[1] Wylie CD. Setting a standard for a "silent" disease: defining osteoporosis in the 1980s and 1990s. Stud Hist Philos Biol Biomed Sci. 2010;41:376-85.
[2] Wysowski DK, Greene P. Trends in osteoporosis treatment with oral and intravenous bisphosphonates in the United States, 2002-2012. Bone. 2013;57:423-8.
[3] Wysowski DK, Chang JT. Alendronate and risedronate: reports of severe bone, joint, and muscle pain. Arch Intern Med. 2005;165:346-7.
[4] Maconi G, Bianchi Porro G. Multiple ulcerative esophagitis caused by alendronate. Am J Gastroenterol. 1995;90:1889-90.
[5] Heckbert SR, Li G, Cummings SR, Smith NL, Psaty BM. Use of alendronate and risk of incident atrial fibrillation in women. Arch Intern Med. 2008;168:826-31.
[6] Xie C, Reynolds D, Awad H, Rubery PT, Pelled G, Gazit D, et al. Structural bone allograft combined with genetically engineered mesenchymal stem cells as a novel platform for bone tissue engineering. Tissue Eng. 2007;13:435-45.
[7] Khan Y, Yaszemski MJ, Mikos AG, Laurencin CT. Tissue engineering of bone: material and matrix considerations. J Bone Joint Surg Am. 2008;90 Suppl 1:36-42.
[8] Killion JA, Kehoe S, Geever LM, Devine DM, Sheehan E, Boyd D, et al. Hydrogel/bioactive glass composites for bone regeneration applications: synthesis and characterisation. Mater Sci Eng C Mater Biol Appl. 2013;33:4203-12.
[9] Carson JS, Bostrom MP. Synthetic bone scaffolds and fracture repair. Inj. 2007;38 Suppl 1:S33-7.
[10] 楊志明. 組織工程. 九州圖書. 2005.
[11] Bucholz RW. Nonallograft osteoconductive bone graft substitutes. Clin Orthop Relat Res. 2002:44-52.
[12] Torchilin VP. PEG-based micelles as carriers of contrast agents for different imaging modalities. Adv Drug Deliv Rev. 2002;54:235-52.
[13] Fu S, Ni P, Wang B, Chu B, Zheng L, Luo F, et al. Injectable and thermo-sensitive PEG-PCL-PEG copolymer/collagen/n-HA hydrogel composite for guided bone regeneration. Biomaterials. 2012;33:4801-9.
[14] Lai MC, Chang KC, Hsu SC, Chou MC, Hung WI, Hsiao YR, et al. In situ gelation of PEG-PLGA-PEG hydrogels containing high loading of hydroxyapatite: in vitro and in vivo characteristics. Biomed Mater. 2014;9:015011.
[15] Kwon JS, Kim SW, Kwon DY, Park SH, Son AR, Kim JH, et al. In vivo osteogenic differentiation of human turbinate mesenchymal stem cells in an injectable in situ-forming hydrogel. Biomaterials. 2014;35:5337-46.
[16] Na K, Kim SW, Sun BK, Woo DG, Yang HN, Chung HM, et al. Osteogenic differentiation of rabbit mesenchymal stem cells in thermo-reversible hydrogel constructs containing hydroxyapatite and bone morphogenic protein-2 (BMP-2). Biomaterials. 2007;28:2631-7.
[17] Dhivya S, Saravanan S, Sastry TP, Selvamurugan N. Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo. J Nanobiotechnology. 2015;13:40.
[18] Das S, Subuddhi U. pH-Responsive guar gum hydrogels for controlled delivery of dexamethasone to the intestine. Int J Biol Macromol. 2015;79:856-63.
[19] Das D, Ghosh P, Ghosh A, Haldar C, Dhara S, Panda AB. Stimulus-responsive, biodegradable, biocompatible, covalently crosslinked hydrogel based on dextrin and poly (n-isopropyl acrylamide) for in-vitro/n-vivo controlled drug release. ACS Appl Mater Interfaces. 2015.
[20] Kearns AE, Kallmes DF. Osteoporosis primer for the vertebroplasty practitioner: expanding the focus beyond needles and cement. AJNR Am J Neuroradiol. 2008;29:1816-22.
[21] Lane NE. Epidemiology, etiology, and diagnosis of osteoporosis. Am J Obstet Gynecol. 2006;194:S3-S11.
[22] Lips P. Vitamin D deficiency and secondary hyperparathyroidism in the elderly: Consequences for bone loss and fractures and therapeutic implications. Endocr Rev. 2001;22:477-501.
[23] Nguyen TV, Center JR, Eisman JA. Osteoporosis in elderly men and women: effects of dietary calcium, physical activity, and body mass index. J Bone Miner Res. 2000;15:322-31.
[24] Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev. 2000;21:115-37.
[25] Kay MI, Young RA, Posner AS. Crystal structure of hydroxyapatite. Nature. 1964;204:1050-2.
[26] Hench. LL, Splinter. RJ, Allen. WC, Greenlee. TK. Bonding mechanisms at the interface of ceramic prosthetic materials. Biomed Mater Res. 1971;5:117-41.
[27] Olmo N, Martin AI, Salinas AJ, Turnay J, Vallet-Regi M, Lizarbe MA. Bioactive sol-gel glasses with and without a hydroxycarbonate apatite layer as substrates for osteoblast cell adhesion and proliferation. Biomaterials. 2003;24:3383-93.
[28] Murugan R, Ramakrishna S. Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite. Biomaterials. 2004;25:3829-35.
[29] Lee HJ, Kim SE, Choi HW, Kim CW, Kim KJ, Lee SC. The effect of surface-modified nano-hydroxyapatite on biocompatibility of poly(ε-caprolactone)/hydroxyapatite nanocomposites. Eur Polym J. 2007;43:1602-8.
[30] Zhou H, Lee J. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 2011;7:2769-81.
[31] Rho JY, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Med Eng Phys. 1998;20:92-102.
[32] Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res. 2000;51:475-83.
[33] Hesaraki S, Nazarian H, Pourbaghi-Masouleh M, Borhan S. Comparative study of mesenchymal stem cells osteogenic differentiation on low-temperature biomineralized nanocrystalline carbonated hydroxyapatite and sintered hydroxyapatite. J Biomed Mater Res B Appl Biomater. 2014;102:108-18.
[34] Wang H, Li Y, Zuo Y, Li J, Ma S, Cheng L. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials. 2007;28:3338-48.
[35] Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27:3413-31.
[36] Han J, Zhou Z, Yin R, Yang D, Nie J. Alginate-chitosan/hydroxyapatite polyelectrolyte complex porous scaffolds: preparation and characterization. Int J Biol Macromol. 2010;46:199-205.
[37] Wichterle O, Lim D. Hydrophilic Gels for Biological Use. Nature. 1960;185:117-8.
[38] Geier KA. Osteoporosis in men. Orthop Nurs. 2001;20:49-56.
[39] Khodaverdi E, Tekie FS, Mohajeri SA, Ganji F, Zohuri G, Hadizadeh F. Preparation and investigation of sustained drug delivery systems using an injectable, thermosensitive, in situ forming hydrogel composed of PLGA-PEG-PLGA. AAPS Pharm Sci Tech. 2012;13:590-600.
[40] Pratoomsoot C, Tanioka H, Hori K, Kawasaki S, Kinoshita S, Tighe PJ, et al. A thermoreversible hydrogel as a biosynthetic bandage for corneal wound repair. Biomaterials. 2008;29:272-81.
[41] Jeong B, Bae YH, Lee DS, Kim SW. Biodegradable block copolymers as injectable drug-delivery systems. Nature. 1997;388:860-2.
[42] Kopecek J. Hydrogel biomaterials: a smart future? Biomaterials. 2007;28:5185-92.
[43] Li Y, Rodrigues J, Tomas H. Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem Soc Rev. 2012;41:2193-221.
[44] Hoffman AS. Applications of thermally reversible polymers and hydrogels in therapeutics and diagnostics. J Control Release. 1987;6:297-305.
[45] Jeong B, Bae YH, Kim SW. In situ gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions and degradation thereof. J Biomed Mater Res. 2000;50:171-7.
[46] Jeong B, Bae YH, Kim SW. Drug release from biodegradable injectable thermosensitive hydrogel of PEG-PLGA-PEG triblock copolymers. J Control Release. 2000;63:155-63.
[47] Jeong B, Han Bae Y, Wan Kim S. Biodegradable thermosensitive micelles of PEG-PLGA-PEG triblock copolymers. Colloids Surf, B. 1999;16:185-93.
[48] 李郁旻. mPEG-PLGA 溫度敏感型水膠製備及其不同共聚物組成對藥物輸送系統之影響研究. 國立清華大學/化學工程研究所/碩士論文. 2010.[49] Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev. 2001;53:321-39.
[50] Vasanthan N, Ly O. Effect of microstructure on hydrolytic degradation studies of poly (l-lactic acid) by FTIR spectroscopy and differential scanning calorimetry. Polym Degrad Stab. 2009;94:1364-72.
[51] Hay DL, von Fraunhofer JA, Chegini N, Masterson BJ. Locking mechanism strength of absorbable ligating devices. J Biomed Mater Res. 1988;22:179-90.
[52] 周明潔. 雙磷酸鹽類之骨質疏鬆藥物於新型可注射式溫感性載體之藥物釋放研究. 中原大學/奈米科技碩士學位學程/碩士論文. 2013.[53] Yu L, Zhang Z, Zhang H, Ding J. Biodegradability and biocompatibility of thermoreversible hydrogels formed from mixing a sol and a precipitate of block copolymers in water. Biomacromolecules. 2010;11:2169-78.
[54] Hu SG, Liu HJ. Effect of soft segment on degradation kinetics in polyethylene glycol/poly(l-lactide) block copolymers. Polym Bull. 1993;30:669-76.
[55] McClung M, Harris ST, Miller PD, Bauer DC, Davison KS, Dian L, et al. Bisphosphonate therapy for osteoporosis: benefits, risks, and drug holiday. Am J Med. 2013;126:13-20.
[56] Russell RG, Watts NB, Ebetino FH, Rogers MJ. Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos Int. 2008;19:733-59.
[57] Lewiecki EM, Babbitt AM, Piziak VK, Ozturk ZE, Bone HG. Adherence to and gastrointestinal tolerability of monthly oral or quarterly intravenous ibandronate therapy in women with previous intolerance to oral bisphosphonates: a 12-month, open-label, prospective evaluation. Clin Ther. 2008;30:605-21.
[58] Tomalia DA, Naylor AM, Goddard WA. Starburst dendrimers: molecular-level control of zize, shape, surface chemistry, topology, and flexibility from atoms to macroscopic Matter. Angew Chem, Int Ed Engl. 1990;29:138-75.
[59] Fréchet JMJ. Dendrimers and other dendritic macromolecules: from building blocks to functional assemblies in nanoscience and nanotechnology. J Polym Sci, Part A: Polym Chem. 2003;41:3713-25.
[60] Liu M, Frechet JM. Designing dendrimers for drug delivery. Pharm Sci Technolo Today. 1999;2:393-401.
[61] Flory PJ, Rehner J. Statistical mechanics of cross‐linked polymer networks I. rubberlike elasticity. J Chem Phys. 1943;11:512-20.
[62] 許維廷. 以樹枝狀高分子作為多功能藥物載體之應用. 國立清華大學/化學工程研究所/碩士論文. 2007.
[63] Tomalia DA. Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog Polym Sci. 2005;30:294-324.
[64] Jansen JF, de Brabander-van den Berg EM, Meijer EW. Encapsulation of guest molecules into a dendritic box. Science. 1994;266:1226-9.
[65] Newkome GR, Woosley BD, He E, Moorefield CN, Guther R, Baker GR, et al. Supramolecular chemistry of flexible, dendritic-based structures employing molecular recognition. Chem Commun. 1996:2737-8.
[66] Newkome GR, Moorefield CN, Baker GR, Saunders MJ, Grossman SH. Unimolecular Micelles. Angew Chem, Int Ed Engl. 1991;30:1178-80.
[67] Friedenstein AJ, Piatetzky S, II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol. 1966;16:381-90.
[68] Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143-7.
[69] Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res. 2000;61:364-70.
[70] Lee KD, Kuo TK, Whang-Peng J, Chung YF, Lin CT, Chou SH, et al. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatol. 2004;40:1275-84.
[71] Hanson S, D''Souza RN, Hematti P. Biomaterial-mesenchymal stem cell constructs for immunomodulation in composite tissue engineering. Tissue Eng Part A. 2014;20:2162-8.
[72] Jiang L, Li Y, Xiong C. Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering. J Biomed Sci. 2009;16:65.
[73] Wintermantel E, Mayer J, Blum J, Eckert KL, Luscher P, Mathey M. Tissue engineering scaffolds using superstructures. Biomaterials. 1996;17:83-91.
[74] Wang F, Zhang YC, Zhou H, Guo YC, Su XX. Evaluation of in vitro and in vivo osteogenic differentiation of nano-hydroxyapatite/chitosan/poly(lactide-co-glycolide) scaffolds with human umbilical cord mesenchymal stem cells. J Biomed Mater Res A. 2014;102:760-8.
[75] Pasqui D, Torricelli P, De Cagna M, Fini M, Barbucci R. Carboxymethyl cellulose-hydroxyapatite hybrid hydrogel as a composite material for bone tissue engineering applications. J Biomed Mater Res A. 2014;102:1568-79.
[76] Ni P, Ding Q, Fan M, Liao J, Qian Z, Luo J, et al. Injectable thermosensitive PEG-PCL-PEG hydrogel/acellular bone matrix composite for bone regeneration in cranial defects. Biomaterials. 2014;35:236-48.
[77] Lin G, Cosimbescu L, Karin NJ, Tarasevich BJ. Injectable and thermosensitive PLGA-g-PEG hydrogels containing hydroxyapatite: preparation, characterization and in vitro release behavior. Biomed Mater. 2012;7:024107.
[78] Lai P-L, Hong D-W, Lin CT-Y, Chen L-H, Chen W-J, Chu IM. Effect of mixing ceramics with a thermosensitive biodegradable hydrogel as composite graft. Composites, B. 2012;43:3088-95.
[79] Yang T-I, Huang Y-C, Yang S-C, Yeh J-M, Peng Y-Y. Effect of hydroxyapatite particles on the rheological behavior of poly(ethylene glycol)-poly(lactic-co-glycolic acid) thermosensitive hydrogels. Mater Chem Phys. 2015;152:158-66.
[80] Duque G, Rivas D. Alendronate has an anabolic effect on bone through the differentiation of mesenchymal stem cells. J Bone Miner Res. 2007;22:1603-11.
[81] Guan M, Yao W, Liu R, Lam KS, Nolta J, Jia J, et al. Directing mesenchymal stem cells to bone to augment bone formation and increase bone mass. Nat Med. 2012;18:456-62.
[82] Yao W, Guan M, Jia J, Dai W, Lay YA, Amugongo S. Reversing bone loss by directing mesenchymal stem cells to bone. Stem cells. 2013;31:2003-14.
[83] Jia J, Yao W, Amugongo S, Shahnazari M, Dai W, Lay YA, et al. Prolonged alendronate treatment prevents the decline in serum TGF-beta1 levels and reduces cortical bone strength in long-term estrogen deficiency rat model. Bone. 2013;52:424-32.
[84] Robert L. Matrix biology: past, present and future. Pathol Biol (Paris). 2001;49:279-83.
[85] Kim SS, Gwak SJ, Kim BS. Orthotopic bone formation by implantation of apatite-coated poly(lactide-co-glycolide)/hydroxyapatite composite particulates and bone morphogenetic protein-2. J Biomed Mater Res A. 2008;87:245-53.
[86] Zhang X, Zhu L, Lv H, Cao Y, Liu Y, Xu Y, et al. Repair of rabbit femoral condyle bone defects with injectable nanohydroxyapatite/chitosan composites. J Mater Sci Mater Med. 2012;23:1941-9.
[87] Hoffman MD, Xie C, Zhang X, Benoit DS. The effect of mesenchymal stem cells delivered via hydrogel-based tissue engineered periosteum on bone allograft healing. Biomaterials. 2013;34:8887-98.
[88] He X, Liu Y, Yuan X, Lu L. Enhanced healing of rat calvarial defects with MSCs loaded on BMP-2 releasing chitosan/alginate/hydroxyapatite scaffolds. PloS one. 2014;9:e104061.
[89] Bendtsen ST, Quinnell SP, Wei M. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. J Biomed Mater Res A. 2017;105:1457-68.
[90] 葉獻彬. 生物可降解性聚乳酸高分子之合成與降解性質探討. 國立陽明大學/醫學工程研究所/碩士論文. 2000.[91] Kan P, Lin X-Z, Hsieh M-F, Chang K-Y. Thermogelling emulsions for vascular embolization and sustained release of drugs. J Biomed Mater Res, Part B. 2005;75B:185-92.
[92] Mohandes F, Salavati-Niasari M, Fathi M, Fereshteh Z. Hydroxyapatite nanocrystals: simple preparation, characterization and formation mechanism. Mater Sci Eng C Mater Biol Appl. 2014;45:29-36.
[93] Wu H-C, Wang T-W, Sun J-S, Wang W-H, Lin F-H. A novel biomagnetic nanoparticle based on hydroxyapatite. Nanotechnol. 2007;18:165601/1-/9.
[94] Fu S, Guo G, Gong C, Zeng S, Liang H, Luo F, et al. Injectable biodegradable thermosensitive hydrogel composite for orthopedic tissue engineering. 1. Preparation and characterization of nanohydroxyapatite/poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) hydrogel nanocomposites. J Phys Chem B. 2009;113:16518-25.
[95] Velayudhan S, Ramesh P, Varma HK. Mechanical properties of hydroxyapatite-filled ethylene vinyl acetate copolymer composites: Effect of particle size and morphology. J Appl Polym Sci. 2011;119:1594-601.