跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/19 23:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:谷思汀
研究生(外文):Gusti Ngurah Putu Eka Putra
論文名稱:標靶奈米順鉑傳輸技術應用於口腔癌移轉模型治療之研究
論文名稱(外文):Targeted Delivery of Lipid Platinum Chloride Nanoparticles in Metastatic Oral Cancer Model Treatment Study
指導教授:許毅芝 博士
指導教授(外文):Yih-Chih Hsu, Ph.D.
學位類別:碩士
校院名稱:中原大學
系所名稱:奈米科技碩士學位學程
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:114
中文關鍵詞:轉移口腔癌藥物傳遞微脂體標靶治療順鉑
外文關鍵詞:Metastasisoral cancerdrug deliveryliposometargeted therapycisplatin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:253
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
轉移為癌症嚴重性重要指標,因 90 %癌症死亡與癌症轉移有相關性。於口腔癌病例中,約50 %的轉移行口腔癌病患,在5年內預後生存率下降約30 %。因此本次研究,計畫模擬口腔癌轉移,因此將6.3×105個SAS-G418細胞接種到裸鼠的舌頭上,建立模擬原位轉移性口腔癌模型。並在SAS-G418細胞接種後第7天,觀察到宮頸區域包括淺表型頸淋巴結(SCL),深部頸淋巴結(DCL)和頜下腺(SG),是否有近端轉移發生。建立的轉移模型目的為評估脂質 - 氯化鉑納米顆粒(LPC NP),是否對原位轉移性口腔癌模型有達到治療效果。於本次實驗所採用的LPC NPs粒徑為23.8±1.2 nm,LPC NPs外圍接上標靶物質氨基乙基茴香酰胺(aminoethyl anisamide),目的靶向的SAS細胞模表面所過度表達的sigma 受體。 在本次研究中,預合成 LPC NP的CDDP前趨物產率為91.6±6.7 wt%,LPC NPs的CDDP包封率和藥物載量%分別為2.4±0.1wt%和89.14±8.91wt%。體外細胞存活率顯示,LPC NPs與CDDP相比顯著誘導細胞死亡(p <0.05),IC50數據顯示對於口腔癌細胞珠LPC NP 比CDDP 有效治療2.4~2.8倍(SAS: IC50 7±1.7μM LPC,17±1.7μM CDDP;SCC4 IC50: 5±4.6μM LPC,14±1.7μM CDDP)。
使用Kaplan-Meier生存分析,LPC_AEAA(-) 和LPC_AEAA(+)與CDDP或PBS組相比,顯示與動物存活率有顯著性差異(P <0.001)。然而LPC_AEAA(-) 組與LPC_AEAA(+)組相比,動物存活率無顯著性差異(P> 0.05),PBS組與CDDP組相比無統計學意義(P> 0.05)。此外與PBS(19天),CDDP(22天)相比,LPC_AEAA(-)和LPC_AEAA(+)的動物存活平均值顯著延長 (P<0.001),其中LPC_AEAA(-)和LPC_AEAA(-)分別為80天和89天。 LPC治療組在細胞增殖(Ki-67),腫瘤微血管(CD31),DNA損傷(TP53)和凋亡(切割的半胱天冬酶-3和TUNEL測定)標記物的IHC分析中顯示出顯著差異(P <0.001)。在LPC處理組中,總P53的蛋白質水平和P53對絲氨酸15的磷酸化在單個小鼠上變化。此外與CDDP或PBS組相比,LPC_AEAA(-) (P <0.05)和LPC_AEAA(+)(P <0.001),觀察到cleaved caspase-3蛋白水平的顯著誘導。
LPC NPs治療組肝、腎、肌肉功能各項指標差異無統計學意義(P>0.05),但CDDP組在肝臟(天冬氨酸氨基轉移酶,AST)表達差異有統計學意義(P <0.05),腎臟(血尿素氮,BUN)和肌肉(乳酸脫氫酶,LDH)功能。結果表明,LPC NPs與CDDP相比具有最小的副作用。通過酶聯免疫吸附測定(ELISA)檢測細胞因子炎症因子(IL-6,IL-12和INF-γ)的活化無差異(P> 0.05)。總體而言,我們證明LPC NPs可以大大提高順鉑的抗癌作用,延長動物存活率,可能是治療晚期HOSCC的潛在抗轉移藥物。
Metastasis is one hallmark of cancers responsible for 90% of cancer-related deaths. In oral cancer, ~50% of metastases have found at the prognosis declining ~30% of the 5-year survival rate. In this study, orthotopic metastatic oral cancer model was established by inoculation 6.3 x 105 SAS-G418 cells onto tongue of nude mice. The metastasis was observed to cervical area including superficial cervical lymph node (SCL), deep cervical lymph node (DCL) and submandibular gland (SG) on day 7 post SAS-G418 cells inoculation. The established metastasis model allowed to further therapeutic evaluation of lipid-platinum-chloride nanoparticles (LPC NPs). The measured LPC NPs size was 23.8±1.2nm and enhanced with outer leaflet of aminoethyl anisamide, a ligand of overexpressed sigma receptor on the surface of SAS cells for targeted therapy. The %yield of CDDP precursor was 91.6±6.7wt%, but the %encapsulation efficiency and %drug loading of LPC NPs were 2.4±0.1wt% and 89.14±8.91wt%, respectively. In vitro cell viability showed that LPC NPs significantly induced cell death (p<0.05) and promoted 2.4 or 2.8 folds stronger to reach IC50 on SAS (7±1.7µM LPC, 17±1.7µM CDDP) and SCC4 (5±4.6µM LPC, 14±1.7µM CDDP) cells, respectively.
LPC_AEAA(-) and LPC_AEAA(+) showed a significant difference (P<0.001) in animal survival rate analyzed using Kaplan-Meier survival analysis compared to CDDP or PBS group. However, LPC_AEAA(-) group showed no significant difference (P>0.05) in animal survival rate compared to LPC_AEAA(+) group and so did PBS group compared to CDDP group. In addition, the average of animal survival in LPC_AEAA(-) and LPC_AEAA(+) were significantly prolonged (P<0.001) compared to PBS (19 days), CDDP (22 days), where animal survival days for LPC_AEAA(-) and LPC_AEAA(-) were 80 and 89 days, respectively. LPC-treated groups showed significantly different (P<0.001) on IHC analysis against cell proliferation (Ki-67), tumor microvessel (CD31), DNA damage (TP53), and apoptosis (cleaved caspase-3 and TUNEL assay) markers. The protein levels of total P53 and phosphorylation of P53 on serine 15 enhanced on LPC-treated groups but varied on individual mouse. In addition, a significant induction of cleaved caspas-3 protein level was observed on LPC_AEAA(-) (P<0.05) and LPC_AEAA(+) (P<0.001) compared to CDDP or PBS group.
LPC NPs-treated groups showed no difference (P>0.05) in all parameters of liver, kidney, and muscle functions compared to PBS group, but CDDP group showed significant difference (P<0.05) on some markers including liver (aspartate aminotransferase, AST), kidney (blood urea nitrogen, BUN) and muscle (lactate dehydrogenase, LDH) functions. Results suggest that LPC NPs served minimum side effects compared to CDDP. No difference (P>0.05) activation of cytokines inflammatory factors (IL-6, IL-12 and INF-γ) were detected by enzyme-linked immunosorbent assay (ELISA). Overall, we demonstrated that LPC NPs highly improved the anticancer effect of cisplatin, prolonged animal survival rate, and could be a potential antimetastatic drug for treatment against advanced HOSCC
Table of Contents
摘要 I
Abstract III
Acknowledgments V
Table of Contents VII
List of Figures X
List of Tables XII
List of abbreviations XIII
Chapter I Introduction 1
1.1 Objectives 3
Chapter II Research Outline 4
2.1 Experimental Design 4
Chapter III Literature Reviews 5
3.1 Introduction of Oral and Oropharyngeal Cancer 5
3.1.2 Carcinogenesis of Oral and Oropharyngeal Cancer 7
3.2 Mechanism of Metastases 9
3.2.1 Metastasis of Oral Cancer 16
3.2.2 Animal Model in Head and Neck Cancer 17
3.2.2.1 Carcinogen Induced Model 17
3.2.2.2 Transgenic Model 17
3.2.2.3 Orthotopic Metastasis Animal Model 18
3.2.3 Monitoring Tumor Growth In Vivo using Imaging Technologies 21
3.2.3.1 Bioluminescence Imaging (BLI) 21
3.3 Cancer Therapy 22
3.3.1 Chemotherapy 22
3.3.1.1 Cisplatin (cis-diamminedichloroplatinum(II), CDDP) 23
3.3.1.2 Liposome Technology Development 26
3.3.2.1 Lipid Platinum Chloride Nanoparticles (LPC NPs) 34
3.3.2.2 Sigma Receptor and Aminoethyl Anisamide for Targeted Therapy 36
Chapter IV Methodology 43
4.1 Cell cultures 43
4.1.1 SAS or SCC4 Stable Clones Establishment 43
4.1.2 SAS or SCC4 cell viability assay 44
4.2 Syntheses of Lipid Platinum Chloride Nanoparticles (LPC NPs) 44
4.2.1 Synthesis of CDDP Precursor 44
4.2.2 Synthesis of CDDP NPs or LPC NPs 44
4.2.3 Optimization the Encapsulation Efficiency (EE) of CDDP in LPC NPs 45
4.2.4 Characterization of CDDP NPs or LPC NPs 45
4.2.5 Drug Loading Measurement 46
4.3 Animal Study 46
4.3.1 Animal Strain 46
4.3.1.1 Establishment of Orthotopic Metastatic Oral Cancer 46
4.3.1.2 Pilot Study of Starting Time Point of Metastasis Condition 47
4.3.1.3 In vivo Study Design and Treatment Protocol 47
4.3.1.2 Bioluminescence Imaging (BLI) 48
4.3.2 Histoathologycal Assay for Metastases Confirmation 48
4.3.2.1 Hematoxylin and Eosin Staining 48
4.3.2.2 Cytokeratin-5 Immunohistochemistry Staining 48
4.4. In vivo Therapeutic Effect 49
4.4.1 Preliminary Study of LPC NPs Therapeutic Effect 49
4.5 Western blot assay 51
4.5 Histology Staining Pre and Post Therapy 51
4.5.1 Hematoxylin and Eosin Staining 51
4.5.2 Ki-67 Immunohistochemistry Staining 52
4.5.3 CD31 Immunohistochemistry Staining 52
4.5.4 Cleaved caspase-3 Immunohistochemistry Staining 52
4.5.6 TUNEL Assay 53
4.6 In vivo Toxicity Assay 53
4.7 Statistical Analysis 53
Chapter V Results 55
5.1 CDDP Precursor Synthesis Results 55
5.2 LPC NPs Synthesis Results 55
5.3 Optimization the Encapsulation Efficiency (EE) of CDDP in LPC NPs 56
5.4 LPC NPs Drug loading (DL) Measurement 56
5.5 Characterization of LPC NPs 57
5.6 SAS or SCC4 Stable Clones 59
5.7 In Vitro Cell Viability 59
5.7.1 MTT Assay 59
5.8 In Vivo Study 63
5.8.1 Establishment of Orthotopic Metastasis Animal Model 63
5.8.2 Validation of Metastases Condition 64
5.8.2.1 Validation of Metastasis Animal Model using IVIS 64
5.8.2.2 Validation of Metastasis Animal Model Histopathological Staining 65
5.9 In Vivo Study of LPC NPs Treatment 74
5.10 Histopathological Analysis Post Treatment 81
5.11 Immunohistochemistry (IHC) Analysis 84
5.12 Western Blot Assays 93
5.13 In Vivo Toxicity Analysis 94
Chapter VI Discussions 96
Chapter VII Conclusion 103
References 104
Appendix 1 Meeting Minutes 113



List of Figures
Figure 2.1 Flowchart of experimental design 4
Figure 3.1 The structure of oral cavity and oropharyngeal area 5
Figure 3.2 Models of genetic instability and progression in head and neck cancer 8
Figure 3.3 Clinical, pathological, and molecular progression of oral cancer 9
Figure 3.4 Schematic representation of metastasis model purposed by Wen et al. 10
Figure 3.5 Schematic representation of the multiple stages of metastatic 11
Figure 3.6 Hypoxia is one supportive condition for metastases 12
Figure 3.7 A collective network supporting metastatic dissemination and colonization at secondary sites 13
Figure 3.8 Metastasis arise from residual disseminated tumor cells (DTCs) 14
Figure 3.9 Angiogenesis visualized of SAS-GFP cells on othotopic mouse model 20
Figure 3.10 Orthotopic mouse model of SAS-GFP cell 20
Figure 3.11 Reaction mechanism of bioluminescence signals (BLS) 21
Figure 3.12 Chemical structure of clinically used platinum-based anticancer drugs 23
Figure 3.13 Four possible behaviour of bifunctional adducts by 24
Figure 3.14 Mechanism of cisplatin-mediated cellular effects 25
Figure 3.15 Illustration of liposome structure and the carried-able drugs moieties 27
Figure 3.16 Cellular uptake routes of nanoparticles 28
Figure 3.17 Scheme to synthesis cisplatin 34
Figure 3.18 Scheme to synthesis LPC NPs 35
Figure 3.19 In vitro and in vivo illustration of LPC NPs neighboring effect 36
Figure 3.20 Confidence of sigma receptor compartments in subcellular localization, the figure is adapted from Genecard system 38
Figure 3.21 mRNA expression of SIGMAR1 in normal human tissues 38
Figure 3.22 Proteomics protein expression of SIGMAR1 in normal 39
Figure 3.23 Sigma receptor and aminoethyl anisamide targeting ligand 40
Figure 4.1 Cell inoculation site and tumor lesion appearance of established orthotopic metastasis model 47
Figure 4.2 Tongue and salivary glands harvested from the established mouse model 47
Figure 4.3 Preliminary study design and result 50
Figure 5.1 Characterization of LPC core nanoparticles 58
Figure 5.2 Characterization of LPC nanoparticles 58
Figure 5.3 Establishment of SAS or SCC4 stable clones 59
Figure 5.4 Cell viability of SAS and SCC4 cells treated with CDDP and LPC NPs. 62
Figure 5.5 Establishment of metastasis oral cancer mouse model 65
Figure 5.6 Negative and positive control of metastasis validation 67
Figure 5.7 Histopathological staining of mouse metastatic oral cancer. 69
Figure 5.8 Histopathological staining of local invasion of metastasis condition of the established animal model. 73
Figure 5.9 Therapeutic effect of four designed treatment groups 77
Figure 5.10 In vivo imaging of treated group. 78
Figure 5.11 SCC4-G418 cells were unable to form tumor lesion at different cell amounts. 79
Figure 5.12 Survival curve and body weight of 4 treatment groups 80
Figure 5.13 Tongue and salivary glands of 4 treatment groups. 81
Figure 5.14 Observable appearance of tongue LPC NPs treated groups and CDDP side effect. 82
Figure 5.15 Hematoxylin and eosin (H&E) staining. 83
Figure 5.16 Immunohistochemistry (IHC) staining. 89
Figure 5.17 Immunohistochemistry (IHC) staining of tongue tumor and the quantifications. 91
Figure 5.18 Immunohistochemistry (IHC) stains using sigma receptor. 92
Figure 5.19 Western blot analysis. 93


List of Tables
Table 3.1 Cancer grading system 6
Table 3.2 The TNM staging for oral cancer 6
Table 3.3 Definition of the TNM staging adapted from 7
Table 3.4 The most common metastasis sites of head and neck cancer 16
Table 3.5 Immuno-compromised mouse strains used for xenotransplantation adapted from 18
Table 3.6 Cisplatin nanoparticle and other nanomedicines formulations on market and undergoing clinical investigation 30
Table 3.7 Potential targeting ligands used for targeted therapy 41
Table 4.1 SAS orthotopic metastatic model treatment group 51
Table 5.1 The measured concentration of platinum (Pt) or CDDP from CDDP precursor 55
Table 5.2 The measured concentration of platinum (Pt) or CDDP from LPC NPs 56
Table 5.3 Encapsulation efficiency of LPC NPs proportionally increased to KCl concentration 56
Table 5.4 The calculated drug loading of LPC NPs 57
Table 5.5 SAS or SCC4 cell viability 63
Table 5.6 Establishment of SAS-G418 or SCC4-G418 orthotopic metastasis model 64
Table 5.7 Incidence of distant metastasis to cervical lymph node from each group post treatment 75
Table 5.7 Serum levels for liver function 94
Table 5.8 Serum levels for kidney function 94
Table 5.9 Serum levels for liver and kidney function 95
Table 5.10 Serum levels for muscle function 95
Table 5.11 Enzyme-linked immunosorbent assay (ELISA) 95
1.American Society of Clinical Oncology (ASCO). Head and Neck Cancer 2016 [cited 2016 May 3]; Available from: http://www.cancer.net/cancer-types/head-and-neck-cancer/overview.
2.The Oral Cancer Fondation. Risk Factors 2017; 2016:[Available from: http://oralcancerfoundation.org/understanding/risk-factors/.
3.Siegel, R., D. Naishadham, and A. Jemal, Cancer statistics, 2013. CA: A Cancer Journal for Clinicians, 2013. 63(1): p. 11-30.
4.Wyganowska-Swiatkowska, M. and J. Jankun, Plasminogen activation system in oral cancer: Relevance in prognosis and therapy (Review). Int J Oncol, 2015. 47(1): p. 16-24.
5.The Oral Cancer Fondation. Treatments 2017; Available from: http://oralcancerfoundation.org/treatment/.
6.Roy, A.S.A., Stifling New Cures: The True Cost of Lengthy Clinical Drug Trials. 2012, Manhattan Institute: FDA project report
7.Sano, D. and J.N. Myers, Xenograft models of head and neck cancers. Head & Neck Oncology, 2009. 1: p. 32-32.
8.Bais, M.V., M. Kukuruzinska, and P.C. Trackman, Orthotopic non-metastatic and metastatic oral cancer mouse models. Oral oncology, 2015. 51(5): p. 476-482.
9.Kelland, L., The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer, 2007. 7(8): p. 573-584.
10.Babu, A., N. Amreddy, and R. Ramesh, Nanoparticle-based cisplatin therapy for cancer. Ther Deliv, 2015. 6(2): p. 115-9.
11.Wang, D. and S.J. Lippard, Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov, 2005. 4(4): p. 307-20.
12.Enoiu, M., Jiricny, J., Scharer, O. D., Repair of cisplatin-induced DNA interstrand crosslinks by a replication-independent pathway involving transcription-coupled repair and translesion synthesis. Nucleic Acids Res, 2012. 40(18): p. 8953-64.
13.Decatris, M.P., Sundar, S., O’Byrne, K. J., Platinum-based chemotherapy in metastatic breast cancer: current status. Cancer Treatment Reviews, 2004. 30(1): p. 53-81.
14.Wheate, N.J., Walker, S., Craig, G. E., Oun, R., The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans, 2010. 39(35): p. 8113-27.
15.Duan, X., et al., Nanoparticle formulations of cisplatin for cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2016.
16.Guo, S., et al., Turning a water and oil insoluble cisplatin derivative into a nanoparticle formulation for cancer therapy. Biomaterials, 2014. 35(26): p. 7647-7653.
17.Guo, S., et al., Unmodified drug used as a material to construct nanoparticles: delivery of cisplatin for enhanced anti-cancer therapy. Journal of Controlled Release, 2014. 174: p. 137-142.
18.Greish, K., Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol Biol, 2010. 624: p. 25-37.
19.Kobayashi, H., Watanabe, Rira, Choyke, Peter L., Improving Conventional Enhanced Permeability and Retention (EPR) Effects; What Is the Appropriate Target? Theranostics, 2014. 4(1): p. 81-89.
20.Petros, R.A., DeSimone, Joseph M., Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov, 2010. 9(8): p. 615-627.
21.Yang, J., Liu, Wenwen, Sui, Meihua, Tang, Jianbin, Shen, Youqing,, Platinum (IV)-coordinate polymers as intracellular reduction-responsive backbone-type conjugates for cancer drug delivery. Biomaterials, 2011. 32(34): p. 9136-9143.
22.Aryal, S.H., Che-Ming Jack; Zhang, Liangfang,, Polymer−Cisplatin Conjugate Nanoparticles for Acid-Responsive Drug Delivery. ACS Nano, 2010. 4(1): p. 251-258.
23.Guo, S., et al., Lipid-coated Cisplatin nanoparticles induce neighboring effect and exhibit enhanced anticancer efficacy. ACS nano, 2013. 7(11): p. 9896-9904.
24.Guo, S., et al., Co-delivery of cisplatin and rapamycin for enhanced anticancer therapy through synergistic effects and microenvironment modulation. ACS nano, 2014. 8(5): p. 4996-5009.
25.Zhang, J., et al., Synergistic anti-tumor effects of combined gemcitabine and cisplatin nanoparticles in a stroma-rich bladder carcinoma model. Journal of Controlled Release, 2014. 182: p. 90-96.
26.Zhang, Y., Wang, Xiao-ju, Guo, Miao, Yan, Hu-sheng, Wang, Chen-hong, Liu, Ke-liang, Cisplatin-loaded polymer/magnetite composite nanoparticles as multifunctional therapeutic nanomedicine. Chinese Journal of Polymer Science, 2014. 32(10): p. 1329-1337.
27.American, C.S. Targeted Cancer Therapy. 2016 [cited 2016 August 15,]; Available from: http://www.cancer.org/treatment/treatmentsandsideeffects/treatmenttypes/targetedtherapy/targeted-therapy-toc.
28.Sanna, V., Pala, N., Sechi, M., Targeted therapy using nanotechnology: focus on cancer. Int J Nanomedicine, 2014. 9: p. 467-83.
29.Aydar, E.P., C. P. Djamgoz, M. B., Sigma receptors and cancer: possible involvement of ion channels. Cancer Res, 2004. 64(15): p. 5029-35.
30.Chen, W.H., et al., Nanoparticle delivery of HIF1alpha siRNA combined with photodynamic therapy as a potential treatment strategy for head-and-neck cancer. Cancer Lett, 2015. 359(1): p. 65-74.
31.Crottès, D.G., Hélène; Martin, Patrick; Borgese, Franck; Soriani, Olivier.,, The sigma-1 receptor: a regulator of cancer cell electrical plasticity? Frontiers in Physiology, 2013. 4: p. 175.
32.Lecaros, R.L., et al., Nanoparticle Delivered VEGF-A siRNA Enhances Photodynamic Therapy for Head and Neck Cancer Treatment. Mol Ther, 2016. 24(1): p. 106-16.
33.Banerjee, R., Tyagi, P., Li, S., Huang, L.,, Anisamide-targeted stealth liposomes: a potent carrier for targeting doxorubicin to human prostate cancer cells. Int J Cancer, 2004. 112(4): p. 693-700.
34.Dasargyri, A.H., Pablo; Christiansen, Ailsa; Proulx, Steven T., Detmar, Michael; Leroux, Jean-Christophe;, Findings questioning the involvement of Sigma-1 receptor in the uptake of anisamide-decorated particles. Journal of Controlled Release, 2016. 224: p. 229-238.
35.Goodwin, T.J. and L. Huang, On the article “Findings questioning the involvement of Sigma-1 receptor in the uptake of anisamide-decorated particles” [J. Control. Release 224 (2016) 229–238]: Letter to the Editor 1 (September 14, 2016). Journal of Controlled Release, 2016. 243: p. 382-385.
36.Allison, R.R., et al., Bio-nanotechnology and photodynamic therapy—State of the art review. Photodiagnosis and Photodynamic Therapy, 2008. 5(1): p. 19-28.
37.Yang, Y., et al., Nanoparticle delivery of pooled siRNA for effective treatment of non-small cell lung cancer. Mol Pharm, 2012. 9(8): p. 2280-9.
38.Noguti, J., et al., Metastasis from oral cancer: an overview. Cancer Genomics Proteomics, 2012. 9(5): p. 329-35.
39.Society, A.C. Oral Cavity and Oropharyngeal Cancer 2016; Available from: http://www.cancer.org/acs/groups/cid/documents/webcontent/003128-pdf.pdf.
40.The Oral Cancer Fondation. Oral Cancer Facts 2016 January [cited 2016 May 3]; Available from: http://www.oralcancerfoundation.org/facts/.
41.Giacomo Del Corso, A.V., Achille Tarsitano, Anita Gohel, Current trends in oral cancer: A systematic review. Cancer Cell & Microenvironment, 2016. 3(e1332).
42.Institute, N.C. Tumor grade. 2016.
43.Greene, F.L., & American Joint Committee on Cancer, AJCC Cancer Stagging Manual. 7th ed ed. 2010, New York: Springer.
44.Haddad , R.I. and D.M. Shin Recent Advances in Head and Neck Cancer. New England Journal of Medicine, 2008. 359(11): p. 1143-1154.
45.Slaughter, D.P., H.W. Southwick, and W. Smejkal, “Field cancerization” in oral stratified squamous epithelium. Clinical implications of multicentric origin. Cancer, 1953. 6(5): p. 963-968.
46.Forastiere, A., et al., Head and neck cancer. N Engl J Med, 2001. 345(26): p. 1890-900.
47.Huber, M.A. and B. Tantiwongkosi, Oral and Oropharyngeal Cancer. Medical Clinics of North America, 2014. 98(6): p. 1299-1321.
48.Patel, V., et al., Decreased Lymphangiogenesis and Lymph Node Metastasis by mTOR Inhibition in Head and Neck Cancer. Cancer research, 2011. 71(22): p. 7103-7112.
49.Fidler, I.J., The pathogenesis of cancer metastasis: the ''seed and soil'' hypothesis revisited. Nat Rev Cancer, 2003. 3(6): p. 453-458.
50.Wan, L., K. Pantel, and Y. Kang, Tumor metastasis: moving new biological insights into the clinic. Nat Med, 2013. 19(11): p. 1450-1464.
51.Saxena, M. and G. Christofori, Rebuilding cancer metastasis in the mouse. Mol Oncol, 2013. 7(2): p. 283-96.
52.Gilkes, D.M., G.L. Semenza, and D. Wirtz, Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat Rev Cancer, 2014. 14(6): p. 430-9.
53.Quail, D.F. and J.A. Joyce, Microenvironmental regulation of tumor progression and metastasis. Nat Med, 2013. 19(11): p. 1423-1437.
54.Bang, C.T., Thomas, Exosomes: New players in cell–cell communication. The International Journal of Biochemistry & Cell Biology, 2012. 44(11): p. 2060-2064.
55.Giancotti, F.G., Mechanisms governing metastatic dormancy and reactivation. Cell, 2013. 155(4): p. 750-64.
56.Sosa, M.S., P. Bragado, and J.A. Aguirre-Ghiso, Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer, 2014. 14(9): p. 611-22.
57.Pankova, K., et al., The molecular mechanisms of transition between mesenchymal and amoeboid invasiveness in tumor cells. Cell Mol Life Sci, 2010. 67(1): p. 63-71.
58.Valastyan, S. and R.A. Weinberg, Tumor Metastasis: Molecular Insights and Evolving Paradigms. Cell, 2011. 147(2): p. 275-292.
59.Joyce, J.A. and J.W. Pollard, Microenvironmental regulation of metastasis. Nat Rev Cancer, 2009. 9(4): p. 239-52.
60.Kumar, G.S. and B.S. Manjunatha, Metastatic tumors to the jaws and oral cavity. Journal of Oral and Maxillofacial Pathology : JOMFP, 2013. 17(1): p. 71-75.
61.Ferlito, A., et al., Incidence and Sites of Distant Metastases from Head and Neck Cancer. ORL, 2001. 63(4): p. 202-207.
62.Spiro, R.H., Distant metastasis in adenoid cystic carcinoma of salivary origin. Am J Surg, 1997. 174(5): p. 495-8.
63.Holsinger FC, M.J., Roberts DB, Byers RM, Clinicopathologic predictors of distant metastases from head and neck squamous cell carcinoma. 2000.
64.Kim J-W, K.K., Sung M-W, Rhee C-S, Choi S-H, Hwang CH, Park C II, Kim WH, Distant metastasis of adenoid cystic carcinoma in the head and neck. Poster, abstracts from 5th Int Conf on Head Neck Cancer, 2000.
65.Leo´n X, Q.M., Oru´ s C, del Prado Venegas M, Lo´ pez M, Distant metastases in head and neck cancer patients who achieved loco-regional control. Head & Neck, 2000.
66.de Bree R, D.E., Snow GB, Leemans CR, Screening for distant metastases in patients with head and neck cancer. Laryngoscope, 2000.
67.Hsu, L.-P. and P.-R. Chen, Distant metastases of head and neck squamous cell carcinomas-experience from eastern Taiwan. Tzu Chi Med J, 2005. 17(9).
68.Zhang, X., et al., A lymph node metastatic mouse model reveals alterations of metastasis-related gene expression in metastatic human oral carcinoma sublines selected from a poorly metastatic parental cell line. Cancer, 2002. 95(8): p. 1663-72.
69.Kim, S., Animal Models of Cancer in the Head and Neck Region. Clinical and Experimental Otorhinolaryngology, 2009. 2(2): p. 55-60.
70.Mognetti, B., F. Di Carlo, and G.N. Berta, Animal models in oral cancer research. Oral Oncology, 2006. 42(5): p. 448-460.
71.Hsu, Y.-C.C., Chun-Pin Huang, Wan-Ting Lee, Jeng-Woei, Effective treatment of 7,12-dimethylbenz(a)anthracene–induced hamster buccal pouch precancerous lesions by topical photosan-mediated photodynamic therapy. Head & Neck, 2012. 34(4): p. 505-512.
72.Supsavhad, W., et al., Animal models of head and neck squamous cell carcinoma. The Veterinary Journal, 2016. 210: p. 7-16.
73.Caulin, C., et al., Inducible activation of oncogenic K-ras results in tumor formation in the oral cavity. Cancer Res, 2004. 64(15): p. 5054-8.
74.Kim, S., et al., An orthotopic model of anaplastic thyroid carcinoma in athymic nude mice. Clin Cancer Res, 2005. 11(5): p. 1713-21.
75.Myers, J.N., et al., An orthotopic nude mouse model of oral tongue squamous cell carcinoma. Clin Cancer Res, 2002. 8(1): p. 293-8.
76.Sano, D., et al., The Effect of Combination Anti-Endothelial Growth Factor Receptorr and Anti-Vascular Endgthelial Growth Factor Receptor 2 Targeted Therap on Lymph Node Metastasis: A Study in an Orthotopic Nude Mouse Model of Squamous Cell Carcinoma of the OralTongue. Archives of otolaryngology--head & neck surgery, 2009. 135(4): p. 411-420.
77.Dinesman, A., et al., Development of a new in vivo model for head and neck cancer. Otolaryngol Head Neck Surg, 1990. 103(5 ( Pt 1)): p. 766-74.
78.Shintani, S., et al., Lymph node metastasis of oral cancer visualized in live tissue by green fluorescent protein expression. Oral Oncol, 2002. 38(7): p. 664-9.
79.Masood, R., et al., A novel orthotopic mouse model of head and neck cancer and lymph node metastasis. Oncogenesis, 2013. 2(9): p. e68.
80.Moriyama, E.H., et al., The influence of hypoxia on bioluminescence in luciferase-transfected gliosarcoma tumor cells in vitro. Photochem Photobiol Sci, 2008. 7(6): p. 675-80.
81.Shimomura, O., Bioluminescence Chemical Principles and Methods, ed. R. Edition. 2012, Singapore: World Scientific Publishing.
82.Wiles, S.R., Brian D. Frankel, Gad Kerton, Angela, Bioluminescent Monitoring of In Vivo Colonization and Clearance Dynamics by Light-Emitting Bacteria, ed. C.D.e. P.B. Rich. 2009: Humana Press, a part of Springer Science+Business Media, LLC 2009.
83.Khalil, A.A., et al., The Influence of Hypoxia and pH on Bioluminescence Imaging of Luciferase-Transfected Tumor Cells and Xenografts. International Journal of Molecular Imaging, 2013. 2013: p. 9.
84.Zinn, K.R., et al., Noninvasive bioluminescence imaging in small animals. Ilar j, 2008. 49(1): p. 103-15.
85.Chabner, B.A.R., Thomas G., Chemotherapy and the war on cancer. Nat Rev Cancer, 2005. 5(1): p. 65-72.
86.Caley, A.J., Rob, The principles of cancer treatment by chemotherapy. Surgery (Oxford), 2012. 30(4): p. 186-190.
87.Price, K.A.R. and E.E. Cohen, Current Treatment Options for Metastatic Head and Neck Cancer. Current Treatment Options in Oncology, 2012. 13(1): p. 35-46.
88.American Society of Clinical Oncology (ASCO). Chemotherapy for Oral Cavity and Oropharyngeal Cancer 2016 [cited 2017 February 20]; Available from: https://www.cancer.org/cancer/oral-cavity-and-oropharyngeal-cancer/treating/chemotherapy.html.
89.Dasari, S. and P. Bernard Tchounwou, Cisplatin in cancer therapy: Molecular mechanisms of action. European Journal of Pharmacology, 2014. 740: p. 364-378.
90.Eka Putra, G.N.P., L. Huang, and Y.-C. Hsu. Cisplatin encapsulated nanoparticle as a therapeutic agent for anticancer treatment. 2016.
91.Pearson, C. the role of chemistry in history: cisplatin. 29 April 2008 31 December 2014]; Available from: http://itech.dickinson.edu/chemistry/?p=736#more-736.
92.Wilson, J.J. and S.J. Lippard, Synthetic Methods for the Preparation of Platinum Anticancer Complexes. Chemical reviews, 2014. 114(8): p. 4470-4495.
93.Boulikas, T., Clinical overview on Lipoplatin: a successful liposomal formulation of cisplatin. Expert Opin Investig Drugs, 2009. 18(8): p. 1197-218.
94.Hartmann, J.T. and H.P. Lipp, Toxicity of platinum compounds. Expert Opin Pharmacother, 2003. 4(6): p. 889-901.
95.Di Francesco, A.M., A. Ruggiero, and R. Riccardi, Cellular and molecular aspects of drugs of the future: oxaliplatin. Cell Mol Life Sci, 2002. 59(11): p. 1914-27.
96.Cassidy, J. and J.L. Misset, Oxaliplatin-related side effects: characteristics and management. Semin Oncol, 2002. 29(5 Suppl 15): p. 11-20.
97.Siddik, Z.H., Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene, 2003. 22(47): p. 7265-79.
98.Sedletska, Y., M.J. Giraud-Panis, and J.M. Malinge, Cisplatin is a DNA-damaging antitumour compound triggering multifactorial biochemical responses in cancer cells: importance of apoptotic pathways. Curr Med Chem Anticancer Agents, 2005. 5(3): p. 251-65.
99.Wang, X., Fresh platinum complexes with promising antitumor activity. Anticancer Agents Med Chem, 2010. 10(5): p. 396-411.
100.LeRoy, A.F. and W.C. Thompson, Binding kinetics of tetrachloro-1,2-diaminocyclohexaneplatinum (IV) (tetraplatin) and cis-diamminedichloroplatinum (II) at 37 degrees C with human plasma proteins and with bovine serum albumin. Does aquation precede protein binding? J Natl Cancer Inst, 1989. 81(6): p. 427-36.
101.Harding, M., et al., A pilot study of carboplatin (JM8, CBDCA) and chlorambucil in combination for advanced ovarian cancer. British Journal of Cancer, 1988. 58(5): p. 640-643.
102.Bhargava, A. and U.N. Vaishampayan, Satraplatin: leading the new generation of oral platinum agents. Expert opinion on investigational drugs, 2009. 18(11): p. 10.1517/13543780903362437.
103.Kelland, L.R., et al., Ammine/amine platinum(IV) dicarboxylates: a novel class of platinum complex exhibiting selective cytotoxicity to intrinsically cisplatin-resistant human ovarian carcinoma cell lines. Cancer Res, 1992. 52(4): p. 822-8.
104.Bangham A.D., The Liposome Letters. 1983: Academic Press.
105.Bangham, A.D.S., M. M. Watkins, J. C., Diffusion of univalent ions across the lamellae of swollen phospholipids. Journal of Molecular Biology, 1965. 13(1): p. 238-IN27.
106.Melis Çağdaş, A.D.S.a.S.B., Liposomes as Potential Drug Carrier Systems for Drug Delivery. Nanotechnology and Nanomaterials "Application of Nanotechnology in Drug Delivery", 2014.
107.Linder, B.M.E.A.-T.M.R.M.C.G.M., Liposomes: A Review of Manufacturing Techniques and Targeting Strategies. Current Nanoscience, 2011. 7(3): p. 436-452.
108.Akbarzadeh, A.R.-S., Rogaie Davaran, Soodabeh Joo, Sang Woo Zarghami, Nosratollah Hanifehpour, Younes Samiei, Mohammad Kouhi, Mohammad Nejati-Koshki, Kazem, Liposome: classification, preparation, and applications. Nanoscale Research Letters, 2013. 8(1): p. 102-102.
109.Miao, L., et al., Nanoparticles with Precise Ratiometric Co-Loading and Co-Delivery of Gemcitabine Monophosphate and Cisplatin for Treatment of Bladder Cancer. Advanced functional materials, 2014. 24(42): p. 6601-6611.
110.Dawson, K.A., A. Salvati, and I. Lynch, Nanotoxicology: Nanoparticles reconstruct lipids. Nat Nano, 2009. 4(2): p. 84-85.
111.Mao, Z., X. Zhou, and C. Gao, Influence of structure and properties of colloidal biomaterials on cellular uptake and cell functions. Biomaterials Science, 2013. 1(9): p. 896-911.
112.Schroeder, A., et al., Ultrasound triggered release of cisplatin from liposomes in murine tumors. J Control Release, 2009. 137(1): p. 63-8.
113.Li, J.C., Yun-Ching Tseng, Yu-Cheng Huang, Leaf, Biodegradable Calcium Phosphate Nanoparticle with Lipid Coating for Systemic siRNA Delivery. Journal of controlled release : official journal of the Controlled Release Society, 2010. 142(3): p. 416-421.
114.Li, J.Y., Y. Huang, L., Calcium phosphate nanoparticles with an asymmetric lipid bilayer coating for siRNA delivery to the tumor. J Control Release, 2012. 158(1): p. 108-14.
115.Plummer, R., et al., A Phase I clinical study of cisplatin-incorporated polymeric micelles (NC-6004) in patients with solid tumours. Br J Cancer, 2011. 104(4): p. 593-8.
116.AP5280, drug profile AP 5280 2007, Springer International Publishing AG
117.L-NDDP, Drug profile L-NDDP or Aroplatin. 2011, Springer International Publishing
118.LiPlaCis, Drug profile lipid encapsulated cisplatin - LiPlasome Pharma 2017, Springer International Publishing
119.Lipoplatin, Drug profile cisplatin liposomal - Regulon 2017, Springer International Publishing
120.Genexol-PM®, Drug profile paclitaxel polymeric micelle formulation - Samyang 2017, Springer International Publishing
121.profile, D., Docetaxel nanopolymeric - Samyang 2016, Springer International Publishing
122.profile, D., Docetaxel nanopolymer - Pfizer BIND-014 2017, Springer International Publishing
123.Profile, D., Paclitaxel micelle formulation - Nippon Kayaku/NanoCarrier 2017, Springer International Publishing
124.Profile, D., Albumin-bound paclitaxel 2017, Springer International Publishing
125.Profile, D., SP 1049C 2011, Springer International Publishing
126.Guo, S. and L. Huang, Nanoparticles containing insoluble drug for cancer therapy. Biotechnology Advances, 2014. 32(4): p. 778-788.
127.profile, D., Paclitaxel poliglumex (Xyotax). 2015, Springer International Publishing
128.profile, D., Camptothecin CRLX101 (IT-101) - Cerulean Pharma. 2017, Springer International Publishing.
129.profile, D., Delimotecan MEN 4901/T-0128 2016, Springer International Publishing.
130.profile, D., Daunorubicin liposomal DaunoXome®. 2012, Springer International Publishing.
131.profile, D., Irinotecan sucrosofate - Merrimack/PharmaEngine 2017, Springer International Publishing.
132.profile, D., OSI 211 2007, Springer International Publishing.
133.profile, D., Doxorubicin liposomal ThermoDox®- Celsion Corporation 2017, Springer International Publishing.
134.profile, D., Paclitaxel liposome encapsulated NeoLipid™- INSYS Therapeutics 2016, Springer International Publisher.
135.profile, D., Panzem® NCD 2-Methoxyestradiol - CASI Pharmaceuticals 2015, Springer International Publishing.
136.Miao, L., et al., Nanoparticle modulation of the tumor microenvironment enhances therapeutic efficacy of cisplatin. Journal of Controlled Release, 2015. 217: p. 27-41.
137.Yang, T., et al. Anti-tumor Efficiency of Lipid-coated Cisplatin Nanoparticles Co-loaded with MicroRNA-375. Theranostics, 2016. 6, 142-154.
138.Zhong, Y., et al., Ligand-Directed Active Tumor-Targeting Polymeric Nanoparticles for Cancer Chemotherapy. Biomacromolecules, 2014. 15(6): p. 1955-1969.
139.CabralH, et al., Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nano, 2011. 6(12): p. 815-823.
140.Dasargyri, A., C.D. Kümin, and J.-C. Leroux, Targeting Nanocarriers with Anisamide: Fact or Artifact? Advanced Materials, 2017. 29(7): p. 1603451-n/a.
141.Cobos, E.J.E., J. M. Nieto, F. R. Cendán, C. M. Del Pozo, E., Pharmacology and Therapeutic Potential of Sigma(1) Receptor Ligands. Current Neuropharmacology, 2008. 6(4): p. 344-366.
142.Maurice, T. and T.-P. Su, The Pharmacology of Sigma-1 Receptors. Pharmacology & therapeutics, 2009. 124(2): p. 195-206.
143.Mach, R.H., C. Zeng, and W.G. Hawkins, The σ2 Receptor: A Novel Protein for the Imaging and Treatment of Cancer. Journal of Medicinal Chemistry, 2013. 56(18): p. 7137-7160.
144.Chen, W.H.L., R. L. Tseng, Y. C. Huang, L. Hsu, Y. C., Nanoparticle delivery of HIF1alpha siRNA combined with photodynamic therapy as a potential treatment strategy for head-and-neck cancer. Cancer Lett, 2015. 359(1): p. 65-74.
145.Allen, T.M., Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer, 2002. 2(10): p. 750-763.
146.Banerjee, R., et al., Anisamide-targeted stealth liposomes: A potent carrier for targeting doxorubicin to human prostate cancer cells. International Journal of Cancer, 2004. 112(4): p. 693-700.
147.Zhang, Y., W.Y. Kim, and L. Huang, Systemic delivery of gemcitabine triphosphate via LCP nanoparticles for NSCLC and pancreatic cancer therapy. Biomaterials, 2013. 34(13): p. 3447-58.
148.Chono, S., et al., An efficient and low immunostimulatory nanoparticle formulation for systemic siRNA delivery to the tumor. J Control Release, 2008. 131(1): p. 64-9.
149.Kim, S.K., M.B. Foote, and L. Huang, Targeted delivery of EV peptide to tumor cell cytoplasm using lipid coated calcium carbonate nanoparticles. Cancer Lett, 2013. 334(2): p. 311-8.
150.Liu, D., et al., Theranostic nanoscale coordination polymers for magnetic resonance imaging and bisphosphonate delivery. Journal of Materials Chemistry B, 2014. 2(46): p. 8249-8255.
151.Della Rocca, J., et al., Polysilsesquioxane nanoparticles for targeted platin-based cancer chemotherapy by triggered release. Angew Chem Int Ed Engl, 2011. 50(44): p. 10330-4.
152.Lu, Y.-J., et al., Dual targeted delivery of doxorubicin to cancer cells using folate-conjugated magnetic multi-walled carbon nanotubes. Colloids and Surfaces B: Biointerfaces, 2012. 89: p. 1-9.
153.Li, L., et al., Doxorubicin-loaded, charge reversible, folate modified HPMA copolymer conjugates for active cancer cell targeting. Biomaterials, 2014. 35(19): p. 5171-5187.
154.El-Gogary, R.I., et al., Polyethylene glycol conjugated polymeric nanocapsules for targeted delivery of quercetin to folate-expressing cancer cells in vitro and in vivo. ACS Nano, 2014. 8(2): p. 1384-401.
155.Chen, Y.-C., et al., Polymersomes conjugated with des-octanoyl ghrelin and folate as a BBB-penetrating cancer cell-targeting delivery system. Biomaterials, 2014. 35(13): p. 4066-4081.
156.Gaspar, M.M., et al., Targeted delivery of transferrin-conjugated liposomes to an orthotopic model of lung cancer in nude rats. J Aerosol Med Pulm Drug Deliv, 2012. 25(6): p. 310-8.
157.Liu, G., et al., Transferrin Modified Graphene Oxide for Glioma-Targeted Drug Delivery: In Vitro and in Vivo Evaluations. ACS Applied Materials & Interfaces, 2013. 5(15): p. 6909-6914.
158.Neves, S., et al., Transferrin lipoplex-mediated suicide gene therapy of oral squamous cell carcinoma in an immunocompetent murine model and mechanisms involved in the antitumoral response. Cancer Gene Ther, 2008. 16(1): p. 91-101.
159.Vaidya, B. and S.P. Vyas, Transferrin coupled vesicular system for intracellular drug delivery for the treatment of cancer: Development and characterization. Journal of Drug Targeting, 2012. 20(4): p. 372-380.
160.Takahashi, K., et al., Establishment and characterization of a cell line (SAS) from poorly differentiated human squamous cell carcinoma of the tongue. Journal of The Japanese Stomatological Society, 1989. 38(1): p. 20-28.
161.Szaniszlo, P., et al., Temporal Characterization of Lymphatic Metastasis in an Orthotopic Mouse Model of Oral Cancer. Head & neck, 2014. 36(11): p. 1638-1647.
162.Kyrylkova, K., et al., Detection of Apoptosis by TUNEL Assay, in Odontogenesis: Methods and Protocols, C. Kioussi, Editor. 2012, Humana Press: Totowa, NJ. p. 41-47.
163.Zamble, D.B. and S.J. Lippard, Cisplatin and DNA repair in cancer chemotherapy. Trends Biochem Sci, 1995. 20(10): p. 435-9.
164.Chu, G., Cellular responses to cisplatin. The roles of DNA-binding proteins and DNA repair. J Biol Chem, 1994. 269(2): p. 787-90.
165.Scanlon, K.J., et al., Cisplatin resistance in human cancers. Pharmacol Ther, 1991. 52(3): p. 385-406.
166.Zamble, D.B., T. Jacks, and S.J. Lippard, p53-dependent and -independent responses to cisplatin in mouse testicular teratocarcinoma cells. Proceedings of the National Academy of Sciences of the United States of America, 1998. 95(11): p. 6163-6168.
167.Gupta, G.P. and J. Massague, Cancer metastasis: building a framework. Cell, 2006. 127(4): p. 679-95.
168.Pabla, N. and Z. Dong, Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int, 2008. 73(9): p. 994-1007.
169.Velinova, M.J., et al., Preparation and stability of lipid-coated nanocapsules of cisplatin: anionic phospholipid specificity. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2004. 1663(1–2): p. 135-142.
170.N, P.F., Platinum formulations as anticancer drugs clinical and pre-clinical studies. Curr Top Med Chem, 2011. 11(21): p. 2623-31.
171.Ding, Y., et al., Encapsulation of cisplatin in a pegylated calcium phosphate nanoparticle (CPNP) for enhanced cytotoxicity to cancerous cells. Journal of Colloid and Interface Science, 2017. 493: p. 181-189.
172.Alam, N., et al., Reduced toxicological manifestations of cisplatin following encapsulation in folate grafted albumin nanoparticles. Life Sciences, 2015. 142: p. 76-85.
173.Endo, K., et al., Tumor-targeted chemotherapy with the nanopolymer-based drug NC-6004 for oral squamous cell carcinoma. Cancer Sci, 2013. 104(3): p. 369-74.
174.Killion, J.J., R. Radinsky, and I.J. Fidler, Orthotopic models are necessary to predict therapy of transplantable tumors in mice. Cancer Metastasis Rev, 1998. 17(3): p. 279-84.
175.Cabanillas, R.S., P. Rodrigo, J. P. Astudillo, A. Suarez, C. Chiara, M. D., [Orthotopic murine model of head and neck squamous cell carcinoma]. Acta Otorrinolaringol Esp, 2005. 56(3): p. 89-95.
176.Vahle, A.K., et al., Optimization of an orthotopic murine model of head and neck squamous cell carcinoma in fully immunocompetent mice--role of toll-like-receptor 4 expressed on host cells. Cancer Lett, 2012. 317(2): p. 199-206.
177.Gleysteen, J.P., et al., Fluorescent labeled anti-egfr antibody for identification of regional and distant metastasis in a preclinical xenograft model. Head & neck, 2008. 30(6): p. 782-789.
178.Rosenthal, E.L., et al., Use of fluorescent labeled anti–epidermal growth factor receptor antibody to image head and neck squamous cell carcinoma xenografts. American Association for Cancer Research, 2007. 6(4): p. 1230-1238.
179.Sweeny, L., et al., CD147 and AGR2 expression promote cellular proliferation and metastasis of head and neck squamous cell carcinoma. Exp Cell Res, 2012. 318(14): p. 1788-98.
180.Henson, B., et al., An orthotopic floor-of-mouth model for locoregional growth and spread of human squamous cell carcinoma. Journal of Oral Pathology & Medicine, 2007. 36(6): p. 363-370.
181.Nomura, T., et al., Establishment of a murine model of bone invasion by oral squamous cell carcinoma. Oral Oncol, 2007. 43(3): p. 257-62.
182.Fitzgerald, K.A., et al., A novel, anisamide-targeted cyclodextrin nanoformulation for siRNA delivery to prostate cancer cells expressing the sigma-1 receptor. International Journal of Pharmaceutics, 2016. 499(1–2): p. 131-145.
183.Misra, S.K., et al., Co-liposomes having anisamide tagged lipid and cholesteryl tryptophan trigger enhanced gene transfection in sigma receptor positive cells. Colloids and Surfaces B: Biointerfaces, 2016. 142: p. 130-140.
184.Garg, N.K., et al., Site specific/targeted delivery of gemcitabine through anisamide anchored chitosan/poly ethylene glycol nanoparticles: An improved understanding of lung cancer therapeutic intervention. European Journal of Pharmaceutical Sciences, 2012. 47(5): p. 1006-1014.
185.Kim, J.H.P., Dong Jun; Yun, Ji Chul; Jung, Myeong Hee; Yeo, Hee Dong; Kim, Hyun-Jung; Kim, Dong Wook; Yang, Jung Ill; Lee, Gyeong-Won; Jeong, Sang-Ho; Roh, Gu Seob; Chang, Se-Ho., Human adipose tissue-derived mesenchymal stem cells protect kidneys from cisplatin nephrotoxicity in rats. American Journal of Physiology - Renal Physiology, 2012. 302(9): p. F1141-F1150.
186.Datta, K., et al., Sensitizing glioma cells to cisplatin by abrogating the p53 response with antisense oligonucleotides. Cancer Gene Ther, 2004. 11(8): p. 525-531.
187.Massey, A., et al., DNA mismatch repair and acquired cisplatin resistance in E. coli and human ovarian carcinoma cells. DNA Repair (Amst), 2003. 2(1): p. 73-89.
188.Allred, D.C., et al., Association of p53 protein expression with tumor cell proliferation rate and clinical outcome in node-negative breast cancer. J Natl Cancer Inst, 1993. 85(3): p. 200-6.
189.Taylor, W.R. and G.R. Stark, Regulation of the G2/M transition by p53. Oncogene, 2001. 20(15): p. 1803-15.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊