|
1.American Society of Clinical Oncology (ASCO). Head and Neck Cancer 2016 [cited 2016 May 3]; Available from: http://www.cancer.net/cancer-types/head-and-neck-cancer/overview. 2.The Oral Cancer Fondation. Risk Factors 2017; 2016:[Available from: http://oralcancerfoundation.org/understanding/risk-factors/. 3.Siegel, R., D. Naishadham, and A. Jemal, Cancer statistics, 2013. CA: A Cancer Journal for Clinicians, 2013. 63(1): p. 11-30. 4.Wyganowska-Swiatkowska, M. and J. Jankun, Plasminogen activation system in oral cancer: Relevance in prognosis and therapy (Review). Int J Oncol, 2015. 47(1): p. 16-24. 5.The Oral Cancer Fondation. Treatments 2017; Available from: http://oralcancerfoundation.org/treatment/. 6.Roy, A.S.A., Stifling New Cures: The True Cost of Lengthy Clinical Drug Trials. 2012, Manhattan Institute: FDA project report 7.Sano, D. and J.N. Myers, Xenograft models of head and neck cancers. Head & Neck Oncology, 2009. 1: p. 32-32. 8.Bais, M.V., M. Kukuruzinska, and P.C. Trackman, Orthotopic non-metastatic and metastatic oral cancer mouse models. Oral oncology, 2015. 51(5): p. 476-482. 9.Kelland, L., The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer, 2007. 7(8): p. 573-584. 10.Babu, A., N. Amreddy, and R. Ramesh, Nanoparticle-based cisplatin therapy for cancer. Ther Deliv, 2015. 6(2): p. 115-9. 11.Wang, D. and S.J. Lippard, Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov, 2005. 4(4): p. 307-20. 12.Enoiu, M., Jiricny, J., Scharer, O. D., Repair of cisplatin-induced DNA interstrand crosslinks by a replication-independent pathway involving transcription-coupled repair and translesion synthesis. Nucleic Acids Res, 2012. 40(18): p. 8953-64. 13.Decatris, M.P., Sundar, S., O’Byrne, K. J., Platinum-based chemotherapy in metastatic breast cancer: current status. Cancer Treatment Reviews, 2004. 30(1): p. 53-81. 14.Wheate, N.J., Walker, S., Craig, G. E., Oun, R., The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans, 2010. 39(35): p. 8113-27. 15.Duan, X., et al., Nanoparticle formulations of cisplatin for cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2016. 16.Guo, S., et al., Turning a water and oil insoluble cisplatin derivative into a nanoparticle formulation for cancer therapy. Biomaterials, 2014. 35(26): p. 7647-7653. 17.Guo, S., et al., Unmodified drug used as a material to construct nanoparticles: delivery of cisplatin for enhanced anti-cancer therapy. Journal of Controlled Release, 2014. 174: p. 137-142. 18.Greish, K., Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol Biol, 2010. 624: p. 25-37. 19.Kobayashi, H., Watanabe, Rira, Choyke, Peter L., Improving Conventional Enhanced Permeability and Retention (EPR) Effects; What Is the Appropriate Target? Theranostics, 2014. 4(1): p. 81-89. 20.Petros, R.A., DeSimone, Joseph M., Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov, 2010. 9(8): p. 615-627. 21.Yang, J., Liu, Wenwen, Sui, Meihua, Tang, Jianbin, Shen, Youqing,, Platinum (IV)-coordinate polymers as intracellular reduction-responsive backbone-type conjugates for cancer drug delivery. Biomaterials, 2011. 32(34): p. 9136-9143. 22.Aryal, S.H., Che-Ming Jack; Zhang, Liangfang,, Polymer−Cisplatin Conjugate Nanoparticles for Acid-Responsive Drug Delivery. ACS Nano, 2010. 4(1): p. 251-258. 23.Guo, S., et al., Lipid-coated Cisplatin nanoparticles induce neighboring effect and exhibit enhanced anticancer efficacy. ACS nano, 2013. 7(11): p. 9896-9904. 24.Guo, S., et al., Co-delivery of cisplatin and rapamycin for enhanced anticancer therapy through synergistic effects and microenvironment modulation. ACS nano, 2014. 8(5): p. 4996-5009. 25.Zhang, J., et al., Synergistic anti-tumor effects of combined gemcitabine and cisplatin nanoparticles in a stroma-rich bladder carcinoma model. Journal of Controlled Release, 2014. 182: p. 90-96. 26.Zhang, Y., Wang, Xiao-ju, Guo, Miao, Yan, Hu-sheng, Wang, Chen-hong, Liu, Ke-liang, Cisplatin-loaded polymer/magnetite composite nanoparticles as multifunctional therapeutic nanomedicine. Chinese Journal of Polymer Science, 2014. 32(10): p. 1329-1337. 27.American, C.S. Targeted Cancer Therapy. 2016 [cited 2016 August 15,]; Available from: http://www.cancer.org/treatment/treatmentsandsideeffects/treatmenttypes/targetedtherapy/targeted-therapy-toc. 28.Sanna, V., Pala, N., Sechi, M., Targeted therapy using nanotechnology: focus on cancer. Int J Nanomedicine, 2014. 9: p. 467-83. 29.Aydar, E.P., C. P. Djamgoz, M. B., Sigma receptors and cancer: possible involvement of ion channels. Cancer Res, 2004. 64(15): p. 5029-35. 30.Chen, W.H., et al., Nanoparticle delivery of HIF1alpha siRNA combined with photodynamic therapy as a potential treatment strategy for head-and-neck cancer. Cancer Lett, 2015. 359(1): p. 65-74. 31.Crottès, D.G., Hélène; Martin, Patrick; Borgese, Franck; Soriani, Olivier.,, The sigma-1 receptor: a regulator of cancer cell electrical plasticity? Frontiers in Physiology, 2013. 4: p. 175. 32.Lecaros, R.L., et al., Nanoparticle Delivered VEGF-A siRNA Enhances Photodynamic Therapy for Head and Neck Cancer Treatment. Mol Ther, 2016. 24(1): p. 106-16. 33.Banerjee, R., Tyagi, P., Li, S., Huang, L.,, Anisamide-targeted stealth liposomes: a potent carrier for targeting doxorubicin to human prostate cancer cells. Int J Cancer, 2004. 112(4): p. 693-700. 34.Dasargyri, A.H., Pablo; Christiansen, Ailsa; Proulx, Steven T., Detmar, Michael; Leroux, Jean-Christophe;, Findings questioning the involvement of Sigma-1 receptor in the uptake of anisamide-decorated particles. Journal of Controlled Release, 2016. 224: p. 229-238. 35.Goodwin, T.J. and L. Huang, On the article “Findings questioning the involvement of Sigma-1 receptor in the uptake of anisamide-decorated particles” [J. Control. Release 224 (2016) 229–238]: Letter to the Editor 1 (September 14, 2016). Journal of Controlled Release, 2016. 243: p. 382-385. 36.Allison, R.R., et al., Bio-nanotechnology and photodynamic therapy—State of the art review. Photodiagnosis and Photodynamic Therapy, 2008. 5(1): p. 19-28. 37.Yang, Y., et al., Nanoparticle delivery of pooled siRNA for effective treatment of non-small cell lung cancer. Mol Pharm, 2012. 9(8): p. 2280-9. 38.Noguti, J., et al., Metastasis from oral cancer: an overview. Cancer Genomics Proteomics, 2012. 9(5): p. 329-35. 39.Society, A.C. Oral Cavity and Oropharyngeal Cancer 2016; Available from: http://www.cancer.org/acs/groups/cid/documents/webcontent/003128-pdf.pdf. 40.The Oral Cancer Fondation. Oral Cancer Facts 2016 January [cited 2016 May 3]; Available from: http://www.oralcancerfoundation.org/facts/. 41.Giacomo Del Corso, A.V., Achille Tarsitano, Anita Gohel, Current trends in oral cancer: A systematic review. Cancer Cell & Microenvironment, 2016. 3(e1332). 42.Institute, N.C. Tumor grade. 2016. 43.Greene, F.L., & American Joint Committee on Cancer, AJCC Cancer Stagging Manual. 7th ed ed. 2010, New York: Springer. 44.Haddad , R.I. and D.M. Shin Recent Advances in Head and Neck Cancer. New England Journal of Medicine, 2008. 359(11): p. 1143-1154. 45.Slaughter, D.P., H.W. Southwick, and W. Smejkal, “Field cancerization” in oral stratified squamous epithelium. Clinical implications of multicentric origin. Cancer, 1953. 6(5): p. 963-968. 46.Forastiere, A., et al., Head and neck cancer. N Engl J Med, 2001. 345(26): p. 1890-900. 47.Huber, M.A. and B. Tantiwongkosi, Oral and Oropharyngeal Cancer. Medical Clinics of North America, 2014. 98(6): p. 1299-1321. 48.Patel, V., et al., Decreased Lymphangiogenesis and Lymph Node Metastasis by mTOR Inhibition in Head and Neck Cancer. Cancer research, 2011. 71(22): p. 7103-7112. 49.Fidler, I.J., The pathogenesis of cancer metastasis: the ''seed and soil'' hypothesis revisited. Nat Rev Cancer, 2003. 3(6): p. 453-458. 50.Wan, L., K. Pantel, and Y. Kang, Tumor metastasis: moving new biological insights into the clinic. Nat Med, 2013. 19(11): p. 1450-1464. 51.Saxena, M. and G. Christofori, Rebuilding cancer metastasis in the mouse. Mol Oncol, 2013. 7(2): p. 283-96. 52.Gilkes, D.M., G.L. Semenza, and D. Wirtz, Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat Rev Cancer, 2014. 14(6): p. 430-9. 53.Quail, D.F. and J.A. Joyce, Microenvironmental regulation of tumor progression and metastasis. Nat Med, 2013. 19(11): p. 1423-1437. 54.Bang, C.T., Thomas, Exosomes: New players in cell–cell communication. The International Journal of Biochemistry & Cell Biology, 2012. 44(11): p. 2060-2064. 55.Giancotti, F.G., Mechanisms governing metastatic dormancy and reactivation. Cell, 2013. 155(4): p. 750-64. 56.Sosa, M.S., P. Bragado, and J.A. Aguirre-Ghiso, Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer, 2014. 14(9): p. 611-22. 57.Pankova, K., et al., The molecular mechanisms of transition between mesenchymal and amoeboid invasiveness in tumor cells. Cell Mol Life Sci, 2010. 67(1): p. 63-71. 58.Valastyan, S. and R.A. Weinberg, Tumor Metastasis: Molecular Insights and Evolving Paradigms. Cell, 2011. 147(2): p. 275-292. 59.Joyce, J.A. and J.W. Pollard, Microenvironmental regulation of metastasis. Nat Rev Cancer, 2009. 9(4): p. 239-52. 60.Kumar, G.S. and B.S. Manjunatha, Metastatic tumors to the jaws and oral cavity. Journal of Oral and Maxillofacial Pathology : JOMFP, 2013. 17(1): p. 71-75. 61.Ferlito, A., et al., Incidence and Sites of Distant Metastases from Head and Neck Cancer. ORL, 2001. 63(4): p. 202-207. 62.Spiro, R.H., Distant metastasis in adenoid cystic carcinoma of salivary origin. Am J Surg, 1997. 174(5): p. 495-8. 63.Holsinger FC, M.J., Roberts DB, Byers RM, Clinicopathologic predictors of distant metastases from head and neck squamous cell carcinoma. 2000. 64.Kim J-W, K.K., Sung M-W, Rhee C-S, Choi S-H, Hwang CH, Park C II, Kim WH, Distant metastasis of adenoid cystic carcinoma in the head and neck. Poster, abstracts from 5th Int Conf on Head Neck Cancer, 2000. 65.Leo´n X, Q.M., Oru´ s C, del Prado Venegas M, Lo´ pez M, Distant metastases in head and neck cancer patients who achieved loco-regional control. Head & Neck, 2000. 66.de Bree R, D.E., Snow GB, Leemans CR, Screening for distant metastases in patients with head and neck cancer. Laryngoscope, 2000. 67.Hsu, L.-P. and P.-R. Chen, Distant metastases of head and neck squamous cell carcinomas-experience from eastern Taiwan. Tzu Chi Med J, 2005. 17(9). 68.Zhang, X., et al., A lymph node metastatic mouse model reveals alterations of metastasis-related gene expression in metastatic human oral carcinoma sublines selected from a poorly metastatic parental cell line. Cancer, 2002. 95(8): p. 1663-72. 69.Kim, S., Animal Models of Cancer in the Head and Neck Region. Clinical and Experimental Otorhinolaryngology, 2009. 2(2): p. 55-60. 70.Mognetti, B., F. Di Carlo, and G.N. Berta, Animal models in oral cancer research. Oral Oncology, 2006. 42(5): p. 448-460. 71.Hsu, Y.-C.C., Chun-Pin Huang, Wan-Ting Lee, Jeng-Woei, Effective treatment of 7,12-dimethylbenz(a)anthracene–induced hamster buccal pouch precancerous lesions by topical photosan-mediated photodynamic therapy. Head & Neck, 2012. 34(4): p. 505-512. 72.Supsavhad, W., et al., Animal models of head and neck squamous cell carcinoma. The Veterinary Journal, 2016. 210: p. 7-16. 73.Caulin, C., et al., Inducible activation of oncogenic K-ras results in tumor formation in the oral cavity. Cancer Res, 2004. 64(15): p. 5054-8. 74.Kim, S., et al., An orthotopic model of anaplastic thyroid carcinoma in athymic nude mice. Clin Cancer Res, 2005. 11(5): p. 1713-21. 75.Myers, J.N., et al., An orthotopic nude mouse model of oral tongue squamous cell carcinoma. Clin Cancer Res, 2002. 8(1): p. 293-8. 76.Sano, D., et al., The Effect of Combination Anti-Endothelial Growth Factor Receptorr and Anti-Vascular Endgthelial Growth Factor Receptor 2 Targeted Therap on Lymph Node Metastasis: A Study in an Orthotopic Nude Mouse Model of Squamous Cell Carcinoma of the OralTongue. Archives of otolaryngology--head & neck surgery, 2009. 135(4): p. 411-420. 77.Dinesman, A., et al., Development of a new in vivo model for head and neck cancer. Otolaryngol Head Neck Surg, 1990. 103(5 ( Pt 1)): p. 766-74. 78.Shintani, S., et al., Lymph node metastasis of oral cancer visualized in live tissue by green fluorescent protein expression. Oral Oncol, 2002. 38(7): p. 664-9. 79.Masood, R., et al., A novel orthotopic mouse model of head and neck cancer and lymph node metastasis. Oncogenesis, 2013. 2(9): p. e68. 80.Moriyama, E.H., et al., The influence of hypoxia on bioluminescence in luciferase-transfected gliosarcoma tumor cells in vitro. Photochem Photobiol Sci, 2008. 7(6): p. 675-80. 81.Shimomura, O., Bioluminescence Chemical Principles and Methods, ed. R. Edition. 2012, Singapore: World Scientific Publishing. 82.Wiles, S.R., Brian D. Frankel, Gad Kerton, Angela, Bioluminescent Monitoring of In Vivo Colonization and Clearance Dynamics by Light-Emitting Bacteria, ed. C.D.e. P.B. Rich. 2009: Humana Press, a part of Springer Science+Business Media, LLC 2009. 83.Khalil, A.A., et al., The Influence of Hypoxia and pH on Bioluminescence Imaging of Luciferase-Transfected Tumor Cells and Xenografts. International Journal of Molecular Imaging, 2013. 2013: p. 9. 84.Zinn, K.R., et al., Noninvasive bioluminescence imaging in small animals. Ilar j, 2008. 49(1): p. 103-15. 85.Chabner, B.A.R., Thomas G., Chemotherapy and the war on cancer. Nat Rev Cancer, 2005. 5(1): p. 65-72. 86.Caley, A.J., Rob, The principles of cancer treatment by chemotherapy. Surgery (Oxford), 2012. 30(4): p. 186-190. 87.Price, K.A.R. and E.E. Cohen, Current Treatment Options for Metastatic Head and Neck Cancer. Current Treatment Options in Oncology, 2012. 13(1): p. 35-46. 88.American Society of Clinical Oncology (ASCO). Chemotherapy for Oral Cavity and Oropharyngeal Cancer 2016 [cited 2017 February 20]; Available from: https://www.cancer.org/cancer/oral-cavity-and-oropharyngeal-cancer/treating/chemotherapy.html. 89.Dasari, S. and P. Bernard Tchounwou, Cisplatin in cancer therapy: Molecular mechanisms of action. European Journal of Pharmacology, 2014. 740: p. 364-378. 90.Eka Putra, G.N.P., L. Huang, and Y.-C. Hsu. Cisplatin encapsulated nanoparticle as a therapeutic agent for anticancer treatment. 2016. 91.Pearson, C. the role of chemistry in history: cisplatin. 29 April 2008 31 December 2014]; Available from: http://itech.dickinson.edu/chemistry/?p=736#more-736. 92.Wilson, J.J. and S.J. Lippard, Synthetic Methods for the Preparation of Platinum Anticancer Complexes. Chemical reviews, 2014. 114(8): p. 4470-4495. 93.Boulikas, T., Clinical overview on Lipoplatin: a successful liposomal formulation of cisplatin. Expert Opin Investig Drugs, 2009. 18(8): p. 1197-218. 94.Hartmann, J.T. and H.P. Lipp, Toxicity of platinum compounds. Expert Opin Pharmacother, 2003. 4(6): p. 889-901. 95.Di Francesco, A.M., A. Ruggiero, and R. Riccardi, Cellular and molecular aspects of drugs of the future: oxaliplatin. Cell Mol Life Sci, 2002. 59(11): p. 1914-27. 96.Cassidy, J. and J.L. Misset, Oxaliplatin-related side effects: characteristics and management. Semin Oncol, 2002. 29(5 Suppl 15): p. 11-20. 97.Siddik, Z.H., Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene, 2003. 22(47): p. 7265-79. 98.Sedletska, Y., M.J. Giraud-Panis, and J.M. Malinge, Cisplatin is a DNA-damaging antitumour compound triggering multifactorial biochemical responses in cancer cells: importance of apoptotic pathways. Curr Med Chem Anticancer Agents, 2005. 5(3): p. 251-65. 99.Wang, X., Fresh platinum complexes with promising antitumor activity. Anticancer Agents Med Chem, 2010. 10(5): p. 396-411. 100.LeRoy, A.F. and W.C. Thompson, Binding kinetics of tetrachloro-1,2-diaminocyclohexaneplatinum (IV) (tetraplatin) and cis-diamminedichloroplatinum (II) at 37 degrees C with human plasma proteins and with bovine serum albumin. Does aquation precede protein binding? J Natl Cancer Inst, 1989. 81(6): p. 427-36. 101.Harding, M., et al., A pilot study of carboplatin (JM8, CBDCA) and chlorambucil in combination for advanced ovarian cancer. British Journal of Cancer, 1988. 58(5): p. 640-643. 102.Bhargava, A. and U.N. Vaishampayan, Satraplatin: leading the new generation of oral platinum agents. Expert opinion on investigational drugs, 2009. 18(11): p. 10.1517/13543780903362437. 103.Kelland, L.R., et al., Ammine/amine platinum(IV) dicarboxylates: a novel class of platinum complex exhibiting selective cytotoxicity to intrinsically cisplatin-resistant human ovarian carcinoma cell lines. Cancer Res, 1992. 52(4): p. 822-8. 104.Bangham A.D., The Liposome Letters. 1983: Academic Press. 105.Bangham, A.D.S., M. M. Watkins, J. C., Diffusion of univalent ions across the lamellae of swollen phospholipids. Journal of Molecular Biology, 1965. 13(1): p. 238-IN27. 106.Melis Çağdaş, A.D.S.a.S.B., Liposomes as Potential Drug Carrier Systems for Drug Delivery. Nanotechnology and Nanomaterials "Application of Nanotechnology in Drug Delivery", 2014. 107.Linder, B.M.E.A.-T.M.R.M.C.G.M., Liposomes: A Review of Manufacturing Techniques and Targeting Strategies. Current Nanoscience, 2011. 7(3): p. 436-452. 108.Akbarzadeh, A.R.-S., Rogaie Davaran, Soodabeh Joo, Sang Woo Zarghami, Nosratollah Hanifehpour, Younes Samiei, Mohammad Kouhi, Mohammad Nejati-Koshki, Kazem, Liposome: classification, preparation, and applications. Nanoscale Research Letters, 2013. 8(1): p. 102-102. 109.Miao, L., et al., Nanoparticles with Precise Ratiometric Co-Loading and Co-Delivery of Gemcitabine Monophosphate and Cisplatin for Treatment of Bladder Cancer. Advanced functional materials, 2014. 24(42): p. 6601-6611. 110.Dawson, K.A., A. Salvati, and I. Lynch, Nanotoxicology: Nanoparticles reconstruct lipids. Nat Nano, 2009. 4(2): p. 84-85. 111.Mao, Z., X. Zhou, and C. Gao, Influence of structure and properties of colloidal biomaterials on cellular uptake and cell functions. Biomaterials Science, 2013. 1(9): p. 896-911. 112.Schroeder, A., et al., Ultrasound triggered release of cisplatin from liposomes in murine tumors. J Control Release, 2009. 137(1): p. 63-8. 113.Li, J.C., Yun-Ching Tseng, Yu-Cheng Huang, Leaf, Biodegradable Calcium Phosphate Nanoparticle with Lipid Coating for Systemic siRNA Delivery. Journal of controlled release : official journal of the Controlled Release Society, 2010. 142(3): p. 416-421. 114.Li, J.Y., Y. Huang, L., Calcium phosphate nanoparticles with an asymmetric lipid bilayer coating for siRNA delivery to the tumor. J Control Release, 2012. 158(1): p. 108-14. 115.Plummer, R., et al., A Phase I clinical study of cisplatin-incorporated polymeric micelles (NC-6004) in patients with solid tumours. Br J Cancer, 2011. 104(4): p. 593-8. 116.AP5280, drug profile AP 5280 2007, Springer International Publishing AG 117.L-NDDP, Drug profile L-NDDP or Aroplatin. 2011, Springer International Publishing 118.LiPlaCis, Drug profile lipid encapsulated cisplatin - LiPlasome Pharma 2017, Springer International Publishing 119.Lipoplatin, Drug profile cisplatin liposomal - Regulon 2017, Springer International Publishing 120.Genexol-PM®, Drug profile paclitaxel polymeric micelle formulation - Samyang 2017, Springer International Publishing 121.profile, D., Docetaxel nanopolymeric - Samyang 2016, Springer International Publishing 122.profile, D., Docetaxel nanopolymer - Pfizer BIND-014 2017, Springer International Publishing 123.Profile, D., Paclitaxel micelle formulation - Nippon Kayaku/NanoCarrier 2017, Springer International Publishing 124.Profile, D., Albumin-bound paclitaxel 2017, Springer International Publishing 125.Profile, D., SP 1049C 2011, Springer International Publishing 126.Guo, S. and L. Huang, Nanoparticles containing insoluble drug for cancer therapy. Biotechnology Advances, 2014. 32(4): p. 778-788. 127.profile, D., Paclitaxel poliglumex (Xyotax). 2015, Springer International Publishing 128.profile, D., Camptothecin CRLX101 (IT-101) - Cerulean Pharma. 2017, Springer International Publishing. 129.profile, D., Delimotecan MEN 4901/T-0128 2016, Springer International Publishing. 130.profile, D., Daunorubicin liposomal DaunoXome®. 2012, Springer International Publishing. 131.profile, D., Irinotecan sucrosofate - Merrimack/PharmaEngine 2017, Springer International Publishing. 132.profile, D., OSI 211 2007, Springer International Publishing. 133.profile, D., Doxorubicin liposomal ThermoDox®- Celsion Corporation 2017, Springer International Publishing. 134.profile, D., Paclitaxel liposome encapsulated NeoLipid™- INSYS Therapeutics 2016, Springer International Publisher. 135.profile, D., Panzem® NCD 2-Methoxyestradiol - CASI Pharmaceuticals 2015, Springer International Publishing. 136.Miao, L., et al., Nanoparticle modulation of the tumor microenvironment enhances therapeutic efficacy of cisplatin. Journal of Controlled Release, 2015. 217: p. 27-41. 137.Yang, T., et al. Anti-tumor Efficiency of Lipid-coated Cisplatin Nanoparticles Co-loaded with MicroRNA-375. Theranostics, 2016. 6, 142-154. 138.Zhong, Y., et al., Ligand-Directed Active Tumor-Targeting Polymeric Nanoparticles for Cancer Chemotherapy. Biomacromolecules, 2014. 15(6): p. 1955-1969. 139.CabralH, et al., Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nano, 2011. 6(12): p. 815-823. 140.Dasargyri, A., C.D. Kümin, and J.-C. Leroux, Targeting Nanocarriers with Anisamide: Fact or Artifact? Advanced Materials, 2017. 29(7): p. 1603451-n/a. 141.Cobos, E.J.E., J. M. Nieto, F. R. Cendán, C. M. Del Pozo, E., Pharmacology and Therapeutic Potential of Sigma(1) Receptor Ligands. Current Neuropharmacology, 2008. 6(4): p. 344-366. 142.Maurice, T. and T.-P. Su, The Pharmacology of Sigma-1 Receptors. Pharmacology & therapeutics, 2009. 124(2): p. 195-206. 143.Mach, R.H., C. Zeng, and W.G. Hawkins, The σ2 Receptor: A Novel Protein for the Imaging and Treatment of Cancer. Journal of Medicinal Chemistry, 2013. 56(18): p. 7137-7160. 144.Chen, W.H.L., R. L. Tseng, Y. C. Huang, L. Hsu, Y. C., Nanoparticle delivery of HIF1alpha siRNA combined with photodynamic therapy as a potential treatment strategy for head-and-neck cancer. Cancer Lett, 2015. 359(1): p. 65-74. 145.Allen, T.M., Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer, 2002. 2(10): p. 750-763. 146.Banerjee, R., et al., Anisamide-targeted stealth liposomes: A potent carrier for targeting doxorubicin to human prostate cancer cells. International Journal of Cancer, 2004. 112(4): p. 693-700. 147.Zhang, Y., W.Y. Kim, and L. Huang, Systemic delivery of gemcitabine triphosphate via LCP nanoparticles for NSCLC and pancreatic cancer therapy. Biomaterials, 2013. 34(13): p. 3447-58. 148.Chono, S., et al., An efficient and low immunostimulatory nanoparticle formulation for systemic siRNA delivery to the tumor. J Control Release, 2008. 131(1): p. 64-9. 149.Kim, S.K., M.B. Foote, and L. Huang, Targeted delivery of EV peptide to tumor cell cytoplasm using lipid coated calcium carbonate nanoparticles. Cancer Lett, 2013. 334(2): p. 311-8. 150.Liu, D., et al., Theranostic nanoscale coordination polymers for magnetic resonance imaging and bisphosphonate delivery. Journal of Materials Chemistry B, 2014. 2(46): p. 8249-8255. 151.Della Rocca, J., et al., Polysilsesquioxane nanoparticles for targeted platin-based cancer chemotherapy by triggered release. Angew Chem Int Ed Engl, 2011. 50(44): p. 10330-4. 152.Lu, Y.-J., et al., Dual targeted delivery of doxorubicin to cancer cells using folate-conjugated magnetic multi-walled carbon nanotubes. Colloids and Surfaces B: Biointerfaces, 2012. 89: p. 1-9. 153.Li, L., et al., Doxorubicin-loaded, charge reversible, folate modified HPMA copolymer conjugates for active cancer cell targeting. Biomaterials, 2014. 35(19): p. 5171-5187. 154.El-Gogary, R.I., et al., Polyethylene glycol conjugated polymeric nanocapsules for targeted delivery of quercetin to folate-expressing cancer cells in vitro and in vivo. ACS Nano, 2014. 8(2): p. 1384-401. 155.Chen, Y.-C., et al., Polymersomes conjugated with des-octanoyl ghrelin and folate as a BBB-penetrating cancer cell-targeting delivery system. Biomaterials, 2014. 35(13): p. 4066-4081. 156.Gaspar, M.M., et al., Targeted delivery of transferrin-conjugated liposomes to an orthotopic model of lung cancer in nude rats. J Aerosol Med Pulm Drug Deliv, 2012. 25(6): p. 310-8. 157.Liu, G., et al., Transferrin Modified Graphene Oxide for Glioma-Targeted Drug Delivery: In Vitro and in Vivo Evaluations. ACS Applied Materials & Interfaces, 2013. 5(15): p. 6909-6914. 158.Neves, S., et al., Transferrin lipoplex-mediated suicide gene therapy of oral squamous cell carcinoma in an immunocompetent murine model and mechanisms involved in the antitumoral response. Cancer Gene Ther, 2008. 16(1): p. 91-101. 159.Vaidya, B. and S.P. Vyas, Transferrin coupled vesicular system for intracellular drug delivery for the treatment of cancer: Development and characterization. Journal of Drug Targeting, 2012. 20(4): p. 372-380. 160.Takahashi, K., et al., Establishment and characterization of a cell line (SAS) from poorly differentiated human squamous cell carcinoma of the tongue. Journal of The Japanese Stomatological Society, 1989. 38(1): p. 20-28. 161.Szaniszlo, P., et al., Temporal Characterization of Lymphatic Metastasis in an Orthotopic Mouse Model of Oral Cancer. Head & neck, 2014. 36(11): p. 1638-1647. 162.Kyrylkova, K., et al., Detection of Apoptosis by TUNEL Assay, in Odontogenesis: Methods and Protocols, C. Kioussi, Editor. 2012, Humana Press: Totowa, NJ. p. 41-47. 163.Zamble, D.B. and S.J. Lippard, Cisplatin and DNA repair in cancer chemotherapy. Trends Biochem Sci, 1995. 20(10): p. 435-9. 164.Chu, G., Cellular responses to cisplatin. The roles of DNA-binding proteins and DNA repair. J Biol Chem, 1994. 269(2): p. 787-90. 165.Scanlon, K.J., et al., Cisplatin resistance in human cancers. Pharmacol Ther, 1991. 52(3): p. 385-406. 166.Zamble, D.B., T. Jacks, and S.J. Lippard, p53-dependent and -independent responses to cisplatin in mouse testicular teratocarcinoma cells. Proceedings of the National Academy of Sciences of the United States of America, 1998. 95(11): p. 6163-6168. 167.Gupta, G.P. and J. Massague, Cancer metastasis: building a framework. Cell, 2006. 127(4): p. 679-95. 168.Pabla, N. and Z. Dong, Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int, 2008. 73(9): p. 994-1007. 169.Velinova, M.J., et al., Preparation and stability of lipid-coated nanocapsules of cisplatin: anionic phospholipid specificity. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2004. 1663(1–2): p. 135-142. 170.N, P.F., Platinum formulations as anticancer drugs clinical and pre-clinical studies. Curr Top Med Chem, 2011. 11(21): p. 2623-31. 171.Ding, Y., et al., Encapsulation of cisplatin in a pegylated calcium phosphate nanoparticle (CPNP) for enhanced cytotoxicity to cancerous cells. Journal of Colloid and Interface Science, 2017. 493: p. 181-189. 172.Alam, N., et al., Reduced toxicological manifestations of cisplatin following encapsulation in folate grafted albumin nanoparticles. Life Sciences, 2015. 142: p. 76-85. 173.Endo, K., et al., Tumor-targeted chemotherapy with the nanopolymer-based drug NC-6004 for oral squamous cell carcinoma. Cancer Sci, 2013. 104(3): p. 369-74. 174.Killion, J.J., R. Radinsky, and I.J. Fidler, Orthotopic models are necessary to predict therapy of transplantable tumors in mice. Cancer Metastasis Rev, 1998. 17(3): p. 279-84. 175.Cabanillas, R.S., P. Rodrigo, J. P. Astudillo, A. Suarez, C. Chiara, M. D., [Orthotopic murine model of head and neck squamous cell carcinoma]. Acta Otorrinolaringol Esp, 2005. 56(3): p. 89-95. 176.Vahle, A.K., et al., Optimization of an orthotopic murine model of head and neck squamous cell carcinoma in fully immunocompetent mice--role of toll-like-receptor 4 expressed on host cells. Cancer Lett, 2012. 317(2): p. 199-206. 177.Gleysteen, J.P., et al., Fluorescent labeled anti-egfr antibody for identification of regional and distant metastasis in a preclinical xenograft model. Head & neck, 2008. 30(6): p. 782-789. 178.Rosenthal, E.L., et al., Use of fluorescent labeled anti–epidermal growth factor receptor antibody to image head and neck squamous cell carcinoma xenografts. American Association for Cancer Research, 2007. 6(4): p. 1230-1238. 179.Sweeny, L., et al., CD147 and AGR2 expression promote cellular proliferation and metastasis of head and neck squamous cell carcinoma. Exp Cell Res, 2012. 318(14): p. 1788-98. 180.Henson, B., et al., An orthotopic floor-of-mouth model for locoregional growth and spread of human squamous cell carcinoma. Journal of Oral Pathology & Medicine, 2007. 36(6): p. 363-370. 181.Nomura, T., et al., Establishment of a murine model of bone invasion by oral squamous cell carcinoma. Oral Oncol, 2007. 43(3): p. 257-62. 182.Fitzgerald, K.A., et al., A novel, anisamide-targeted cyclodextrin nanoformulation for siRNA delivery to prostate cancer cells expressing the sigma-1 receptor. International Journal of Pharmaceutics, 2016. 499(1–2): p. 131-145. 183.Misra, S.K., et al., Co-liposomes having anisamide tagged lipid and cholesteryl tryptophan trigger enhanced gene transfection in sigma receptor positive cells. Colloids and Surfaces B: Biointerfaces, 2016. 142: p. 130-140. 184.Garg, N.K., et al., Site specific/targeted delivery of gemcitabine through anisamide anchored chitosan/poly ethylene glycol nanoparticles: An improved understanding of lung cancer therapeutic intervention. European Journal of Pharmaceutical Sciences, 2012. 47(5): p. 1006-1014. 185.Kim, J.H.P., Dong Jun; Yun, Ji Chul; Jung, Myeong Hee; Yeo, Hee Dong; Kim, Hyun-Jung; Kim, Dong Wook; Yang, Jung Ill; Lee, Gyeong-Won; Jeong, Sang-Ho; Roh, Gu Seob; Chang, Se-Ho., Human adipose tissue-derived mesenchymal stem cells protect kidneys from cisplatin nephrotoxicity in rats. American Journal of Physiology - Renal Physiology, 2012. 302(9): p. F1141-F1150. 186.Datta, K., et al., Sensitizing glioma cells to cisplatin by abrogating the p53 response with antisense oligonucleotides. Cancer Gene Ther, 2004. 11(8): p. 525-531. 187.Massey, A., et al., DNA mismatch repair and acquired cisplatin resistance in E. coli and human ovarian carcinoma cells. DNA Repair (Amst), 2003. 2(1): p. 73-89. 188.Allred, D.C., et al., Association of p53 protein expression with tumor cell proliferation rate and clinical outcome in node-negative breast cancer. J Natl Cancer Inst, 1993. 85(3): p. 200-6. 189.Taylor, W.R. and G.R. Stark, Regulation of the G2/M transition by p53. Oncogene, 2001. 20(15): p. 1803-15.
|