(3.238.173.209) 您好!臺灣時間:2021/05/09 16:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭朝正
研究生(外文):GUO, CHAO-JHENG
論文名稱:以MALDI-TOF質譜分析牛樟芝中之生物性成分
論文名稱(外文):Analysis of Bioactive Components by MALDI-TOF MS in Antrodia cinnamomea
指導教授:劉炳嵐曾耀銘曾耀銘引用關係
指導教授(外文):LIU, BING-LANTZENG, YEW-MIN
口試委員:張耀南徐士蘭
口試委員(外文):CHANG, YAW-NANHSU, SHIH-LAN
口試日期:2017-06-26
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:應用化學系生化科技碩博士班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:97
中文關鍵詞:牛樟芝三萜類醌類衍生物MALDI-TOF MS金奈米粒子
外文關鍵詞:Antrodia cinnamomeaTriterpenoidsUbiquinone derivativesMALDI-TOF MSGold nanoparticles
相關次數:
  • 被引用被引用:0
  • 點閱點閱:200
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
研究指出,牛樟芝(Antrodia cinnamomea)內最受注目之三萜類化合物具有抑制腫瘤細胞、提升免疫系統、肝臟保護作用以及抗氧化能力等活性效用;近年來,醌類衍生物也漸漸成為最具生物活性的成分之一,也具有治療癌症、男性不育和心血管疾病等活性。本實驗利用MALDI-TOF MS建立三萜類化合物與醌類衍生物之快篩方法。研究中主要利用奈米材料檸檬酸鈉修飾金奈米粒子(Citrate-capped gold nanoparticles, AuNPs)作為基質,其具有聚集沉澱之特性,亦可達到濃縮的效果並提高訊號強度與再現性,分析低分子量物質可有效降低背景基質訊號干擾。目前已鑑定出9種三萜類化合物:Methyl antcinate B (AC1)、Antcin B (AC5)、Dehydrosulphurenic acid (AC6)、Antcin H (AC7)、Antcin A (AC9)、Antcin C (AC10)、Methyl antcinate A (AC11)、Antcin K (AC12)、Methyl antcinate H (AC13)以及醌類衍生物4-acetylantroquinonol B (4AAQB),建立出AC1、AC5、AC6、AC7、AC9、AC10、AC11、AC12、AC13、4AAQB之檢量線,其線性範圍 1~20 ppm (r2 >0.98)。此種方法可快速區分與大量分析不同牛樟芝系列樣品,進而比較子實體和菌絲體內生物性成分之差異。
Antrodia cinnamomea (AC) is a unique mushroom of Taiwam. Triterpenoids and ubiquinone derivatives possess a variety of biological activities such as anticancer, antimicrobial, anti-inflammatory, antioxidant, and hepatoprotive. In the present study, citrate-capped gold nanoparticles (AuNPs) was utilized as a matrix for the analysis of triterpenoids and ubiquinone derivatives by MALDI-TOF/MS. AuNPs are deposited onto the top of the sample layer, resulting in a increase of the signal intensities of the protonated ions and reproducibility. The method has been successfully employed to measured 9 triterpenoids and ubiquinone derivatives in A. cinnamomea. The identified analytes include methyl antcinate B (AC1), antcin B (AC5), Dehydrosulphurenic acid (AC6), antcin H (AC7), antcin A (AC9), antcin C (AC10), methyl antcinate A (AC11), antcin K (AC12), methyl antcinate H (AC13), and 4-acetylantroquinonol B (4AAQB). The results, showing the linear range and r2 value are 1 ppm~20 ppm with r2 = 0.957 ~ 0.985, respective. This method can fast distinguish the different sources of A. Cinnamomea. Comparison bioactive components between fruiting body and mycelium.
目錄
中文摘要 ................................................................................................................I
Abstract ............................................................................................................... II
致謝 .................................................................................................................... III
目錄 ...................................................................................................................... V
表目錄 ............................................................................................................. VIII
圖目錄 ................................................................................................................. IX
第一章、緒論 ....................................................................................................... 1
1-1 前言 ........................................................................................................ 1
第二章、文獻回顧 ............................................................................................... 3
2-1 牛樟樹簡介 ............................................................................................ 3
2-2 牛樟芝的分類 ........................................................................................ 4
2-3 牛樟芝命名 ............................................................................................ 5
2-4 牛樟芝生理活性成分............................................................................ 7
2-4-1 三萜類化合物(Triterpenoids) ..................................................... 7
2-4-2 多醣體(Polysaccharides) ........................................................... 11
2-4-3 泛醌衍生物(Ubiquinone derivatives) ....................................... 11
2-5 牛樟芝藥理效用 .................................................................................. 13
2-5-1 抑制腫瘤細胞 ........................................................................... 13
2-5-2 抗發炎效用 ............................................................................... 13
2-5-3 肝臟保護作用 ........................................................................... 14
2-5-4 抗氧化能力 ............................................................................... 14
2-6 基質輔助雷射脫附游離飛行時間質譜儀簡介 ................................. 15
2-6-1 基質輔助雷射脫附游離法的離子形成機制 ........................... 18
2-6-2 基質輔助雷射脫附游離法的樣品配製 ................................... 20
2-6-3 基質輔助雷射脫附游離法的基質功用與特性 ....................... 21
2-6-4 飛行時間質量分析器之原理 ................................................... 23
2-6-5 基質輔助雷射脫附游離飛行時間質譜儀的優點 ................... 29
2-6-6 影響分析物於基質輔助雷射脫附游離質譜法中之因素 ....... 30
2-6-7 金奈米粒子之簡介 ................................................................... 31
2-6-8 石墨烯(Graphene)之簡介 ......................................................... 32
2-7 研究動機與目的 ................................................................................... 33
第三章、實驗內容 ............................................................................................. 35
3-1 實驗材料 .............................................................................................. 35
3-2 實驗方法 .............................................................................................. 37
3-2-1 基質溶液配製 ........................................................................... 37
3-2-1-1 -CHCA 基質溶液配製 ................................................ 37
3-2-1-2 2,5-DHB 基質溶液配製 ................................................ 37
3-2-1-3 金奈米粒子(gold nanoparticles, AuNPs)溶液配製 ...... 37
3-2-1-4 石墨烯溶液配製 ............................................................ 37
3-2-2 三萜類標準品配製 ................................................................... 37
3-2-3 醌類衍生物標準品配製 ........................................................... 38
3-2-4 樣品前處理與製備 ................................................................... 38
3-2-5 樣品之配製於MALDI-TOF MS ............................................. 41
3-3 MALDI-TOF MS 操作條件 ................................................................. 42
第四章、結果與討論 ......................................................................................... 43
4-1 最佳基質選擇 ...................................................................................... 43
4-2 基質於樣品盤上之探討 ..................................................................... 53
4-3 最佳基質濃度 ...................................................................................... 55
4-4 牛樟芝三萜類與醌類衍生物質譜圖探討 ......................................... 59
4-5 牛樟芝三萜類與醌類衍生物質譜圖與檢量線 ................................. 67
4-6 牛樟芝瓶培菌絲體之探討 ................................................................. 79
4-7 真實樣品之測定 .................................................................................. 82
第五章、結論 ..................................................................................................... 88
作者簡歷 ............................................................................................................. 97
表目錄
表1. 常用的基質結構與有效的雷射波長 ........................................................ 23
表2. MALDI-TOF MS之操作參數 ................................................................... 42
表3. 三萜類化合物及醌類衍生物於MALDI-TOF質譜圖可能出現之訊號 45
表4. 三萜類化合物及醌類衍生物於MALDI-TOF質譜圖出現之訊號 ........ 65
表5. 牛樟芝子實體與菌絲體所含的成分 ........................................................ 87
圖目錄
圖1. 牛樟芝子實體 .............................................................................................. 4
圖2. 牛樟芝三萜類化合物的結構 .................................................................... 10
圖3. 牛樟芝泛醌衍生化合物之結構 ................................................................ 12
圖4. 離子化流程 ................................................................................................ 17
圖5. MALDI-TOF MS之作用示意圖 ............................................................... 28
圖6. 索式萃取裝置 ............................................................................................ 39
圖7. 樣品前處理與製備之流程 ........................................................................ 40
圖8. 樣品配製之流程 ........................................................................................ 41
圖9. 不同基質之MALDI-TOF質譜圖。 ........................................................ 46
圖10. 標準AC6於不同基質之MALDI-TOF質譜圖。................................... 47
圖11. 標準品AC10於不同基質之MALDI-TOF質譜圖。 ............................. 48
圖12. 標準品AC11於不同基質之MALDI-TOF質譜圖。 ............................. 49
圖13. 標準品AC12於不同基質之MALDI-TOF質譜圖。 ............................ 50
圖14. 標準品AC13於不同基質之MALDI-TOF質譜圖。 ............................ 51
圖15. 標準品4AAQB於不同基質之MALDI-TOF質譜圖。 ......................... 52
圖16. 2,5-DHB與AuNPs於樣品盤上之比較圖。 ............................................ 54
圖17. 標準品AC11於不同稀釋倍數之AuNPs基質MALDI-TOF質譜圖。. 56
圖18. 標準品AC12於不同稀釋倍數之AuNPs基質MALDI-TOF質譜圖。 57
圖19. 標準品4AAQB於不同稀釋倍數之AuNPs基質MALDI-TOF質譜圖。
............................................................................................................................. 58
圖20. 標準品AC1以AuNPs為基質MALDI-TOF質譜圖。 .......................... 60
圖21. 標準品AC5以AuNPs為基質之MALDI-TOF質譜圖。 ...................... 60
圖22. 標準品AC6以AuNPs為基質之MALDI-TOF質譜圖。 ...................... 61
圖23. 標準品AC7以AuNPs為基質之MALDI-TOF質譜圖。 ...................... 61
圖24. 標準品AC9以AuNPs為基質之MALDI-TOF質譜圖。 ...................... 62
圖25. 標準品AC10以AuNPs為基質之MALDI-TOF質譜圖。 .................... 62
圖26. 標準品AC11以AuNPs為基質之MALDI-TOF質譜圖。 ..................... 63
圖27. 標準品AC12以AuNPs為基質之MALDI-TOF質譜圖。 .................... 63
圖28. 標準品AC13以AuNPs為基質之MALDI-TOF質譜圖。 .................... 64
圖29. 標準品4AAQB以AuNPs為基質之MALDI-TOF質譜圖。 ................. 64
圖30. 三萜類之[M-H+2Na]+離子形成途徑 .................................................... 66
圖31. Methyl antcinate B (AC1)之檢量線圖譜 ............................................... 69
圖32. Antcin B (AC5)之檢量線圖譜 ................................................................ 70
圖33. Dehydrosulphurenic acid (AC6)之檢量線圖譜 .................................... 71
圖34. Antcin H (AC7)之檢量線圖譜 ................................................................ 72
圖35. Antcin A (AC9)之檢量線圖譜................................................................. 73
圖36. Antcin C (AC10)之檢量線圖譜 .............................................................. 74
圖37. Methyl antcinate A (AC11)之檢量線圖譜 ............................................. 75
圖38. Antcin K (AC12)之檢量線圖譜 .............................................................. 76
圖39. Methyl antcinate H (AC13)之檢量線圖譜 ............................................ 77
圖40. 4-acetylantroquinonol B (4AAQB, Q)之檢量線圖譜 ........................... 78
圖41. 1,000 ppm牛樟芝瓶培菌絲體於MALDI-TOF質譜圖。 ..................... 80
圖42. 1,000 ppm牛樟芝瓶培菌絲體於MALDI-TOF質譜圖。 ..................... 81
圖43. 500 ppm野生子實體之MALDI-TOF質譜圖。..................................... 83
圖44. 500 ppm GB2子實體之MALDI-TOF質譜圖。 .................................... 83
圖45. 1,000 ppm牛樟椴木培植多年生菌絲體之MALDI-TOF質譜圖。 ..... 84
圖46. 1,000 ppm瓶培菌絲體之MALDI-TOF質譜圖。.................................. 84
圖47. 1,000 ppm YH菌絲體之MALDI-TOF質譜圖。 ................................... 85
圖48. 1,000 ppm HS菌絲體之MALDI-TOF質譜圖。 ................................... 85
圖49. 1,000 ppm LF菌絲體之MALDI-TOF質譜圖。 ................................... 86
圖50. 1,000 ppm G1菌絲體之MALDI-TOF質譜圖。 ................................... 86

1.Asara, J. M., and Allison, J., “Enhanced detection of oligonucleotides in UV MALDI MS using the tetraamine spermine as a matrix additive,” Analytical Chemistry, 71, 2866-2870 (1999).
2.Bahr, U., Karas, M., and Hillenkamp, F., “Analysis of biopolymers by matrix-assisted laser desorption/ionization mass spectrometry,” Fresenius Journal of Analytical Chemistry, 348, 783-791 (1994).
3.Chang, T. T., and Chou, W. N., “Antrodia cinnamomea reconsidered and A.salmonea sp. nov. on Cunninghamia konishii in Taiwan,” Botanical Bulletin of Academia Sinica, 45, 347-52 (2004).
4.Chang, T. T., and Chou, W. N., “Antrodia cinnamomea sp. nov. on Cinnamomea kanehirai in Taiwan,” Mycological Research, 99, 756-758 (1995).
5.Chen, Y. T., Hsu, C.L., Hou, S. Y., “Detection of single-nucleotide polymorphisms using gold nanoparticles and single-strand-specific nucleases,” Analytical Biochemistry. 375, 299-305 (2008).
6.Cherng, I. H., Chiang, H. C., Cheng, M. C., and Wang, Y., “Three New Triterpenoids from Antrodia cinnamomea,” Journal of Natural Product. 58, 365-371 (1995).
7.Chiang, C. C., Huang, T. N., Lin, Y. W., Chen, K. H., and Chiang, B. H., “Enhancement of 4-acetylantroquinonol B production by supplementation of its precursor during submerged fermentation of Antrodia cinnamomea,” Journal of Agricultural and Food Chemistry. 61, 9160-9165 (2013).
8.Cotter, R. J., In: Time-of-Flight Mass Spectrometry, American Chemical Society, Washington, DC. pp. 19-45 (1997).
9.Cotter, R. J., In: Time-of-Flight Mass Spectrometry, American Chemical Society, Washington, DC. pp. 169-201 (1997).
10.Cramer, R., Haglund Jr, R. F., and Hillenkamp, F., “Matrix-assisted laser desorption and ionization in the O-H and C=O absorption bands of aliphatic and aromatic matrices: dependence on laser wavelength and temporal beam profile,” International Journal of Mass Spectrometry and Ion Processes. 169-170, 51-67 (1997).
11.Dong X. L., Cheng J. S., Li J. H., and Wang Y. H., “Graphene as a novel matrix for the analysis of small molecules by MALDI-TOF MS,” Analytical Chemistry. 82, 6208-6214 (2010).
12.Du, Y. C., Wu, T. Y., Chang, F. R., Lin, W. Y., Hsu, Y. M., Cheng, F. T., Lu, C. Y., Yen, M. H., Tsui, Y. T., Chen, H. L., Hou, M. F., Lu, M. C., and Wu, Y. C., “Chemical profiling of the cytotoxic triterpenoid-concentrating fraction and characterization of ergostane stereo-isomer ingredients from Antrodia camphorata,” Journal of Pharmaceutical and Biomedical Analysis. 58, 182-192 (2012).
13.Ehring, H., and Sundqvist, B. U. R., “Excited state relaxation processes of MALDI-Matrices studies by luminescence spectroscopy,” Applied Surface Science. 96-98, 577-580 (1996).
14.Ehring, H., and Sundqvist, B. U. R., “Studies of the MALDI process by luminescence spectroscopy,” Journal of Mass Spectrometry. 30, 1303-1310 (1995).
15.Ehring, H., Karas, M., and Hillenkamp, F., “Role of photoionization and photochemistry in ionization processes of organic molecules and relevance for matrix-assisted laser desorption/ionization mass spectrometry,” Organic Mass Spectrometry. 27, 472-480 (1992).
16.Geethangili M and Tzeng Y. M., “Review of pharmacological effects of Antrodia camphorata and its bioactive compounds,” Evidence-Based Complementary and Alternative Medicine, 2011, Article ID 212641, 17 pages, doi:10.1093/ecam/nep108 (2011).
17.Hseu, Y. C., Wu, F. Y., Wu, J. J., Chen, J. Y., Chang, W. H., Lu, F. J., Lai, Y. C., and Yang, H. L., “Anti-inflammatory potential of Antrodia camphorata through inhibition of iNOS, COX-2 and cytokines via the NF-B pathway,” International Immunopharmacology, 5, 1914-1925 (2005).
18.Hu Y. D., Zhang H., Lu R. Q., Liao X. R., Zhang B . B., and Xu G. R., “Enabling the biosynthesis of antroquinonol in submerged fermentation of Antrodia camphorate,” Biochemical Engineering Journal. 91, 157-162 (2014).
19.Hung, K. C., Ding, H., and Guo, B., “Use of poly(tetrafluoroethylene)s as a sample support for the MALDI-TOF analysis of DNA and proteins,” Analytical Chemistry. 71, 518-521 (1999).
20.Karas, M., and Bahr, U., “Matrix assisted laser desorption ionization mass spectrometry,” Mass Spectrometry Reviews. 10, 335-357 (1991).
21.Karas, M., and Hillenkamp, F., “Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons,” Analytical Chemistry. 60, 2299-2301 (1988).
22.Knochenmuss, R., “Ion formation mechanisims in UV-MALDI,” Analyst. 131, 966-986 (2006).
23.Knochenmuss, R., Dubois, F., Dale, M. J., and Zenobi, R., “The matrix suppression effect and ionization mechanisms in matrix-assisted laser desorption/ionization,” Rapid Communications in Mass Spectrometry. 10, 871-877 (1996).
24.Krause, J., Stoeckli, M., and Schluneggar, U. P., “Studies on the selection of new matrices for ultraviolet matrix-assisted laser desorption/ionization time-of-flight mass spectrometry,” Rapid Communications in Mass Spectrometry. 10, 1927-1933 (1996).
25.Kussmann, M., Nordhoff, E., Rahbek-Nielsen, H., Haeble, S., Rossel-Larsen, M., Jakobsen, L., Gobom, J., Mirgorodskaya, E., Kroll-Kristensen, A., Palm, L., and Roepstorff, P., “Matrix-assisted laser desorption/ionization mass spectrometry sample preparation techniques designed for various peptide and protein analytes,” Journal of Mass Spectrometry. 32, 593-601 (1997).
26.Lee, C., Wei, X., Kysar, J. W., and Hone, J., “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science., 321, 385-388 (2008).
27.Lee, I. H., Huang, R. L., Chen, C. T., Chen, H. C., Hsu, W. C., and Lu, M. K., “Antrodia caomphorata polysaccharides exnibit anti-hepatitis B vinus effects. FEMS Microbiology Letters. 209, 63-67 (2002).
28.Lee, J. H., Ha, Y. W., Jeong, C. S., Kim, Y. S., and Park, Y., “Isolation and tandem mass fragmentations of an anti-inflammatory compound from Aralia elata,” Archives of Pharmacal Research. 32, 831-840 (2009).
29.Levis R, J., “Laser desorption and ejection of biomolecules from the condensed phase into the gas phase,” Annual Review of Physical Chemistry. 45, 483-518 (1994).
30.Li, Z. W., Kuang, Y., Tang, S. N., Li, K., Huang, Y., Qiao, X., Yu, S. W., Tzeng, Y. M., Lo, J. Y., and Ye, M., “Hepatoprotective activities of Antrodia camphorata and its triterpenoid compounds against CCl4-induced liver njury in mice,” Journal of Ethnopharmacology. 206, 31-39 (2017).
31.Liao, P. C., and Allison, J., “Ionization processes in matrix-assisted laser desorption/ionization mass spectrometry: matrix-dependent formation of [M+H]+ vs [M+Na]+ ions of small peptides and some mechanistic comments,” Journal of Mass Spectrometry. 30, 408-423 (1995).
32.Lin, J. Y., Wu, T. Z., and Chou, J. C., “in vitro induction of fruiting body in Antrodia cinnamomea- a medicinally important fungus,” Botanical Studies. 47, 267-272 (2006).
33.Lin, T. Y., Chien, S. C., Kuo, Y. H., and Wang, S. Y., “Distinguishing between R-and S-antcin C and their cytotoxicity,” Natural Product Communications. 7, 835-836 (2012).
34.Liu, J. J., Huang, T. S., Hsu, M. L., Chen, C. C., Lin, W. S.,Lu, F. J, and Chang, W. H., “Antitumor effects of the partially purified polysaccharides from Antrodia camphorate and the mechanism of its action,” Toxicology and Applied Phamacology. 201, 186-93 (2004).
35.Lu, M. C., El-Shazly, M., Wu, T. Y., Du, Y. C., Chang, T. T., Chen, C. F., Hsu, Y. M., Lai, K. H., Chiu, C. P., Chang, F. R., and Wu, Y. C., “Recent research and development of Antrodia cinnamomea,” Pharmacology & Therapeutics. 139, 124-156 (2013).
36.Mamyrin, B. A., Karataev, V. I., Shmikk, D. V., and Zagulin, V. A., “The mass reflectron: A new non-magnetic time-of-flight mass spectrometer with high resolution,” Soviet physics- JETP. 37, 45-48 (1973).
37.McLean, J. A., Stumpo, K. A., and Russell, D. H., “Size-selected (2-10 nm) gold nanoparticles for matrix assisted laser desorption ionization of peptides,” Journal of the American Chemical Society. 127, 5304-5305 (2005).
38.Overberg, A., Karas, M., Bahr, U., Kaufmann, R., and Hillenkamp, F., “Matrix-assisted infrared-laser (2.94 μm) desorption/ionization mass spectrometry of large biomolecules,” Rapid Communications in Mass Spectrometry., Vol. 4, pp. 293-296(1990).
39.Paloma, Y. S., José, M. P., Araceli, G. C., “Gold nanoparticle-based electrochemical biosensors,” Electrochimica Acta. 53, 5848-5866 (2008).
40.Piyadasa, C. K. G., Hakansson, P., and Ariyaratne, T. R., “A high resolving power multiple reflection matrix-assisted laser desorption/ionization time-of-flight mass spectrometry,” Rapid Communications in Mass Spectrometry. 13, 620-624 (1999).
41.Schmid, R. P., and Weickhardt, C., “Designing reflectron time-of-flight mass spectrometers with and without grids: A direct comparison,” International Journal of Mass Spectrometry. 206, 181-190 (2001).
42.Schriemer, D. C., and Li, L., “Detection of high molecular weight narrow polydisperse poylmers up to 1.5 million daltons by MALDI mass spectrometry,” Analytical Chemistry. 68, 2721-2725 (1996).
43.Shen, Y. C., Chou, C. J., Wang, Y. H., Chen, C. F., Chou, Y. C., and Lu, M. K., “Anti-inflammatory activity of the extracts from mycelia of Antrodia camphorata cultured with water-soluble fractions from five different cinnamomum species,” FEMS Microbiology Letters. 231, 137-143 (2004).
44.Sonavane, G., Tomoda, K., Makino, K., “Biodistribution of colloidal gold nanoparticles after intravenous administration: Effect of particle size,” Colloids and Surfaces B: Biointerfaces. 66, 274-280 (2008).
45.Spengler, B., Kirsch, D., and Kaufmann, R., “Peptide sequencing by matrix-assisted laser-desorption mass spectrometry,” Rapid Communications in Mass Spectrometry. 6, 105-108 (1992).
46.Su, C. L., and Tseng, W. L., “Gold nanoparticles as assisted matrix for determining neutral small carbohydrates through laser desorption/ionization time-of-flight mass spectrometry,” Analytical Chemistry. 79, 1626-1633 (2007).
47.Sunner, J., “Ionization in liquid secondary ion mass spectrometry (LSIMS),” Organic Mass Spectrometry. 28, 805-823 (1993).
48.Sunner, J., Ikpnomou, M. G., and Kebarle, P., “Kinetic modeling of fast atom bombardment spectra of glycerol-diethanolamine mixtures,” Analytical Chemistry. 60, 98-104 (1988).
49.Tanaka, K., Ido, Y., Akita, S., Yoshida, Y., and Yoshida, T., “Detection of high mass molecular by laser desorption time-of-flight mass spectrometry,” Second Japan-China Joint Symposium on Mass Spectrometry., pp. 185-188 (1987).
50.Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., and Yoshida, T., “Protein and polymer analysis up to m/z 100000 by laser desorption time-of-flight mass spectrometry,” Rapid Communications in Mass Spectrometry. 2, 151-153 (1988).
51.Therisod, H., Labas, V., and Caroff, M., “Direct microextraction and analysis of rough-type lipopolysaccharides by combined thin-layer chromatography and MALDI mass spectrometry,” Analytical Chemistry. 73, 3804-3807 (2001).
52.van Breemen, R. B., Snow, M., and Cotter, R. J., “Time-resolved laser desorption mass spectrometry. 1. Desorption of performed ions,” International Journal of Mass Spectrometry and Ion Physics. 49, 35-50 (1983).
53.Wang, S. Y., Hsu, M. L., Hsu, H. C., Tzeng, C. H., Lee, S. S., Shiao, M. S., and Ho, C. K., “The anti-tumor effect of Ganoderma lucidum is mediated by cytokines released from activated macrophages and T lymphocytes,” International Journal of Cancer. 70, 699-705 (1997).
54.Wiley, W. C., and McLaren, I. H., “Time-of-Flight mass spectrometer with improved resolution,” Review of Scientific Instruments. 26, 1150-1157 (1955).
55.Wu, H. H., Yu, Z. H., and Dai, Y. C., “Taiwanofungus, a polypore new genus. Fungal Science. 19, 109-116 (2004).
56.Wu, H. P., Yu, C. J., Lin C. Y., Lin Y. H., and Tseng, W. L., “Gold nanoparticles as assisted matrices for the detection of biomolecules in a high-salt solution through laser desorption/ionization mass spectrometry,” Journal of the American Society for Mass Spectrometry. 20, 875-882 (2009).
57.Wu, S. H., Ryvarden L., and Chang, T. T., “Antrodia camphorate (“niu-chang-chih”), new combination of a medicinal fungus in Taiwan,” Botanical Bulletin of Academia Sinica. 38, 273-275 (1997).
58.Xu, Y., Wastson, J. T., and Bruening, M. L., “Patterned monlayer/polymer films for analysis of dilute or salt-contaminated proteins sample by MALDI-MS,” Analytical Chemistry. 75, 185-190 (2003).
59.Yang, H. L., Hseu, Y. C., Chen, J. Y., Yech, Y. J., Lu, F. J., and Wang, H. H., “Antrodia camphorata in submerged culture protects low density lipoproteins against oxidative modification,” American Journal of Chinese Medicine. 34, 217-231 (2006).
60.Yang, X. H., Wu, T., Liu, B. X., Du, Y. P., Li, H. Y., Zhao, S. L., and Lu, Y. X., “Matrix selection for polymer guanidine analysis by MALDI-TOF MS,” International Journal of Mass Spectrometry. 356, 1-6 (2013).
61.Young, D. S., Chiang, H. C., and Liu, L. K., “Identification of bioactive components in Antrodia cinnamomea by MS/MS via EI ionization,” Journal of the Chinese Chemical Society (Taipei) 45, 123-129 (1998).
62.Zang, M., and Su, Q. H., “Ganoderma camphoratum, a new taxon in genus Ganoderma from Taiwan, China,” Acta Botanica Yunnanica. 12, 395-396 (1990).
63.Zenobi, R., and Knochenmuss, R., “Ion formation in MALDI mass spectrometry,” Mass Spectrometry Reviews. 17, 337-366 (1998).
64.水野卓、川合正允,「菇類的化學」,生物化學。國立編譯館(1997)。
65.吳德鵬,「樟芝微量成份的研究」。國立臺灣師範大學化學研究所碩士班論文(1995)。
66.吳慧芬、呂麗琪,「質譜儀分析技術的突破,開展生化科技新領域」。科學發展,2月,362期(2003)。
67.呂淑芳,「靈芝之機能性與其分析方法」。食品工業 34, 3-8 (2002)。
68.宋祖瑩,「樟芝深層培養液抗氧化及抗腫瘤特性之研究」。國立中興大學食品科學系博士論文(2003)。
69.李名揚,「用膠帶撕出諾貝爾獎的諾佛謝洛夫」。科學人,第106期12月號(2010)。
70.李炫璋,「牛樟芝菌絲體之體內保肝功能評估及其熱水萃物在體外對基質金屬蛋白水解酶活性之影響」。國立中興大學食品科學系碩士論文 (2002)。
71.李貞宜,「牛樟芝不同極性區分保肝機能性之研究」中山醫學大學營養科學研究所碩士論文(2005) 。
72.李順來,「台灣國寶牛樟芝」。世茂出版社有限公司(2009)。
73.肖崇厚、陳蘊如,「中藥化學」。上海科學技術出版社 323-360 (1989)。
74.林苡芬,「不同發酵碳源之牛樟芝菌絲體發酵過濾液對人類肝癌細胞株之影響」。國立台灣大學食品科技研究所碩士論文(2004)。
75.林讚標,「牛樟與冇樟」。林業試驗所研究報告季刊。第8卷第一期:11-20 (1993)。
76.洪偉修教授,「世界上最薄的材料--石墨烯」。98康熹化學報報 (康熹文化事業股份有限公司) (2009)。
77.范真綺,「樟芝固態栽培與液態發酵菌絲體之成分及其生物活性之研究」。南台科技大學化學工程系碩士論文(2003)。
78.陳心慧,「牛樟芝不同極性區分保肝機能性之研究」。中山醫學大學營養科學研究所碩士論文(2004)。
79.楊書威,「中藥樟菇活性成分之研究」。國立台灣大學醫學院藥學研究所碩士論文(1996)。
80.劉業經,「臺灣重要樹木彩色圖誌」。國立中興大學,臺灣省林務局合作研究報告(1970)。
81.潘致良,「利用蛋白質體探討樟芝萃取物處理在人類肺癌細胞(A549)」。南台科技大學生物科技系碩士論文(2004)。
82.衛生福利部國民健康署 http://www.mohw.gov.tw/cp-16-9881-1.html (2017)。

電子全文 電子全文(網際網路公開日期:20220628)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔