跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/18 11:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周俊豪
研究生(外文):Jun-Hao Zhou
論文名稱:溫感性水膠搭載藥物對骨髓間葉幹細胞硬骨分化之影響探討
論文名稱(外文):The Effect of Thermosensitive Hydrogel Carrying Drugs on The Osteogenesis of Bone Marrow Mesenchymal Stem Cells
指導教授:李文婷李文婷引用關係
指導教授(外文):Wen-Tyng Li
學位類別:碩士
校院名稱:中原大學
系所名稱:生物醫學工程研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:110
中文關鍵詞:骨質疏鬆症間葉幹細胞溫感性水膠硬骨分化
外文關鍵詞:osteoporosismesenchymal stem cellthermosensitive hydrogelosteogenesis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
骨質疏鬆症主要症狀為骨質流失、骨密度下降,導致骨折發生。本研究目的在評估骨髓間葉幹細胞(mesenchymal stem cells, MSCs) 受dexamethasone (Dex) 、雙磷酸鹽類Alendronate (Ale) 或樹枝狀高分子poly (amidoamine) (Pamam) 搭載Ale (Paman-Ale) 等藥物作用,混合氫氧基磷灰石(Hydroxyapatite, HA) ,包覆於mPEG-PLGA溫感性水膠中;在二維、三維培養環境下進行硬骨分化之影響;並探討MSCs、誘導分化藥物及水膠在糖皮質類固醇所誘發之骨質疏鬆症小鼠的治療成效。硬骨分化實驗結果發現以100 nM Dex、100 nM Ale及10 nM Pamam-Ale能提升MSCs之鹼性磷酸酶(Alkaline phosphatase, ALP)活性及ALP、第一型膠原蛋白基因表現,其中以Pamam-Ale效果最佳;添加HA或包覆水膠後,則以Ale提升ALP表現量最佳,Dex促進鈣沉積為高。將分化藥物、MSCs、HA和水膠製備成複合性材料,注入骨質疏鬆症小鼠股骨內,透過骨密度及骨組織切片染色,發現治療組與控制組的皮質骨骨密度並無統計上顯著差異,但治療組海綿骨骨密度增加;由組織染色可觀察到HA 分佈於皮質骨內且能減少海綿骨空隙。本研究結果證明MSCs 、HA 、Ale 和水膠組成之複合性材料具骨誘導分化及修復骨缺損能力。
The major symptoms of osteoporosis are bone loss and decreasing bone mineral density, which eventually lead to bone fracture. The specific aims of the study were to evaluate the effect on osteogenesis of mesenchymal stem cells (MSCs) in two or three-dimensional culture environment with the supplements of dexamethasone (Dex), bisphosphonate drug Alendronate (Ale) or dendrimer poly(amidoamine) (Pamam) loaded with Alendronate (Pamam-Ale), and combined with hydroxyapatite (HA) and mPEG-PLGA thermoreversible hydrogel. The therapeutic effect in osteoporosis mice induced b glucocorticoid by using the combination treatment of MSCs, osteogenic inducing drugs and hydrogel was also observed. The results from osteogenic induction showed that 100 nM Dex,100 nM Ale and 10 nM Pamam-Ale could enhance alkaline phosphatase (ALP) activity and ALP and type I collagen gene expression. Highest level of ALP activity was found in the group of Pamam-Ale. When in combining with HA or hydrogel, highest level of ALP activity was found in the group of Ale and highest level of calcium deposition was seen in the group of Dex. The results from the femurs of osteoporosis mice injected with the combination of osteogenic inducing drugs, MSCs, HA and hydrogel found that no significant difference in the bone mineral densities of cortex bones between control and treatment groups. But the bone mineral densities of spongy bones from the treatment groups were higher than those of control group. Tissue sections showed that HA was distributed in the cortex bone and the porosity decreased in the spongy bone. In summary, the combination of osteogenic inducing drugs, MSCs, HA and hydrogel has the potential in osteoinduction and may be applied in bone defect repair.
目錄
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 X
縮寫表 XIII
第一章 緒論 1
1.1 前言 1
1.2 理論基礎 3
1.2.1 氫氧基磷灰石 4
1.2.2 水膠 4
1.2.3 溫感性水膠 5
1.2.3.1 溫度敏感性 6
1.2.3.2 降解特性 7
1.2.4 雙磷酸鹽類 8
1.2.5 樹枝狀高分子 9
1.2.6 骨髓間葉幹細胞 11
1.3 文獻回顧 11
1.3.1 溫感性水膠添加氫氧基磷灰石 11
1.3.2 雙磷酸鹽類藥物對細胞之影響 13
1.3.3 支架搭載骨誘導分化材料於骨組織工程之應用 13
1.4 研究目的與架構 15
第二章 材料與方法 18
2.1 材料合成 18
2.1.1 mPEG-PLGA Diblock Copolymer 之合成 18
2.1.2 氫氧基磷灰石合成方法 19
2.2 材料分析 20
2.2.1 場發射掃描式電子顯微鏡 20
2.2.2 X-ray 繞射儀 20
2.2.3 流變儀測試 20
2.2.4 傅立葉紅外線轉換光譜 21
2.3 藥品配製 21
2.3.1 非細胞培養所需藥品 21
2.3.1.1 麻醉藥 21
2.3.1.2 抗凝血劑 22
2.3.1.3 紅血球裂解液 22
2.3.1.4 蘇木紫-伊紅染劑 22
2.3.2 細胞培養所需藥品 23
2.3.2.1 磷酸鹽緩衝溶液 23
2.3.2.2 間葉幹細胞長期培養基 23
2.3.2.3 胰蛋白酶 24
2.3.2.4 台盼藍染劑 24
2.4 骨質疏鬆鼠模式 25
2.4.1 實驗動物來源 25
2.4.2 骨質疏鬆小鼠誘發 25
2.5 細胞培養與細胞操作技術 26
2.5.1 間葉幹細胞分離 26
2.5.2 細胞繼代 27
2.5.3 細胞計數 28
2.6 大鼠間葉幹細胞生長分析 28
2.6.1 MTT 分析試劑配製 28
2.6.2 MTT 分析方法 28
2.7 蛋白質定量分析 29
2.8 骨髓間葉幹細胞誘導分化 30
2.8.1 硬骨分化培養基配製 30
2.8.2 硬骨分化實驗流程 31
2.8.2.1 無水膠組別實驗設計 31
2.8.2.2 含水膠組別實驗設計 31
2.8.3 鹼性磷酸酶活性測定 32
2.8.4 鹼性磷酸酶染色分析 33
2.8.5 鈣沉澱測定 34
2.9 反轉錄聚合酶連鎖反應 35
2.9.1 萃取及純化Total RNA 36
2.9.2 反轉錄作用 37
2.9.3 聚合酶鏈鎖反應 37
2.9.4 DNA 瓊膠電泳 39
2.9.5 電泳影像分析 39
2.10 水膠及藥物移植治療 40
2.11 動物術後照顧 41
2.12 組織切片染色 41
2.12.1 取出骨頭及切片前處理 41
2.12.2 組織切片 42
2.12.3 切片染色 42
2.12.4 微計算機斷層掃描技術 43
2.13 統計分析 43
第三章 結果 44
3.1 氫氧基磷灰石材料分析 44
3.1.1 SEM 觀察粉末材料表面結構 44
3.1.2 HA 之鈣/磷比量測 45
3.1.3 X-ray 繞射儀觀察HA 粉末晶格結構 46
3.1.4 傅利葉轉換紅外線光譜儀 48
3.2 溫感性水膠mPEG-PLGA 材料分析 49
3.2.1 溶膠-凝膠相轉變 49
3.2.2 mPEG-PLGA 溫感性水膠FTIR 分析 49
3.2.3 mPEG-PLGA 溫感性水膠1H-NMR圖譜鑑定 50
3.2.4 mPEG-PLGA 水膠流變性質分析 51
3.3 分化藥物測試分析 53
3.3.1 HA 細胞毒性測試 53
3.3.2 Pamam-Ale 之細胞毒性測試 54
3.3.3 Pamam-Ale 之MSCs 硬骨分化濃度測試 54
3.3.4 藥物對於MSCs 硬骨分化最佳濃度評估 55
3.4 二維與三維培養環境對MSCs 硬骨分化能力影響 56
3.4.1 二維培養環境對MSCs 早期硬骨分化之影響 56
3.4.1.1 ALP 染色分析 56
3.4.1.2 ALP 活性分析 59
3.4.2 二維環境對MSCs 晚期硬骨分化之影響 62
3.4.3 二維培養環境對MSCs 硬骨分化基因表現之影響 64
3.4.4 三維培養環境對MSCs 早期硬骨分化之影響 65
3.4.4.1 ALP 染色分析 65
3.4.4.2 ALP 活性分析 66
3.4.5 水膠包覆細胞於三維培養環境下晚期硬骨分化之影響 67
3.4.5.1 鈣沉積染色分析 67
3.4.5.2 鈣沉積定量分析 68
3.5 微電腦斷層造影觀察骨修復 69
3.6 組織切片觀察骨修復 72
第四章 討論 74
4.1 材料特性分析 74
4.1.1 HA 粉末製備 74
4.1.2 mPEG-PLGA 相轉變 74
4.2 分化藥物對MSCs 細胞於二維培養環境下分化能力之影響 75
4.3 分化藥物對MSCs 於三維培養環境下分化能力之影響 77
4.4 微電腦斷層造影觀察骨修復 77
4.5 組織切片觀察骨修復 78
第五章 結論與未來工作 79
參考文獻 80
附錄 90
A. 儀器表 90
B. 藥品表 92
C. 附圖 94

圖目錄
圖1-1溫感性水膠之化學結構式 7
圖1-2酯鍵於中性與酸性水溶液之水解反應 7
圖1-3焦磷酸與雙磷酸鹽類化學結構 9
圖1-4研究架構 17
圖2-1 mPEG-PLGA 合成化學反應示意圖 18
圖2-2水膠複合物治療骨質疏鬆鼠流程 41
圖3-1 HA 粉末之SEM 影像 44
圖3-2 HA 粉末之EDX 分析 45
圖3-3氫氧基磷灰石之XRD 繞射圖譜 47
圖3-4氫氧基磷灰石之FTIR 光譜圖 48
圖3-5 mPEG-PLGA 水膠相轉變過程 49
圖3-6 mPEG-PLGA 水膠之FTIR 光譜圖 50
圖3-7 mPEG-PLGA 水膠之1H-NMR 頻譜圖 51
圖3-8 20 wt % mPEG-PLGA 水膠流變性質分析 52
圖3-9 MSCs 培養於不同濃度HA 之細胞毒性分析 53
圖3-10 MSCs 培養於不同濃度Pamam-Ale 之細胞毒性分析 54
圖3-11 MSCs 培養於不同濃度Pamam-Ale 之硬骨分化能力分析 55
圖3-12 MSCs 培養於不同濃度之分化藥物的ALP 活性分析 56
圖3-13不同分化藥物對MSCs 培養於二維環境下之ALP 染色分析 58
圖3-14不同分化藥物對MSCs 培養於二維環境下之鈣沉積染色分析 61
圖3-15經不同分化藥物對MSCs 培養於二維環境下之鈣沉積染色分析 63
圖3-16二維培養環境對MSCs 硬骨分化基因表現之影響 65
圖3-17不同分化藥物對MSCs 培養於三維環境下之ALP 染色分析 66
圖3-18不同分化藥物對MSCs 培養三維環境下之ALP 活性分析 67
圖3-19不同分化藥物對MSCs 培養於三維環境下之鈣沉積染色分析 68
圖3-20 不同分化藥物對MSCs 培養於三維環境下之鈣沉積定量分析 69
圖3-21 mPEG-PLGA 複合物注入股骨之皮質骨變化 70
圖3-22 mPEG-PLGA 複合物注入股骨之μ-CT 影像分析 71
圖3-23 mPEG-PLGA 水膠複合物治療骨鬆鼠骨組織切片 73

表目錄
表 1-1 PLA、PGA 與PLGA 高分子降解速率之比較 8
表 2-1蛋白質標準液配製表 30
表 2-2 PCR 反應溶液 37
表 2-3 RT-PCR 使用之引子核酸序列及反應參數 38
表 3-1 HA 之EDX 量測Ca/P 比 46

附錄
A.儀器表 91
B.藥品表 92
C.附圖 94
[1] Wylie CD. Setting a standard for a "silent" disease: defining osteoporosis in the 1980s and 1990s. Stud Hist Philos Biol Biomed Sci. 2010;41:376-85.
[2] Wysowski DK, Greene P. Trends in osteoporosis treatment with oral and intravenous bisphosphonates in the United States, 2002-2012. Bone. 2013;57:423-8.
[3] Wysowski DK, Chang JT. Alendronate and risedronate: reports of severe bone, joint, and muscle pain. Arch Intern Med. 2005;165:346-7.
[4] Maconi G, Bianchi Porro G. Multiple ulcerative esophagitis caused by alendronate. Am J Gastroenterol. 1995;90:1889-90.
[5] Heckbert SR, Li G, Cummings SR, Smith NL, Psaty BM. Use of alendronate and risk of incident atrial fibrillation in women. Arch Intern Med. 2008;168:826-31.
[6] Xie C, Reynolds D, Awad H, Rubery PT, Pelled G, Gazit D, et al. Structural bone allograft combined with genetically engineered mesenchymal stem cells as a novel platform for bone tissue engineering. Tissue Eng. 2007;13:435-45.
[7] Khan Y, Yaszemski MJ, Mikos AG, Laurencin CT. Tissue engineering of bone: material and matrix considerations. J Bone Joint Surg Am. 2008;90 Suppl 1:36-42.
[8] Killion JA, Kehoe S, Geever LM, Devine DM, Sheehan E, Boyd D, et al. Hydrogel/bioactive glass composites for bone regeneration applications: synthesis and characterisation. Mater Sci Eng C Mater Biol Appl. 2013;33:4203-12.
[9] Carson JS, Bostrom MP. Synthetic bone scaffolds and fracture repair. Inj. 2007;38 Suppl 1:S33-7.
[10] 楊志明. 組織工程. 九州圖書. 2005.
[11] Bucholz RW. Nonallograft osteoconductive bone graft substitutes. Clin Orthop Relat Res. 2002:44-52.
[12] Torchilin VP. PEG-based micelles as carriers of contrast agents for different imaging modalities. Adv Drug Deliv Rev. 2002;54:235-52.
[13] Fu S, Ni P, Wang B, Chu B, Zheng L, Luo F, et al. Injectable and thermo-sensitive PEG-PCL-PEG copolymer/collagen/n-HA hydrogel composite for guided bone regeneration. Biomaterials. 2012;33:4801-9.
[14] Lai MC, Chang KC, Hsu SC, Chou MC, Hung WI, Hsiao YR, et al. In situ gelation of PEG-PLGA-PEG hydrogels containing high loading of hydroxyapatite: in vitro and in vivo characteristics. Biomed Mater. 2014;9:015011.
[15] Kwon JS, Kim SW, Kwon DY, Park SH, Son AR, Kim JH, et al. In vivo osteogenic differentiation of human turbinate mesenchymal stem cells in an injectable in situ-forming hydrogel. Biomaterials. 2014;35:5337-46.
[16] Na K, Kim SW, Sun BK, Woo DG, Yang HN, Chung HM, et al. Osteogenic differentiation of rabbit mesenchymal stem cells in thermo-reversible hydrogel constructs containing hydroxyapatite and bone morphogenic protein-2 (BMP-2). Biomaterials. 2007;28:2631-7.
[17] Dhivya S, Saravanan S, Sastry TP, Selvamurugan N. Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo. J Nanobiotechnology. 2015;13:40.
[18] Das S, Subuddhi U. pH-Responsive guar gum hydrogels for controlled delivery of dexamethasone to the intestine. Int J Biol Macromol. 2015;79:856-63.
[19] Das D, Ghosh P, Ghosh A, Haldar C, Dhara S, Panda AB. Stimulus-responsive, biodegradable, biocompatible, covalently crosslinked hydrogel based on dextrin and poly (n-isopropyl acrylamide) for in-vitro/n-vivo controlled drug release. ACS Appl Mater Interfaces. 2015.
[20] Kearns AE, Kallmes DF. Osteoporosis primer for the vertebroplasty practitioner: expanding the focus beyond needles and cement. AJNR Am J Neuroradiol. 2008;29:1816-22.
[21] Lane NE. Epidemiology, etiology, and diagnosis of osteoporosis. Am J Obstet Gynecol. 2006;194:S3-S11.
[22] Lips P. Vitamin D deficiency and secondary hyperparathyroidism in the elderly: Consequences for bone loss and fractures and therapeutic implications. Endocr Rev. 2001;22:477-501.
[23] Nguyen TV, Center JR, Eisman JA. Osteoporosis in elderly men and women: effects of dietary calcium, physical activity, and body mass index. J Bone Miner Res. 2000;15:322-31.
[24] Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev. 2000;21:115-37.
[25] Kay MI, Young RA, Posner AS. Crystal structure of hydroxyapatite. Nature. 1964;204:1050-2.
[26] Hench. LL, Splinter. RJ, Allen. WC, Greenlee. TK. Bonding mechanisms at the interface of ceramic prosthetic materials. Biomed Mater Res. 1971;5:117-41.
[27] Olmo N, Martin AI, Salinas AJ, Turnay J, Vallet-Regi M, Lizarbe MA. Bioactive sol-gel glasses with and without a hydroxycarbonate apatite layer as substrates for osteoblast cell adhesion and proliferation. Biomaterials. 2003;24:3383-93.
[28] Murugan R, Ramakrishna S. Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite. Biomaterials. 2004;25:3829-35.
[29] Lee HJ, Kim SE, Choi HW, Kim CW, Kim KJ, Lee SC. The effect of surface-modified nano-hydroxyapatite on biocompatibility of poly(ε-caprolactone)/hydroxyapatite nanocomposites. Eur Polym J. 2007;43:1602-8.
[30] Zhou H, Lee J. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 2011;7:2769-81.
[31] Rho JY, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Med Eng Phys. 1998;20:92-102.
[32] Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res. 2000;51:475-83.
[33] Hesaraki S, Nazarian H, Pourbaghi-Masouleh M, Borhan S. Comparative study of mesenchymal stem cells osteogenic differentiation on low-temperature biomineralized nanocrystalline carbonated hydroxyapatite and sintered hydroxyapatite. J Biomed Mater Res B Appl Biomater. 2014;102:108-18.
[34] Wang H, Li Y, Zuo Y, Li J, Ma S, Cheng L. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials. 2007;28:3338-48.
[35] Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27:3413-31.
[36] Han J, Zhou Z, Yin R, Yang D, Nie J. Alginate-chitosan/hydroxyapatite polyelectrolyte complex porous scaffolds: preparation and characterization. Int J Biol Macromol. 2010;46:199-205.
[37] Wichterle O, Lim D. Hydrophilic Gels for Biological Use. Nature. 1960;185:117-8.
[38] Geier KA. Osteoporosis in men. Orthop Nurs. 2001;20:49-56.
[39] Khodaverdi E, Tekie FS, Mohajeri SA, Ganji F, Zohuri G, Hadizadeh F. Preparation and investigation of sustained drug delivery systems using an injectable, thermosensitive, in situ forming hydrogel composed of PLGA-PEG-PLGA. AAPS Pharm Sci Tech. 2012;13:590-600.
[40] Pratoomsoot C, Tanioka H, Hori K, Kawasaki S, Kinoshita S, Tighe PJ, et al. A thermoreversible hydrogel as a biosynthetic bandage for corneal wound repair. Biomaterials. 2008;29:272-81.
[41] Jeong B, Bae YH, Lee DS, Kim SW. Biodegradable block copolymers as injectable drug-delivery systems. Nature. 1997;388:860-2.
[42] Kopecek J. Hydrogel biomaterials: a smart future? Biomaterials. 2007;28:5185-92.
[43] Li Y, Rodrigues J, Tomas H. Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem Soc Rev. 2012;41:2193-221.
[44] Hoffman AS. Applications of thermally reversible polymers and hydrogels in therapeutics and diagnostics. J Control Release. 1987;6:297-305.
[45] Jeong B, Bae YH, Kim SW. In situ gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions and degradation thereof. J Biomed Mater Res. 2000;50:171-7.
[46] Jeong B, Bae YH, Kim SW. Drug release from biodegradable injectable thermosensitive hydrogel of PEG-PLGA-PEG triblock copolymers. J Control Release. 2000;63:155-63.
[47] Jeong B, Han Bae Y, Wan Kim S. Biodegradable thermosensitive micelles of PEG-PLGA-PEG triblock copolymers. Colloids Surf, B. 1999;16:185-93.
[48] 李郁旻. mPEG-PLGA 溫度敏感型水膠製備及其不同共聚物組成對藥物輸送系統之影響研究. 國立清華大學/化學工程研究所/碩士論文. 2010.
[49] Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev. 2001;53:321-39.
[50] Vasanthan N, Ly O. Effect of microstructure on hydrolytic degradation studies of poly (l-lactic acid) by FTIR spectroscopy and differential scanning calorimetry. Polym Degrad Stab. 2009;94:1364-72.
[51] Hay DL, von Fraunhofer JA, Chegini N, Masterson BJ. Locking mechanism strength of absorbable ligating devices. J Biomed Mater Res. 1988;22:179-90.
[52] 周明潔. 雙磷酸鹽類之骨質疏鬆藥物於新型可注射式溫感性載體之藥物釋放研究. 中原大學/奈米科技碩士學位學程/碩士論文. 2013.
[53] Yu L, Zhang Z, Zhang H, Ding J. Biodegradability and biocompatibility of thermoreversible hydrogels formed from mixing a sol and a precipitate of block copolymers in water. Biomacromolecules. 2010;11:2169-78.
[54] Hu SG, Liu HJ. Effect of soft segment on degradation kinetics in polyethylene glycol/poly(l-lactide) block copolymers. Polym Bull. 1993;30:669-76.
[55] McClung M, Harris ST, Miller PD, Bauer DC, Davison KS, Dian L, et al. Bisphosphonate therapy for osteoporosis: benefits, risks, and drug holiday. Am J Med. 2013;126:13-20.
[56] Russell RG, Watts NB, Ebetino FH, Rogers MJ. Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos Int. 2008;19:733-59.
[57] Lewiecki EM, Babbitt AM, Piziak VK, Ozturk ZE, Bone HG. Adherence to and gastrointestinal tolerability of monthly oral or quarterly intravenous ibandronate therapy in women with previous intolerance to oral bisphosphonates: a 12-month, open-label, prospective evaluation. Clin Ther. 2008;30:605-21.
[58] Tomalia DA, Naylor AM, Goddard WA. Starburst dendrimers: molecular-level control of zize, shape, surface chemistry, topology, and flexibility from atoms to macroscopic Matter. Angew Chem, Int Ed Engl. 1990;29:138-75.
[59] Fréchet JMJ. Dendrimers and other dendritic macromolecules: from building blocks to functional assemblies in nanoscience and nanotechnology. J Polym Sci, Part A: Polym Chem. 2003;41:3713-25.
[60] Liu M, Frechet JM. Designing dendrimers for drug delivery. Pharm Sci Technolo Today. 1999;2:393-401.
[61] Flory PJ, Rehner J. Statistical mechanics of cross‐linked polymer networks I. rubberlike elasticity. J Chem Phys. 1943;11:512-20.
[62] 許維廷. 以樹枝狀高分子作為多功能藥物載體之應用. 國立清華大學/化學工程研究所/碩士論文. 2007.
[63] Tomalia DA. Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog Polym Sci. 2005;30:294-324.
[64] Jansen JF, de Brabander-van den Berg EM, Meijer EW. Encapsulation of guest molecules into a dendritic box. Science. 1994;266:1226-9.
[65] Newkome GR, Woosley BD, He E, Moorefield CN, Guther R, Baker GR, et al. Supramolecular chemistry of flexible, dendritic-based structures employing molecular recognition. Chem Commun. 1996:2737-8.
[66] Newkome GR, Moorefield CN, Baker GR, Saunders MJ, Grossman SH. Unimolecular Micelles. Angew Chem, Int Ed Engl. 1991;30:1178-80.
[67] Friedenstein AJ, Piatetzky S, II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol. 1966;16:381-90.
[68] Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143-7.
[69] Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res. 2000;61:364-70.
[70] Lee KD, Kuo TK, Whang-Peng J, Chung YF, Lin CT, Chou SH, et al. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatol. 2004;40:1275-84.
[71] Hanson S, D''Souza RN, Hematti P. Biomaterial-mesenchymal stem cell constructs for immunomodulation in composite tissue engineering. Tissue Eng Part A. 2014;20:2162-8.
[72] Jiang L, Li Y, Xiong C. Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering. J Biomed Sci. 2009;16:65.
[73] Wintermantel E, Mayer J, Blum J, Eckert KL, Luscher P, Mathey M. Tissue engineering scaffolds using superstructures. Biomaterials. 1996;17:83-91.
[74] Wang F, Zhang YC, Zhou H, Guo YC, Su XX. Evaluation of in vitro and in vivo osteogenic differentiation of nano-hydroxyapatite/chitosan/poly(lactide-co-glycolide) scaffolds with human umbilical cord mesenchymal stem cells. J Biomed Mater Res A. 2014;102:760-8.
[75] Pasqui D, Torricelli P, De Cagna M, Fini M, Barbucci R. Carboxymethyl cellulose-hydroxyapatite hybrid hydrogel as a composite material for bone tissue engineering applications. J Biomed Mater Res A. 2014;102:1568-79.
[76] Ni P, Ding Q, Fan M, Liao J, Qian Z, Luo J, et al. Injectable thermosensitive PEG-PCL-PEG hydrogel/acellular bone matrix composite for bone regeneration in cranial defects. Biomaterials. 2014;35:236-48.
[77] Lin G, Cosimbescu L, Karin NJ, Tarasevich BJ. Injectable and thermosensitive PLGA-g-PEG hydrogels containing hydroxyapatite: preparation, characterization and in vitro release behavior. Biomed Mater. 2012;7:024107.
[78] Lai P-L, Hong D-W, Lin CT-Y, Chen L-H, Chen W-J, Chu IM. Effect of mixing ceramics with a thermosensitive biodegradable hydrogel as composite graft. Composites, B. 2012;43:3088-95.
[79] Yang T-I, Huang Y-C, Yang S-C, Yeh J-M, Peng Y-Y. Effect of hydroxyapatite particles on the rheological behavior of poly(ethylene glycol)-poly(lactic-co-glycolic acid) thermosensitive hydrogels. Mater Chem Phys. 2015;152:158-66.
[80] Duque G, Rivas D. Alendronate has an anabolic effect on bone through the differentiation of mesenchymal stem cells. J Bone Miner Res. 2007;22:1603-11.
[81] Guan M, Yao W, Liu R, Lam KS, Nolta J, Jia J, et al. Directing mesenchymal stem cells to bone to augment bone formation and increase bone mass. Nat Med. 2012;18:456-62.
[82] Yao W, Guan M, Jia J, Dai W, Lay YA, Amugongo S. Reversing bone loss by directing mesenchymal stem cells to bone. Stem cells. 2013;31:2003-14.
[83] Jia J, Yao W, Amugongo S, Shahnazari M, Dai W, Lay YA, et al. Prolonged alendronate treatment prevents the decline in serum TGF-beta1 levels and reduces cortical bone strength in long-term estrogen deficiency rat model. Bone. 2013;52:424-32.
[84] Robert L. Matrix biology: past, present and future. Pathol Biol (Paris). 2001;49:279-83.
[85] Kim SS, Gwak SJ, Kim BS. Orthotopic bone formation by implantation of apatite-coated poly(lactide-co-glycolide)/hydroxyapatite composite particulates and bone morphogenetic protein-2. J Biomed Mater Res A. 2008;87:245-53.
[86] Zhang X, Zhu L, Lv H, Cao Y, Liu Y, Xu Y, et al. Repair of rabbit femoral condyle bone defects with injectable nanohydroxyapatite/chitosan composites. J Mater Sci Mater Med. 2012;23:1941-9.
[87] Hoffman MD, Xie C, Zhang X, Benoit DS. The effect of mesenchymal stem cells delivered via hydrogel-based tissue engineered periosteum on bone allograft healing. Biomaterials. 2013;34:8887-98.
[88] He X, Liu Y, Yuan X, Lu L. Enhanced healing of rat calvarial defects with MSCs loaded on BMP-2 releasing chitosan/alginate/hydroxyapatite scaffolds. PloS one. 2014;9:e104061.
[89] Bendtsen ST, Quinnell SP, Wei M. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. J Biomed Mater Res A. 2017;105:1457-68.
[90] 葉獻彬. 生物可降解性聚乳酸高分子之合成與降解性質探討. 國立陽明大學/醫學工程研究所/碩士論文. 2000.
[91] Kan P, Lin X-Z, Hsieh M-F, Chang K-Y. Thermogelling emulsions for vascular embolization and sustained release of drugs. J Biomed Mater Res, Part B. 2005;75B:185-92.
[92] Mohandes F, Salavati-Niasari M, Fathi M, Fereshteh Z. Hydroxyapatite nanocrystals: simple preparation, characterization and formation mechanism. Mater Sci Eng C Mater Biol Appl. 2014;45:29-36.
[93] Wu H-C, Wang T-W, Sun J-S, Wang W-H, Lin F-H. A novel biomagnetic nanoparticle based on hydroxyapatite. Nanotechnol. 2007;18:165601/1-/9.
[94] Fu S, Guo G, Gong C, Zeng S, Liang H, Luo F, et al. Injectable biodegradable thermosensitive hydrogel composite for orthopedic tissue engineering. 1. Preparation and characterization of nanohydroxyapatite/poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) hydrogel nanocomposites. J Phys Chem B. 2009;113:16518-25.
[95] Velayudhan S, Ramesh P, Varma HK. Mechanical properties of hydroxyapatite-filled ethylene vinyl acetate copolymer composites: Effect of particle size and morphology. J Appl Polym Sci. 2011;119:1594-601.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊