[1] Chun-Cheng Liu, Soon-Jyh Chang, Guan-Ying Huang, Ying-Zu Lin, “A 1V 11fJ/conversion-step 10bit 10MS/s asynchronous SAR ADC in 0.18µ m CMOS,” VLSI Circuits (VLSIC), 2010 IEEE Symposium, pp. 241-242, June 2010..
[2] C.-C. Liu, S.-J. Chang, G.-Y.Huang, and Y.-Z. Lin, “A 0.92mW10-bit 50-MS/s SAR ADC in 0.13μm CMOS Process,” IEEE Sym. on VLSI Circuits Dig. Tech. Papers, June, 2009, pp.236-237.
[3] G.-Y. Huang, C.-C. Liu,Y.-Z. Lin, S.-J. Chang, “A 10-bit 12-MS/ssuccessive approzimation ADC with 1.2pFinput capacitance,”IEEEA. Solid-State Circuits Conference, pp. 157-160 Nov. 2009.
[4] Masanori Furuta, Member, IEEE, Mai Nozawa, and Tetsuro Itakura, Member, IEEE, “A 10-bit, 40-MS/s, 1.21 mW Pipelined SAR ADC Using Single-Ended 1.5-bit/cycle Conversion Technique” ,IEEE Journal. solid-state circuit, vol.46, no.6, pp. 1360-1370, JUNE 2011.
[5] Young-Deuk Jeon, Jae-Won Nam, Kwi-Dong Kim, Tae Moon Roh, and Jong-KeeKwon, Member, IEEE, “A Dual-Channel Pipelined ADC With Sub-ADC Based on Flash–SAR Architecture” , IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESSBRIEFS, VOL. 59, NO. 11, pp. 741-745, November 2012.
[6] R. Jacob Baker,“CMOS Circuit Design, Layout , and Simulation,” John Wiley&Sons, Inc., 2005.
[7] Simon M. Louwsma, Ed J.M. van Tuiji, et al., “A 1.35 GS/s, 10b, 175 mW Time-Interleaved AD Converter in 0.13 μm CMOS,” IEEE Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2007, pp. 62-63.
[8]Adel S. Sedra, Kenneth C. Smith, “Microelectronic Circuits 6/e,” Oxford, Inc.,2011.
[9] Mohamed O. Shaker, Soumik Gosh, and Magdy A. Bayoumi, “A 1-GS/s 6-bit Flash ADC in 90 nm CMOS,” Circuits and Systems,2009. MWSCAS ''09. 52nd IEEE International Midwest Symposium, pp. 144–147, Aug 2009.
[10] K. Nagaraj, H. S. Fetterman, J. Anidjar, S. H. Lewis, and R. G. Renninger, “A 250-mW, 8-b, 52-Msamples/s parallel-pipelined A/D converter with reduced number of amplifiers,” IEEE J. Solid-State Circuits, vol. 32, pp. 312–320, Mar. 1997.
[11]黃奕瑋,(2015.7),一個十位元每秒兩千萬取樣頻率之二階逐漸趨近式類比數位轉換器,中原大學電子工程系研究所碩士班論文。[12]Davide Marano, Gaetano Palumbo, and Salvatore Pennisi, “A New Compact Low-
Power High-Speed Rail-to-Rail Class-B Buffer for LCD Applications,’’Journal of Display Technology, vol. 6, no. 5, pp. 184-190, May. 2010.
[13] C.-C. Liu, S.-J.Chang, G.-Y.Huang, and Y.-Z. Liu, “A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure,” IEEE J. solid-state circuit, vol.45, no.4, pp. 731-740,April 2010.
[14] S. Gambini and J. Rabaey, “Low-power successive approximation converter with 0.5-V supply in 90nm CMOS,” IEEE J.Solid-State Circuits, vol. 42, no. 11, pp.2348-2356, Nov.2007.
[15] A. M. Abo and P. R. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 599–606, May 1999. Bootstrapped
[16] J. Craninckx and G. Plas, “A 65fJ/Conversion-Step 0-to-50MS/s0-to-0.7mW 9b
Charge-sharing SARADC in 90nm Digital CMOS,”IEEE ISSCC Dig. Tech. Papers,
Feb. 2007, pp. 246-247. comparator
[17]S. Jiang, M. A. Do, K. S. Yeo, and W. M. Lim, “An 8-bit 200-MSample/s pipelined ADC with mixed-mode front-end S/H circuit,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 6, pp. 1430–1440, Jul. 2008. Comparator
[18]邱奕豪,(2013.7) ,一個十位元每秒兩千萬取樣頻率的逐漸趨近式類比數位轉換器,中原大學電子工程系研究所碩士班論文。[19] Lin Cong, “Pseudo C-2C ladder-based data converter technique, ”IEEE Trans. Circuits Syst. II, vol.48, pp.927-929,Oct. 2001.
[20] E. Alpman, H. Lakdawala, L. R. Carley, andK. Soumyanath, “A 1.1V 50 mW 2.5 GS/s 7 b time-interleaved C-2C SAR ADC in 45 nm LP digital CMOS,” in IEEE ISSCC Dig.Tech. Papers, Feb. 2009, pp.76–77.
[21] B. P. Ginsburg and A. P. Chandrakasan, “Highly interleaved 5b 250 MS/s ADC with redundant channels in 65 nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2008, pp.240–241.
[22]B. P. Ginsburg and A. P. Chandrakasan, “A 500 MS/s 5 b ADC in 65-nm CMOS,” in IEEE Symp.VLSI Circuits, Jun. 2007, pp.174–175.
[23] S. M. Louwsma, A. J. M. van Tuijl, M. Vertregt, and B. Nauta, “A
1.35 GS/s, 10 b, 175 mW time-interleaved AD converter in 0.13 μm CMOS,” in IEEE Symp. VLSI Circuits Dig., Jun. 2007, pp. 62–63.
[24] C.-C. Liu, S.-J.Chang, G.-Y.Huang, Y.-Z.Lin, C.-M.Huang, C.-H.Huang, L. Bu,
and C.-C. Tsai, “A 10b 100MS/s 1.13mW SAR ADC with Binary-Scaled Error
Compensation,” IEEE ISSCC Dig. Tech. Papers, February, 2010, pp. 386-387.
[25] Z. Cao, S. Yan, and Y. Li, “A 32mW 1.25GS/s 6b 2b/step SAR ADC in 0.13μm CMOS,” IEEE ISSCC Dig.Tech. Papers,pp. 542-543, Feb. 2008.
[26] Y. K. Chang, C. S. Wang, and C. K. Wang, “A 8-bit 500KS/s low power SAR ADC for bio-medical application,” IEEE A-SSCC Dig.Tech. Papers, Nov. 2007,pp. 228-231.switch
[27] B. P. Ginsburg and A. P. Chandrakasan, “500-MS/s 5-bit ADC in 65-nm CMOS with split capacitor array DAC,” IEEE J.Solid-State Circuits, vol. 42, no. 4, pp. 739-747,April.2007.switch
[28] Chun-Cheng Liu, Yi-Ting Huang, Guan-Ying Huang, Soon-Jyh Chang,” A 6-bit 220-MS/s time-interleaving SAR ADC in 0.18-µ m digital CMOS process,” VLSI Design, Automation and Test, 2009. VLSI-DAT’09. International Symposium, pp. 215–218,April 2009.
[29] B. P. Ginsburg and A. P. Chandrakasan, “Dual time-interleaved successive
approximation register ADCs for an ultra-wideband receiver,” IEEE J. Solid-State
Circuits, vol. 42, no. 2, pp. 247–257, Feb. 2007.