跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/14 03:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林清濤
研究生(外文):Cing-Tao Lin
論文名稱:利用高除污能力碳球用以吸附氮氧化物之研究
論文名稱(外文):Preparation of Activated Carbon Sphere to adsorption NOX with high contaminant Removal EfficiencyEfficiency
指導教授:王雅玢游勝傑
指導教授(外文):Ya-Fen WangSheng-Jie You
學位類別:碩士
校院名稱:中原大學
系所名稱:環境工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:60
中文關鍵詞:氮氧化物水熱合成法活性碳吸附
外文關鍵詞:Nitrogen OxidesHydrothermal SynthesisActivated CarbonAdsorption
相關次數:
  • 被引用被引用:2
  • 點閱點閱:521
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氮氧化物可經由光化學反應而形成臭氧及光化學煙霧。此外,二氧化氮也會在空氣中氧化成硝酸與硝酸鹽,是造成酸雨的主因。活性碳為多孔性結構產物,具有高比表面積與不錯的吸附能力,目前廣泛應用於生活污水、工業污水、工廠廢氣及毒性氣體等淨化。
經SEM及BET分析結果可知,以葡萄糖作為活性碳之製備原料可獲得表面平整且光滑的碳球結構,在添加K2CO3活化後,可使活性碳具有更良好的孔隙度(孔徑約2.03 nm)及比表面積(1,181.5 m2/g)。另依粒徑分析結果來看,約有35%介於0.149~0.25 nm,約有50%介於0.106~0.149 nm,另約有15%小於0.106 nm。
在固定NOX濃度1,000 ppb下,利用3,000 ml/min、2,000 ml/min、1,000 ml/min等三種流量進行測試,係以最低流量1,000 ml/min的表現最佳,其最佳吸附濃度約490ppb,直至72小時,其濃度約達752ppb,仍未達飽和濃度。另在吸附量表現上,同樣以流量1,000 ml/min的表現最佳,24小時內累積吸附量可達364mg/g以上。
再生後活性碳在NOX濃度1,000 ppb與流量為3,000 ml/min下,直至24小時內其濃度仍可維持在890ppb,且其累積吸附量可達355mg/g。
此外,在NOX濃度1,000ppb及流量3,000 ml/min的測試環境下,市售活性碳的最佳吸附濃度約798ppb,飽和濃度到達時間約9小時,24小時累積吸附量約86mg/g;而本研究活性碳的最佳吸附濃度約730ppb,飽和濃度到達時間約19小時,24小時累積吸附量約268mg/g。兩者相較下,本研究活性碳之整體吸附能力遠高於市售活性碳。
由碘值分析結果來看,本研究自製活性碳之碘值約為2,291mg/g,若與台灣南部6座垃圾資源回收(焚化)廠粉狀活性碳之碘值的採購規格(600~1,250mg/g)相較下,本研究自製活性碳之碘值吸附能力則明顯優異許多。
由各不同流量之測試結果來看,本研究的實驗流速太快且滯留時間太短,而無法更有效呈現出本研究所製備之活性碳的最佳吸附效益。
Photochemical smog were formed when emissions containing nitrogen oxide, such as car exhaust, interact with volatile organic compounds in the presence of sunlight. The ground-level ozone were formed by the combination of oxygen in the compounds and the heat from the sunlight. Also, acid rain was formed by the combination of nitrogen dioxide and sulfite with moisture in the atmosphere, and were lead nitric and sulfuric acids. Activated carbon is a form of carbon processed to have small, low-volume pores that increase the surface area available for adsorption or chemical reactions. Active carbon adsorption has numerous applications in removing pollutants from air or water streams both in the field and in industrial processes such as: Drinking water filtration and Air purification.
In this study, the activated carbon with a smooth and smooth carbon ball structure can be obtained by using glucose as the raw material for the preparation of activated carbon. As a result of SEM and BET analysis shows the process of making activated carbon K2CO3 activation, might lead the activated carbon got a better porosity(pore size about 2.03 nm) and specific surface area (1,181.5 m2/g). According to the results of particle size analysis of activated carbon, about 35% of activated carbon is between 0.149 and 0.25 nm, and about 50% of activated carbon is between 0.106 and 0.149 nm, and about 15% of activated carbon less than 0.106 nm.
The NOx adsorption capacity of activated carbon was measured by three flow rates of 3,000 ml / min, 2,000 ml / min, and 1,000 ml / min at a fixed NOX concentration of 1,000 ppb. In the experiment of adsorption concentration, the lowest flow rate of 1,000 ml / min of the best performance, and the adsorption concentration of 490 ppb, after 72 hours its concentration was 752 ppb, may still not reach the saturation concentration. In addition, the adsorption capacity of as-prepared material was same as the flow of 1,000 ml / min were best performance in 24 hours cumulative adsorption capacity of up to 364 mg / g or more. However, under the experimental conditions NOX concentration of 1,000 ppb and flow rate of 3,000 ml / min. After the regeneration of activated carbon, its effect of adsorption can still maintain about 890ppb after 24, and the cumulative adsorption capacity of 355 mg / g.
In addition, the adsorption capacity of activated carbon and commercially available activated carbon for NOX was compared with that in the same NOX concentration of 1,000 ppb and flow rate of 3,000 ml / min. The results show that the optimum adsorption concentration of commercially activated carbon was 798 ppb, the saturation time was 9 hours, and the cumulative adsorption capacity was 86 mg / g after 24 hours; On the other hand, the optimum adsorption concentration of as-prepared activated carbon was 730 ppb, the saturation time reached was19 hours, and the cumulative adsorption capacity was about 268 mg / g after 24 hours. The overall adsorption capacity of activated carbon in this study was much higher than commercial activated carbon.
From the iodine value analysis results, the study of self-made activated carbon iodine value of about 2,291mg / g. Compared with the purchase standard (600 ~ 1,250mg / g) of the six kinds of powdered activated carbon in the garbage collection (incineration) plant in the south of Taiwan, the iodine value of the self-made activated carbon is obviously superior. The experimental results show that the experimental flow rate was too fast and the residence time was too short to show the best adsorption benefit of as-prepared activated carbon.
摘要
Abstract
目錄
圖目錄
表目錄
第一章 前言
1.1 研究緣起
1.2 研究目的
第二章 文獻回顧
2.1 活性碳介紹
2.2 碳球及其合成方法
2.3 吸附理論及模式
2.4 活性碳吸附塔
2.5 活性碳吸附能力指標
第三章 研究內容與方法
3.1 研究內容
3.2 實驗設備與藥品
3.3 活性碳製備
3.4 SEM掃描式電子顯微鏡分析
3.5 比表面積及孔隙結構分析
3.6 粒徑分析
3.7 碘值分析
3.8 吸附量計算
第四章 結果與討論
4.1 性質分析
4.2 吸(脫)附實驗
4.3 市售活性碳之比較
第五章 結論與建議
5.1 結論
5.2 建議
第六章 參考文獻
圖目錄
圖2.1 石墨化活性碳孔隙結構
圖2.2 非石墨化活性碳孔隙結構
圖2.3 常見含氧官能基結構示意圖
圖2.4 常見含氮官能基結構示意圖
圖2.5 醣類合成之碳球
圖2.6 醣類合成碳球之可能機制
圖2.7 推測葡萄糖在140℃下合成碳球之反應機制
圖2.8 六類等溫吸附線示意圖
圖2.9 Langmuir吸附位置示意圖
圖2.10 BET吸附位置示意圖
圖2.11 活性碳吸附情形與貫穿曲線示意圖
圖3.1 實驗架構流程圖
圖3.2 吸附測試設備示意圖
圖3.3 活性碳製備流程圖
圖3.4 活性碳脫附再生製備流程圖
圖4.1 Hydrochar SEM分析圖
圖4.2 Activated Carbon SEM分析圖
圖4.3 活性碳粒徑分佈圖
圖4.4 活性碳之碘吸附量與濃度關係圖
圖4.5 活性碳吸附NOX之時間與濃度關係圖(流量3,000ml/min)
圖4.6 活性碳吸附NOX之時間與濃度關係圖(流量2,000ml/min)
圖4.7 活性碳吸附NOX之時間與濃度關係圖(流量1,000ml/min)
圖4.8 活性碳吸附NOX之時間與濃度關係圖(不同流量24小時)
圖4.9 活性碳吸附NOX之時間與吸附量關係圖(不同流量24小時)
圖4.10 本研究初產活性碳與脫附再生後活性碳之吸附時間與濃度關係圖
圖4.11 本研究初產活性碳與脫附再生後活性碳之吸附量與時間關係圖
圖4.12 本研究活性碳與市售活性碳吸附NOX之時間與吸附濃度關係圖
圖4.13 本研究活性碳與市售活性碳吸附NOX之時間與吸附量關係圖
表目錄
表2.1 物理吸附與化學吸附之差異
表2.2 台灣南部垃圾資源回收(焚化)廠粉狀活性碳採購規格
表4.1 活性碳製備產率
表4.2 BET分析結果
表4.3 本研究活性碳在不同NOX流量下之Langmuir回歸值及最大吸附量
[1]陳文樟,簡介活性碳製造、分類及應用,中鼎月刊321期,2006,17-21。
[2]Clarke,M.J.,Municipal Waste Combustion.VIP-32,A&WMA,1993,966-969.
[3]廖志國,操作條件對微波再生活性碳效率之影響及產物分析研究,國立中山大學環境工程研究所碩士論文,1999。
[4]鄭慶堂,以椰子纖維製備活性碳之研究,2005。
[5]劉曾旭,活性碳製造技術及應用,產業調查與技術第 127 期,1998,84-97頁。
[6]S. Lowell, Joan E. Shields(1991), Powder Surface Area and Porosity,
CHAPMAN&HALL.
[7]蔡文田、張慶源,活性碳及其在空氣污染防治之應用,環境工程會刊,3,65-83頁,1993。
[8]Spivey,J.J.,1988,Recovery of volatile organics from small industrial sources, Environ. Prog., 7,p.31-40.
[9]Biniak, S., Pakula, M., Szymanski, G. S., and Swiatkowski, A.,1999 ,Effect of activated carbon surface oxygen-and/ornitrogen-containing groups on adsorption of copper(Ⅱ)Ions from aqueoussolution, Langmuir, 15, p.6117.
[10]Hall, C. R, and Holmes, R. J., 1992 ,The preparation and properties of some activated carbons modified by treatment with phosgene or chlorine,Carbon,30, p.173.
[11]Park,S.J.,and Kim,K.D., 2001 ,Influence of activation temperature on adsorption characteristics of activated carbon fiber composites, Carbon,39, p.1741-1746.
[12]Lahaye, J., The chemistry of carbon surfaces. Fuel 1998, 77 (6), 543-547.
[13]曾如玲,水蒸氣活化法製備松木活性碳及吸附特性,國立臺灣大學環境工程學碩士論文,2002。
[14]翁儷芯、李源弘、王松永,碳化溫度對木陶瓷之碳化物收率及部分物理性質之影響,林產工業,17,155-170頁,1998。
[15]A.Macia,et al.Carbon,1996,34,449-456.
[16]Wigmans, T.,“Industrial Aspects of Production and Use of Activated Carbons”, Carbon, 27, p13, 1989.
[17]Okasfe, O. and Bosch, H., “The Production and Characteriation of Activated Carbon from India”, March, 31, p3, 1980.
[18]Lua, A. C.; Guo, J., Activated carbon prepared from oil palm stone by one-step CO2 activation for gaseous pollutant removal. Carbon 2000, 38 (7),1089-1097
[19]Ahmadpour, A. and D. D., Do, “The preparation of Active Carbons from Coal by Chemical and Physical Activation”, Carbon, 34, p471, 1996
[20]Caturla, F., Molina-Sabio, M. and Rodrfguez-Reinoso F., “Preparation of Activated Carbon by Chemical Activation with ZnCl2”, Carbon, 29,p7, 999, 1991
[21]Wang Q et al.Carbon,2001,39,2211-2214
[22]Wang Q et al.Solid State Ionics,2002,152,43-50
[23]Y.D. Li Agew.Chem.Int.Ed.,2004,43,597-601
[24]Lou,X.W.,Archer,L.A.,et al.Advanced Materials,2008,20,3987-4019
[25]雷健明,以催化性化學氣相法合成即鑑定碳奈米材料,中國文化大學材料科學與奈米研究所碩士論文,2006。
[26]謝建德,活性碳孔隙結構與製備條件對液相吸附的影響,中原大學化學工程學系研究所碩士論文,1998。
[27]H.M.F. Freundlich, Phys. Chem.,1906, 57, 385-470
[28]白曛綾、盧重興、張國財、曾映棠、黃欣惠,操作績效自我評估管理制度手冊 活性碳吸附塔,科學工業園區管理局,2003。
[29]Hassler, 1967;Hutchins, 1973; Fettig and Zimmer, 1988.
[30]袁中新,廢輪胎熱裂解產物碳黑應用技術研發計畫-實廠測試,國科會研究報告,2003。
[31]袁鈺均,以微波反應活性碳循環床處理NOX之研究,國立台北科技大學環境規劃與管理研究所碩士論文,2005,56-57頁。
[32]王俊杰,以觸媒氧化法處理一氧化氮之研究,國立中山大學環境工程研究所碩士論文,1999。
[33]K.Muroyama, J. Hayashi, A. Sato, S. Takemoto, Tanso ,1996,172,95-99
[34]溫宇淳,製備具高除污能力碳球之研究,中原大學環境工程學系研究所碩士論文,2017。
[35]Okada, K., et al. 2003, Sci. 262, 179-193
[36]D. Adinata, et al. Bioresource Technology,2007 , 98, 145-149
[37]王明光、王敏昭,2003,實用儀器分析,合記書局有限公司。
[38]郭亞佩,酸式活化法製備活性碳在液相吸附及CO2捕獲,國立聯合大學環境與安全衛生工程學系研究所碩士論文,2010。
[39]李灝銘,活性碳處理異味問題面面觀,桃園縣大學校院產業環保技術服務團環保簡訊第7期,2010。
[40]財團法人國家衛生研究院國家毒物研究中心-教學知識專區(http://nehrc.nhri.org.tw/toxic/toxfaq_detail.php?id=142)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top