跳到主要內容

臺灣博碩士論文加值系統

(44.211.24.175) 您好!臺灣時間:2024/11/11 06:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:官世賢
研究生(外文):Guan ShiXian
論文名稱:鈣鈦礦甲胺碘鉛(CH3NH3PbI3)電晶體中的載子傳輸性質
論文名稱(外文):Carriers transport behavior in perovskite CH3NH3PbI3 transistor
指導教授:鐘元良
指導教授(外文):(Zhong, Yuan-Liang
學位類別:碩士
校院名稱:中原大學
系所名稱:奈米科技碩士學位學程
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:51
中文關鍵詞:鈣鈦礦 甲胺碘鉛 場效電晶體 有機半導體
外文關鍵詞:Perovskite CH3NH3PbI3 transistor organic semiconductor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近幾年由於環保因素以及再生能源開發等國際目標,太陽能電池成為下世代能源供給之願景,其中有機鈣鈦礦材料的更是熱門材料之一。有機鈣鈦礦具有特殊的材料特性,不需額外摻雜組成P-N接面即可分離電子-電洞對產生光電流,這在光電材料中是令人訝異的性質。量測有機鈣鈦礦在於其他非太陽能元件時所表現的特性,期許找出材料當中所蘊含之物理機制。於場效電晶體元件中,通道電流可以藉由閘極之電場調控;當閘極的電場改變時,通道內的載子數量會改變。透過調控載子數量的方式,使通道材料的電阻跟著改變,以改變通道電流,達到調控訊號的作用。
將有機鈣鈦礦作為場效電晶體之通道材料時,期許能透過閘極的電場來調控通道中載子的數量,以觀察其載子行為上的變化。由於其目前主要是作為太陽能電池中產生電子-電洞對的功能,這也代表著其具有雙載子上的特性。於理想上,希望透過不同正負的閘極電壓均能夠對有機鈣鈦礦通道載子產生調控效果。元件設計中,我們將晶片下方重參雜的矽晶層作為閘極使用,有機鈣鈦礦以薄膜的形式成長於晶片表面作為通道材料,並在有機鈣鈦礦薄膜上方黏著適當大小的玻璃來作為元件封裝,避免有機鈣鈦礦於一般環境中與水和氧氣反應,導致薄膜分解。
從實驗數據中可以發現,不同電場方向之閘極電壓皆能對通道材料的電性產生調控的作用,這也表示有機鈣鈦礦的確具有雙載子特性。施加1V汲極電壓,當閘極為正,我們可以算出元件的電子遷移率為1.412×10-2 (cm2 V-1s-1);而當閘極為負時,元件的電洞遷移率則是9.126×10-4 (cm2 V-1s-1)。其具有不對稱,但確實存在的雙極性載子。此外在不同的掃描方向,例如從負到正的汲極電壓與從正到負的汲極電壓,兩相比較,其有時會出現不同的曲線。這代表有機鈣鈦礦材料在電性上具有某程度遲滯效應,於越大的汲極電壓就會有越明顯的差異,且在大的掃瞄間隔時間(1秒)是依然存在的,表示並非因量測間隔時間過短致使電荷滯留於通道材料當中。
現階段中我們確認了有機鈣鈦礦於常溫條件下具有雙載子特性,令人好奇的是當有機鈣鈦礦處於低溫環境中會有什麼特性出現。有文章說明當有機鈣鈦礦置於低溫環境時,電壓-電流曲線會比較像場效電晶體的特徵曲線,因此閘極的場效應會開始變的明顯。但由於只有量測到78 (K),有機鈣鈦礦在於更低溫時的表現值得繼續探討,是否會出現更有趣的行為,這問題是令人感興趣的。另外, 最近在Science 雜誌也報道有機鈣鈦礦的自旋電晶體特性, 所以此材料的發展, 未來將不止局制在太陽能電池的應用。
For the issue of environment and renewable energy development, solar cells become significance of energy vision in next generation. It is undoubtedly one of the most popular materials is organic perovskite. Normally, solar cells produce photocurrent by separation of electron-hole pairs in p-n junction. Perovskite has special properties, which has p-n junction without doping impurities into intrinsic material. It''s different from silicon solar cells. In order to find the electrical properties of perovskite''s carrier transport, we measured the characteristic of the field-effect transistor. In field-effect transistor, t the channel carriers can be modulated by Gate voltage. It''s means that the behavior of the carriers in the channel will change when the electric field of the gate is changed. Therefore, the bipolar carrier behavior can be observed by controlling gate voltage. With two direction field of gate, FET present different electrical curve severally.
When the organic perovskite is used as the channel material of the field effect transistor, It is expected that the number of carriers in the channel can be regulated by the electric field of gate. It''s could be observed the changes of carrier transport. Because it is usually as the active layer of solar cell which produce electron-hole pairs, it have bipolar carrier transport. Ideally, it would observe the field effect in the organic perovskite channels by different direction gate voltages. We grow organic perovskite thin film on silicon wafer which have already grown silicon dioxide layer and gold electrodes. And gate electrode is highly doped silicon layer at wafer bottom. Finally, it fixed the glass on perovskite film to separate the water and oxygen. It can avoid the reaction between water and sample.
From the experimental data, it can be observed that the gate voltage with different direction can both regulate the carrier in the channel. This also means that organic perovskites have bipolar carrier transport. Applying 1 (V) between drain and source, when the gate voltage is positive, we can calculate that the carrier mobility of device is 1.412×10-2 (cm2 V-1s-1). And when the gate is negative, the carrier mobility of device is 9.126×10-4 (cm2 V-1s-1). It had an asymmetric order of magnitude, but indeed bipolar carrier. In addition, in different scanning directions of drain-source voltage, such as from negative to positive and from positive to negative, it has different curve between two sometimes. It has some hysteresis effect when it applied a larger drain-source voltage. And it still showed at a large scanning interval time 1 sec, indicating that it is not the reason of scanning interval time.
At this stage, we have confirmed that organic perovskites have bipolar carrier transport at room temperature, and it is curious that device performance of organic perovskite in low-temperature environments. It had report that when the organic perovskite in a low temperature environment, the voltage-current curve close to field-effect transistor, the field-effect by gate voltage will start to become obvious. But the problem is the report only measure down to 78 K, the device performance at lower temperature is a question.
目錄
摘要 ....................................................................................... I
Abstract ...................................................................................... II
誌謝 ......................................................................................IV
目錄 .......................................................................................V
圖目錄 ......................................................................................VI
表目錄 ...................................................................................VIII
第一章 緒論 ..................................................................................... 01
1-1 鈣鈦礦歷史 ...................................................................................... 02
1-2 鈣鈦礦結構 ...................................................................................... 03
1-3 物理性質 ...................................................................................... 04
1-4 目前的發展 ...................................................................................... 05
1-5 研究動機 ...................................................................................... 05
第二章 文獻回顧 ..................................................................................... 06
2-1 鈣鈦礦薄膜製程 ...................................................................................... 07
2-2 元件結構 ...................................................................................... 08
第三章 實驗方法 ..................................................................................... 09
3-1 薄膜製程 ...................................................................................... 10
3-2 樣品元件結構 ...................................................................................... 11
3-3 電性量測 ...................................................................................... 12
3-4 X-射線繞射分析 ..................................................................................... 13
第四章 結果與討論 ..................................................................................... 14
4-1 樣品元件的實際晶片................................................................................ 14
4-2 環境對電性的作用.................................................................................... 16
4-3 元件的場效應 ..................................................................................... .17
4-4 遲滯行為 ..................................................................................... .19
4-5 降溫量測 ...................................................................................... 20
4-6 X-射線繞射圖譜 ..................................................................................... 24
4-7 數據總覽 ...................................................................................... 26
第五章 結論 ..................................................................................... 27
參考資料 ..................................................................................... 28
附錄 ..................................................................................... 31
圖目錄
圖1-1為美國國家再生能源實驗室(NREL)所整理之歷年太陽能電池效率發展。 2
圖1-2為鈣鈦礦ABO3結構之示意圖。 3
圖1-3為時間對PbI2的強度圖。 6
圖2-1 為不同文章所設計之元件。 8
圖3-1 為場效電晶體示意圖,其中通道材料可以為p型或是n型半導體。 9
圖3-2 是鈣鈦礦薄膜合成之流程圖。 10
圖3-3 為元件示意圖。 11
圖3-4 為量測示意圖。 12
圖3-5 為過去論文的元件X光繞射圖譜,用以參考薄膜品質。 13
圖4-1為樣品晶片於大氣環境中之變化。 14
圖4-2為樣品分解狀況之光學影像圖。 15
圖4-3 為不同時間的Ids - Vds 曲線。 16
圖4-4 為不同閘電壓時的Ids - Vds 曲線。 17
圖4-5 為元件的Ids-Vgs 曲線圖。 18
圖4-6 為各電壓時不同掃描方向的Ids - Vds 曲線,紅色為電壓從負到正遞增,藍色為電壓從正到負遞減。 19
圖4-7 為不同溫度下的Ids - Vds 曲線。 21
圖4-8 為其他已發表文章附錄中的降溫量測圖形,從298 K至198 K,間隔為20 K。 22
圖4-9 為溫度-遷移率的分布圖及曲線圖。 23
圖4-10 為有機鈣鈦礦CH3NH3PbI3薄膜之XRD原始圖譜與擬和圖譜。 25
圖4-11 為其他文章中所附之有機鈣鈦礦CH3NH3PbI3的XRD圖譜。 25
圖S01 為源極-汲極的電流電壓曲線(Ids-Vds) 圖。 31
圖S02 為不同閘極電壓(Vg)時的Ids-Vds曲線。 31
圖S03 為不同閘極電壓(Vg)時的Ids-Vds曲線。 32
圖S04 為不同閘極電壓(Vg)時的Ids-Vds曲線。 32
圖S05 為不同閘極電壓(Vg)時的Ids-Vds曲線。 33
圖S06 為不同閘極電壓(Vg)時的Ids-Vds曲線。 33
圖S07 為不同閘極電壓(Vg)時的Ids-Vds曲線。 34
圖S08 為不同閘極電壓(Vg)時的Ids-Vds曲線。 35
圖S09 為不同閘極電壓(Vg)時的Ids-Vds曲線。 35
圖S10 為不同源-汲極電壓(Vds)以及閘極電壓(Vg)時的Ids-Vds曲線。 36
圖S11 為不同閘極電壓(Vg)時的Ids-Vds曲線。 37
圖S12 為不同閘極電壓(Vg)時的Ids-Vds曲線。 38
圖S13 為不同閘極電壓(Vg)時的Ids-Vds曲線。 39
圖S14 為不同閘極電壓(Vg)時的Ids-Vds曲線以及其他特性圖。 40
圖S15 為0Vg的Ids-Vds曲線。 40
圖S16 為不同閘極電壓(Vg)時的Ids-Vds曲線。 41
圖S17 為XRD圖譜。 42
圖S16 為不同溫度時的Ids-Vds曲線。 43
表目錄
表4-1 為元件數據總覽。 26
1.Kojima, A., et al., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009. 131(17): p. 6050-1.
2.Im, J.H., et al., 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011. 3(10): p. 4088-93.
3.Kim, H.S., et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep, 2012. 2: p. 591.
4.Burschka, J., et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013. 499(7458): p. 316-9.
5.Zhou, H., et al., Photovoltaics. Interface engineering of highly efficient perovskite solar cells. Science, 2014. 345(6196): p. 542-6.
6.NREL chart, https://www.nrel.gov/pv/assets/images/efficiency-chart.png, 2017.
7.Eperon, G.E., et al., Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science, 2014. 7(3): p. 982-988.
8.Yang, W.S., et al., High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015. 348(6240): p. 1234.
9.Umari, P., E. Mosconi, and F. De Angelis, Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci Rep, 2014. 4: p. 4467.
10.Hao, F., et al., Solvent-Mediated Crystallization of CH3NH3SnI3 Films for Heterojunction Depleted Perovskite Solar Cells. Journal of the American Chemical Society, 2015. 137(35): p. 11445-11452.
11.Hong, W.L., et al., Efficient Low-Temperature Solution-Processed Lead-Free Perovskite Infrared Light-Emitting Diodes. Advanced Materials, 2016. 28(36): p. 8029-8036.
12.Heo, J.H., D.H. Song, and S.H. Im, Planar CH3NH3PbBr3 Hybrid Solar Cells with 10.4% Power Conversion Efficiency, Fabricated by Controlled Crystallization in the Spin-Coating Process. Advanced Materials, 2014. 26(48): p. 8179-8183.
13.Maculan, G., et al., CH3NH3PbCl3 Single Crystals: Inverse Temperature Crystallization and Visible-Blind UV-Photodetector. Journal of Physical Chemistry Letters, 2015. 6(19): p. 3781-3786.
14.Butler, K.T., J.M. Frost, and A. Walsh, Band alignment of the hybrid halide perovskites CH3NH3PbCl3, CH3NH3PbBr3 and CH3NH3PbI3. Materials Horizons, 2015. 2(2): p. 228-231.
15.Lee, M.M., et al., Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 2012. 338(6107): p. 643.
16.Qiu, J.H., et al., All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays. Nanoscale, 2013. 5(8): p. 3245-3248.
17.Liu, M., M.B. Johnston, and H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013. 501(7467): p. 395-8.
18.Noel, N.K., et al., Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy & Environmental Science, 2014. 7(9): p. 3061.
19.Dong, Q., et al., Solar cells. Electron-hole diffusion lengths > 175 mum in solution-grown CH3NH3PbI3 single crystals. Science, 2015. 347(6225): p. 967-70.
20.Li, F., et al., Ambipolar solution-processed hybrid perovskite phototransistors. Nat Commun, 2015. 6: p. 8238.
21.Mei, Y., et al., Electrostatic gating of hybrid halide perovskite field-effect transistors: balanced ambipolar transport at room-temperature. MRS Communications, 2015. 5(02): p. 297-301.
22.Odenthal, P., et al., Spin-polarized exciton quantum beating in hybrid organic–inorganic perovskites. Nature Physics, 2017.
23.Chin, X.Y., et al., Lead iodide perovskite light-emitting field-effect transistor. Nat Commun, 2015. 6: p. 7383.
24.Wu, Y., et al., Organic–inorganic hybrid CH3NH3PbI3perovskite materials as channels in thin-film field-effect transistors. RSC Adv., 2016. 6(20): p. 16243-16249.
25.Tan, Z.K., et al., Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology, 2014. 9(9): p. 687-692.
26.Kim, Y.H., et al., Multicolored Organic/Inorganic Hybrid Perovskite Light-Emitting Diodes. Advanced Materials, 2015. 27(7): p. 1248-1254.
27.Baugher, B.W.H., et al., Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nature Nanotechnology, 2014. 9(4): p. 262-267.
28.Aristidou, N., et al., Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat Commun, 2017. 8: p. 15218.
29.Dou, B., et al., Radiative Thermal Annealing/in Situ X-ray Diffraction Study of Methylammonium Lead Triiodide: Effect of Antisolvent, Humidity, Annealing Temperature Profile, and Film Substrates. Chemistry of Materials, 2017. 29(14): p. 5931-5941.
30.Im, J.H., et al., Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat Nanotechnol, 2014. 9(11): p. 927-32.
31.Liu, J., et al., Two-Dimensional CH(3)NH(3)PbI(3) Perovskite: Synthesis and Optoelectronic Application. ACS Nano, 2016. 10(3): p. 3536-42.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top