAMP C1 Cells by Curcumin Analogue FN1. Chem Res Toxicol 29, 694-703.
Li, Y., Tollefsbol, T.O., 2011. DNA methylation detection: bisulfite genomic sequencing analysis. Methods Mol Biol 791, 11-21.
Liang, L., Gao, C., Luo, M., Wang, W., Zhao, C., Zu, Y., Efferth, T., Fu, Y., 2013. Dihydroquercetin (DHQ) induced HO-1 and NQO1 expression against oxidative stress through the Nrf2-dependent antioxidant pathway. J Agric Food Chem 61, 2755-2761.
Liedtke, C., Luedde, T., Sauerbruch, T., Scholten, D., Streetz, K., Tacke, F., Tolba, R., Trautwein, C., Trebicka, J., Weiskirchen, R., 2013. Experimental liver fibrosis research: update on animal models, legal issues and translational aspects. Fibrogenesis Tissue Repair 6, 19.
Lim, S.W., Lee, D.R., Choi, B.K., Kim, H.S., Yang, S.H., Suh, J.W., Kim, K.S., 2016. Protective effects of a polymethoxy flavonoids-rich Citrus aurantium peel extract on liver fibrosis induced by bile duct ligation in mice. Asian Pac J Trop Med 9, 1158-1164.
Lin, C.C., Lu, J.M., Yang, J.J., Chuang, S.C., Ujiie, T., 1996. Anti-inflammatory and radical scavenge effects of Arctium lappa. Am J Chin Med 24, 127-137.
Lin, S.C., Chung, T.C., Lin, C.C., Ueng, T.H., Lin, Y.H., Lin, S.Y., Wang, L.Y., 2000. Hepatoprotective effects of Arctium lappa on carbon tetrachloride- and acetaminophen-induced liver damage. Am J Chin Med 28, 163-173.
Liu, C.L., Chiu, Y.T., Hu, M.L., 2011. Fucoxanthin enhances HO-1 and NQO1 expression in murine hepatic BNL CL.2 cells through activation of the Nrf2/ARE system partially by its pro-oxidant activity. J Agric Food Chem 59, 11344-11351.
Liu, W., Wang, J., Zhang, Z., Xu, J., Xie, Z., Slavin, M., Gao, X., 2014. In vitro and in vivo antioxidant activity of a fructan from the roots of Arctium lappa L. Int J Biol Macromol 65, 446-453.
Ma, Q., 2013. Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 53, 401-426.
Mann, D.A., 2014. Epigenetics in liver disease. Hepatology 60, 1418-1425.
Michaut, A., Le Guillou, D., Moreau, C., Bucher, S., McGill, M.R., Martinais, S., Gicquel, T., Morel, I., Robin, M.A., Jaeschke, H., Fromenty, B., 2016. A cellular model to study drug-induced liver injury in nonalcoholic fatty liver disease: Application to acetaminophen. Toxicol Appl Pharmacol 292, 40-55.
Mishin, V., Heck, D.E., Laskin, D.L., Laskin, J.D., 2014. Human recombinant cytochrome P450 enzymes display distinct hydrogen peroxide generating activities during substrate independent NADPH oxidase reactions. Toxicol Sci 141, 344-352.
Moore, J.K., MacKinnon, A.C., Man, T.Y., Manning, J.R., Forbes, S.J., Simpson, K.J., 2017. Patients with the worst outcomes after paracetamol (acetaminophen)-induced liver failure have an early monocytopenia. Aliment Pharmacol Ther 45, 443-454.
Murakami, A., Nakamura, Y., Torikai, K., Tanaka, T., Koshiba, T., Koshimizu, K., Kuwahara, S., Takahashi, Y., Ogawa, K., Yano, M., Tokuda, H., Nishino, H., Mimaki, Y., Sashida, Y., Kitanaka, S., Ohigashi, H., 2000. Inhibitory effect of citrus nobiletin on phorbol ester-induced skin inflammation, oxidative stress, and tumor promotion in mice. Cancer Res 60, 5059-5066.
Nanji, A.A., Jokelainen, K., Fotouhinia, M., Rahemtulla, A., Thomas, P., Tipoe, G.L., Su, G.L., Dannenberg, A.J., 2001. Increased severity of alcoholic liver injury in female rats: role of oxidative stress, endotoxin, and chemokines. Am J Physiol Gastrointest Liver Physiol 281, G1348-1356.
Ni, N., Liu, Q., Ren, H., Wu, D., Luo, C., Li, P., Wan, J.B., Su, H., 2014. Ginsenoside Rb1 protects rat neural progenitor cells against oxidative injury. Molecules 19, 3012-3024.
Noh, J.R., Kim, Y.H., Hwang, J.H., Choi, D.H., Kim, K.S., Oh, W.K., Lee, C.H., 2015. Sulforaphane protects against acetaminophen-induced hepatotoxicity. Food Chem Toxicol 80, 193-200.
Pan, H., Fu, X., Huang, W., 2011. Molecular mechanism of liver cancer. Anticancer Agents Med Chem 11, 493-499.
Pandey, K.B., Rizvi, S.I., 2009. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2, 270-278.
Pang, C., Zheng, Z., Shi, L., Sheng, Y., Wei, H., Wang, Z., Ji, L., 2016. Caffeic acid prevents acetaminophen-induced liver injury by activating the Keap1-Nrf2 antioxidative defense system. Free Radic Biol Med 91, 236-246.
Pantsulaia, I., Iobadze, M., Pantsulaia, N., Chikovani, T., 2014. The effect of citrus peel extracts on cytokines levels and T regulatory cells in acute liver injury. Biomed Res Int 2014, 127879.
Periyasamy, K., Baskaran, K., Ilakkia, A., Vanitha, K., Selvaraj, S., Sakthisekaran, D., 2015. Antitumor efficacy of tangeretin by targeting the oxidative stress mediated on 7,12-dimethylbenz(a) anthracene-induced proliferative breast cancer in Sprague-Dawley rats. Cancer Chemother Pharmacol 75, 263-272.
Predes, F.S., Ruiz, A.L., Carvalho, J.E., Foglio, M.A., Dolder, H., 2011. Antioxidative and in vitro antiproliferative activity of Arctium lappa root extracts. BMC Complement Altern Med 11, 25.
Radosavljevic, T., Mladenovic, D., Vucevic, D., 2009. [The role of oxidative stress in alcoholic liver injury]. Med Pregl 62, 547-553.
Reed, D.J., Babson, J.R., Beatty, P.W., Brodie, A.E., Ellis, W.W., Potter, D.W., 1980. High-performance liquid chromatography analysis of nanomole levels of glutathione, glutathione disulfide, and related thiols and disulfides. Anal Biochem 106, 55-62.
Reuland, D.J., Khademi, S., Castle, C.J., Irwin, D.C., McCord, J.M., Miller, B.F., Hamilton, K.L., 2013. Upregulation of phase II enzymes through phytochemical activation of Nrf2 protects cardiomyocytes against oxidant stress. Free Radic Biol Med 56, 102-111.
Satapati, S., Kucejova, B., Duarte, J.A., Fletcher, J.A., Reynolds, L., Sunny, N.E., He, T., Nair, L.A., Livingston, K.A., Fu, X., Merritt, M.E., Sherry, A.D., Malloy, C.R., Shelton, J.M., Lambert, J., Parks, E.J., Corbin, I., Magnuson, M.A., Browning, J.D., Burgess, S.C., 2015. Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver. J Clin Invest 125, 4447-4462.
Saw, C.L., Guo, Y., Yang, A.Y., Paredes-Gonzalez, X., Ramirez, C., Pung, D., Kong, A.N., 2014. The berry constituents quercetin, kaempferol, and pterostilbene synergistically attenuate reactive oxygen species: involvement of the Nrf2-ARE signaling pathway. Food Chem Toxicol 72, 303-311.
Saw, C.L., Wu, Q., Su, Z.Y., Wang, H., Yang, Y., Xu, X., Huang, Y., Khor, T.O., Kong, A.N., 2013. Effects of natural phytochemicals in Angelica sinensis (Danggui) on Nrf2-mediated gene expression of phase II drug metabolizing enzymes and anti-inflammation. Biopharm Drug Dispos 34, 303-311.
Saw, C.L., Yang, A.Y., Cheng, D.C., Boyanapalli, S.S., Su, Z.Y., Khor, T.O., Gao, S., Wang, J., Jiang, Z.H., Kong, A.N., 2012. Pharmacodynamics of ginsenosides: antioxidant activities, activation of Nrf2, and potential synergistic effects of combinations. Chem Res Toxicol 25, 1574-1580.
Schuppan, D., Afdhal, N.H., 2008. Liver cirrhosis. Lancet 371, 838-851.
Seo, J.Y., Lim, S.S., Kim, J.R., Lim, J.S., Ha, Y.R., Lee, I.A., Kim, E.J., Park, J.H., Kim, J.S., 2008. Nrf2-mediated induction of detoxifying enzymes by alantolactone present in Inula helenium. Phytother Res 22, 1500-1505.
Seo, J.Y., Park, J., Kim, H.J., Lee, I.A., Lim, J.S., Lim, S.S., Choi, S.J., Park, J.H., Kang, H.J., Kim, J.S., 2009. Isoalantolactone from Inula helenium caused Nrf2-mediated induction of detoxifying enzymes. J Med Food 12, 1038-1045.
Shen, C., Cheng, W., Yu, P., Wang, L., Zhou, L., Zeng, L., Yang, Q., 2016. Resveratrol pretreatment attenuates injury and promotes proliferation of neural stem cells following oxygen-glucose deprivation/reoxygenation by upregulating the expression of Nrf2, HO-1 and NQO1 in vitro. Mol Med Rep 14, 3646-3654.
Shinkai, Y., Sumi, D., Fukami, I., Ishii, T., Kumagai, Y., 2006. Sulforaphane, an activator of Nrf2, suppresses cellular accumulation of arsenic and its cytotoxicity in primary mouse hepatocytes. FEBS Lett 580, 1771-1774.
Shirato, T., Homma, T., Lee, J., Kurahashi, T., Fujii, J., 2016. Oxidative stress caused by a SOD1 deficiency ameliorates thioacetamide-triggered cell death via CYP2E1 inhibition but stimulates liver steatosis. Arch Toxicol.
Shukla, S., Meeran, S.M., Katiyar, S.K., 2014. Epigenetic regulation by selected dietary phytochemicals in cancer chemoprevention. Cancer Lett 355, 9-17.
Smith, H.S., 2009. Potential analgesic mechanisms of acetaminophen. Pain Physician 12, 269-280.
Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J., Klenk, D.C., 1985. Measurement of protein using bicinchoninic acid. Anal Biochem 150, 76-85.
Su, Z.Y., Hwang, L.S., Kuo, Y.H., Shu, C.H., Sheen, L.Y., 2008. Black Soybean Promotes the Formation of Active Components with Anti-hepatoma Activity.
Su, Z.Y., Khor, T.O., Shu, L., Lee, J.H., Saw, C.L., Wu, T.Y., Huang, Y., Suh, N., Yang, C.S., Conney, A.H., Wu, Q., Kong, A.N., 2013a. Epigenetic reactivation of Nrf2 in murine prostate cancer TRAMP C1 cells by natural phytochemicals Z-ligustilide and Radix angelica sinensis via promoter CpG demethylation. Chem Res Toxicol 26, 477-485.
Su, Z.Y., Shu, L., Khor, T.O., Lee, J.H., Fuentes, F., Kong, A.N., 2013b. A perspective on dietary phytochemicals and cancer chemoprevention: oxidative stress, nrf2, and epigenomics. Top Curr Chem 329, 133-162.
Su, Z.Y., Sun Hwang, L., Chiang, B.H., Sheen, L.Y., 2013c. Antihepatoma and liver protective potentials of ganoderma lucidum ( ling zhi) fermented in a medium containing black soybean ( hei dou) and astragalus membranaceus ( sheng huang qi). J Tradit Complement Med 3, 110-118.
Su, Z.Y., Zhang, C., Lee, J.H., Shu, L., Wu, T.Y., Khor, T.O., Conney, A.H., Lu, Y.P., Kong, A.N., 2014. Requirement and epigenetics reprogramming of Nrf2 in suppression of tumor promoter TPA-induced mouse skin cell transformation by sulforaphane. Cancer Prev Res (Phila) 7, 319-329.
Tang, C.C., Lin, W.L., Lee, Y.J., Tang, Y.C., Wang, C.J., 2014a. Polyphenol-rich extract of Nelumbo nucifera leaves inhibits alcohol-induced steatohepatitis via reducing hepatic lipid accumulation and anti-inflammation in C57BL/6J mice. Food Funct 5, 678-687.
Tang, W., Jiang, Y.F., Ponnusamy, M., Diallo, M., 2014b. Role of Nrf2 in chronic liver disease. World J Gastroenterol 20, 13079-13087.
Tebay, L.E., Robertson, H., Durant, S.T., Vitale, S.R., Penning, T.M., Dinkova-Kostova, A.T., Hayes, J.D., 2015. Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radic Biol Med 88, 108-146.
Tien, Y.H., Chen, B.H., Wang Hsu, G.S., Lin, W.T., Huang, J.H., Lu, Y.F., 2014. Hepatoprotective and anti-oxidant activities of Glossogyne tenuifolia against acetaminophen-induced hepatotoxicity in mice. Am J Chin Med 42, 1385-1398.
Tzeng, T.F., Lu, H.J., Liou, S.S., Chang, C.J., Liu, I.M., 2013. Cassia tora (Leguminosae) seed extract alleviates high-fat diet-induced nonalcoholic fatty liver. Food Chem Toxicol 51, 194-201.
Verdin, E., Ott, M., 2015. 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat Rev Mol Cell Biol 16, 258-264.
Villeneuve, J.P., Pichette, V., 2004. Cytochrome P450 and liver diseases. Curr Drug Metab 5, 273-282.
Wade, P.A., 2001. Methyl CpG-binding proteins and transcriptional repression. Bioessays 23, 1131-1137.
Wang, L., Wang, J., Fang, L., Zheng, Z., Zhi, D., Wang, S., Li, S., Ho, C.T., Zhao, H., 2014a. Anticancer activities of citrus peel polymethoxyflavones related to angiogenesis and others. Biomed Res Int 2014, 453972.
Wang, L., Zhang, C., Guo, Y., Su, Z.Y., Yang, Y., Shu, L., Kong, A.N., 2014b. Blocking of JB6 cell transformation by tanshinone IIA: epigenetic reactivation of Nrf2 antioxidative stress pathway. AAPS J 16, 1214-1225.
Wang, W., Guan, C., Sun, X., Zhao, Z., Li, J., Fu, X., Qiu, Y., Huang, M., Jin, J., Huang, Z., 2016. Tanshinone IIA protects against acetaminophen-induced hepatotoxicity via activating the Nrf2 pathway. Phytomedicine 23, 589-596.
Weinhold, B., 2006. Epigenetics: the science of change. Environ Health Perspect 114, A160-167.
Weiss, S.J., 1989. Tissue destruction by neutrophils. N Engl J Med 320, 365-376.
Wiseman, H., Halliwell, B., 1996. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J 313 ( Pt 1), 17-29.
Wolffe, A.P., Matzke, M.A., 1991. Epigenetics Regulation Through Repression. Science 286, 481-486.
Wu, T.Y., Khor, T.O., Saw, C.L., Loh, S.C., Chen, A.I., Lim, S.S., Park, J.H., Cai, L., Kong, A.N., 2011. Anti-inflammatory/Anti-oxidative stress activities and differential regulation of Nrf2-mediated genes by non-polar fractions of tea Chrysanthemum zawadskii and licorice Glycyrrhiza uralensis. AAPS J 13, 1-13.
Xie, W., Jiang, Z., Wang, J., Zhang, X., Melzig, M.F., 2016a. Protective effect of hyperoside against acetaminophen (APAP) induced liver injury through enhancement of APAP clearance. Chem Biol Interact 246, 11-19.
Xie, W., Wang, M., Chen, C., Zhang, X., Melzig, M.F., 2016b. Hepatoprotective effect of isoquercitrin against acetaminophen-induced liver injury. Life Sci 152, 180-189.
Yao, H.W., Li, J., 2015. Epigenetic modifications in fibrotic diseases: implications for pathogenesis and pharmacological targets. J Pharmacol Exp Ther 352, 2-13.
Yeligar, S.M., Machida, K., Kalra, V.K., 2010. Ethanol-induced HO-1 and NQO1 are differentially regulated by HIF-1alpha and Nrf2 to attenuate inflammatory cytokine expression. J Biol Chem 285, 35359-35373.
Yoo, C.B., Jones, P.A., 2006. Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov 5, 37-50.
Yoon, E., Babar, A., Choudhary, M., Kutner, M., Pyrsopoulos, N., 2016. Acetaminophen-Induced Hepatotoxicity: a Comprehensive Update. J Clin Transl Hepatol 4, 131-142.
Yu, B.P., 1994. Cellular defenses against damage from reactive oxygen species. Physiol Rev 74, 139-162.
Yuan, L., Gu, X., Yin, Z., Kang, W., 2014. Antioxidant activities in vitro and hepatoprotective effects of Nelumbo nucifera leaves in vivo. Afr J Tradit Complement Altern Med 11, 85-91.
Yueh, M.F., Tukey, R.H., 2007. Nrf2-Keap1 signaling pathway regulates human UGT1A1 expression in vitro and in transgenic UGT1 mice. J Biol Chem 282, 8749-8758.
Zavodnik, I.B., 2015. [Mitochondrial dysfunction and compensatory mechanisms in liver cells during acute carbon tetrachloride-induced rat intoxication]. Biomed Khim 61, 731-736.
Zhang, C., Su, Z.Y., Khor, T.O., Shu, L., Kong, A.N., 2013. Sulforaphane enhances Nrf2 expression in prostate cancer TRAMP C1 cells through epigenetic regulation. Biochem Pharmacol 85, 1398-1404.
Zhang, C., Su, Z.Y., Wang, L., Shu, L., Yang, Y., Guo, Y., Pung, D., Bountra, C., Kong, A.N., 2016a. Epigenetic blockade of neoplastic transformation by bromodomain and extra-terminal (BET) domain protein inhibitor JQ-1. Biochem Pharmacol 117, 35-45.
Zhang, N., Yang, Z., Xiang, S.Z., Jin, Y.G., Wei, W.Y., Bian, Z.Y., Deng, W., Tang, Q.Z., 2016b. Nobiletin attenuates cardiac dysfunction, oxidative stress, and inflammatory in streptozotocin: induced diabetic cardiomyopathy. Mol Cell Biochem 417, 87-96.
Zhang, T., Zhang, Q., Guo, J., Yuan, H., Peng, H., Cui, L., Yin, J., Zhang, L., Zhao, J., Li, J., White, A., Carmichael, P.L., Westmoreland, C., Peng, S., 2016c. Non-cytotoxic concentrations of acetaminophen induced mitochondrial biogenesis and antioxidant response in HepG2 cells. Environ Toxicol Pharmacol 46, 71-79.
Zhang, Y., Guan, L., Wang, X., Wen, T., Xing, J., Zhao, J., 2008. Protection of chlorophyllin against oxidative damage by inducing HO-1 and NQO1 expression mediated by PI3K/Akt and Nrf2. Free Radic Res 42, 362-371.
Zhao, Q., Peng, Y., Huang, K., Lei, Y., Liu, H.L., Tao, Y.Y., Liu, C.H., 2016a. Salvianolate Protects Hepatocytes from Oxidative Stress by Attenuating Mitochondrial Injury. Evid Based Complement Alternat Med 2016, 5408705.
Zhao, Y., Zhao, K., Jiang, K., Tao, S., Li, Y., Chen, W., Kou, S., Gu, C., Li, Z., Guo, L., White, W.L., Zhang, K.X., 2016b. A Review of Flavonoids from Cassia Species and their Biological Activity. Curr Pharm Biotechnol 17, 1134-1146.
Zhuang, S.Y., Wu, M.L., Wei, P.J., Cao, Z.P., Xiao, P., Li, C.H., 2016. Changes in Plasma Lipid Levels and Antioxidant Activities in Rats after Supplementation of Obtusifolin. Planta Med 82, 539-543.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔