(3.238.235.155) 您好!臺灣時間:2021/05/16 16:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:何宗諭
研究生(外文):He, Zong-Yu
論文名稱:融合型蝙蝠演算法求解飯店訂房配置問題
論文名稱(外文):A Merged Bat Algorithm for Solving the Hotel Booking Limits Problem
指導教授:洪士程洪士程引用關係
指導教授(外文):Horng, Shih-Cheng
口試委員:洪士程林謝興陳政宏
口試委員(外文):Horng, Shih-ChengLin, Shieh-ShingChen, Cheng-Hung
口試日期:2017-07-06
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:資訊工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:70
中文關鍵詞:蝙蝠演算法慣性權重值響度脈衝發射率飯店訂房配置問題
外文關鍵詞:bat algorithmweightloudnesspulse emission ratebooking limits problem
相關次數:
  • 被引用被引用:1
  • 點閱點閱:330
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文針對飯店訂房的配置問題,提出一個融合型蝙蝠演算法(Merged Bat Algorithm,MBA),其目的是要在有限的計算時間內找出一組最佳配置解,使得飯店訂房問題獲得最大利潤。
融合型蝙蝠演算法改進了原有蝙蝠演算法(Bat Algorithm,BA)收斂速度慢的缺點,主要控制參數為慣性權重值、響度和脈衝發射率,此三項控制參數會隨著迭代次數增加而進行改變,以加快搜尋最佳解的速度。
蝙蝠演算法是一種群體智能演算法,將最佳化問題的可行解當作是搜索空間中的微蝙蝠,搜索最佳解的過程看成是微蝙蝠尋找食物的過程。接著將所提出的融合型蝙蝠演算法,應用在飯店訂房限制收益最佳化問題以測試效能,飯店訂房限制收益最佳化問題是屬於困難的隨機模擬最佳化問題,具有很大的解空間。最後將所提出的演算法與演化式策略(ES)、模擬退火法(SA)、人工蜂群演算法(ABC)以及原始的蝙蝠演算法(BA)四種演算法進行比較,由模擬數據顯示所提出的蝙蝠演算法,不論在解的品質和計算效率上,都能獲得很好的測試結果。

In this thesis, a Merged bat algorithm, abbreviated as MBA, is proposed to solve the hotel booking limits problem. The goal is to search for a good enough solution with the objective of maximizing the expected revenue using limited computation time. The MBA improves the shortcomings of the slow convergence of the original bat algorithm. The control parameters contain the inertia weight, loudness and pulse emission rate. These three control parameters are varied to speed up the search for the optimal solution when the number of iterations are increased.
BA is inspired by the echolocation behavior of microbats, with varying pulse rates of emission and loudness. Then the proposed MBA is applied to a hotel booking limits problem, which is formulated as a hard stochastic simulation optimization problem that consists of a huge solution space comprised by the vector of booking limits. Finally, the proposed MBA is compared with the evolutionary strategies, simulated annealing, artificial bee colony and original bat algorithm. The vector of good enough booking limits obtained by the proposed MBA is promising in the aspects of solution quality and computational efficiency.

第一章、緒 論 1
1.1背景 1
1.2研究動機與目的 3
1.3研究方法與論文架構 5
第二章、進化式演算法群體智能演算法 7
2.1演化式策略(Evolution Strategy, ES) 7
2.2 模擬退火法(Simulated Annealing, SA) 9
2.3 人工蜂群演算法(Artificial Bee Colony algorithm, ABC) 11
2.4 蝙蝠演算法(Bat algorithm, BA) 13
2.4.1傳統蝙蝠演算法(BA) 13
2.4.2增強蝙蝠演算法(EBA) 16
2.4.3改良型離散蝙蝠演算法(IBA) 18
2.4.4蝙蝠演算法處理過多分配問題(Bat algorithm for RAP) 19
第三章、融合型蝙蝠優化演算法 20
3.1傳統蝙蝠演算法 20
3.2融合型蝙蝠演算法 22
3.3範例步驟說明……………………………………………………………………………27
第四章、飯店訂房配置問題與實驗結果比較 45
4.1 飯店之起源、定義 45
4.2 飯店訂房之意義 49
4.3 飯店訂房之形式 50
4.4 問題定義及數學式 51
4.5實驗說明 57
4.6 演算法步驟與參數設定 58
4.7實驗結果 62
第五章、結論 67
參考文獻 69


圖目錄

圖 1. 近十年來臺旅客及國民出國人次變化 3
圖 2. 近十年觀光外匯收入、國人國內旅遊收入及觀光總收入 4
圖 3. 論文架構 6
圖 4. 演化式策略(ES)計算流程 8
圖 5. 模擬退火(SA)計算流程 10
圖 6. 人工蜂群演算法(ABC)計算流程 12
圖7. 蝙蝠演算法流程圖 15
圖8. 融合型蝙蝠演算法流程圖 24
圖 9. 飯店訂房問題輸入、輸出關係 56
圖10. 慣性權重(W)、脈衝發射率(r)和響度(A)圖形 67
圖 11. 演算法的利潤值比較 68


表目錄
表 1. 參數設定 27
表 2. 搜尋最佳解 43
表 3. 更新訂房限制的三種產品 53
表 4. 矩陣A保留現場入宿的資源 56
表 5. 模擬退火法(SA)之參數設定 57
表 6. 演化式策略(ES)之參數設定 54
表 7. 人工蜂群演算法(ABC)之參數設定 60
表 8. 實驗環境 61
表 9. 慣性權重最小與最大調整( 與 )之比較 62
表 10. 響度最小與最大調整( 與 )之比較 63
表 11. 脈衝發射率最小與最大調整( 與 )之比較 63
表 12. 迭代次數 65
表 13. 迭代次數 65
表 14. 迭代次數 65
表 15. 迭代次數 66


[1]李宗典,混合型和弦搜尋演算法求解飯店訂房配置問題,碩士論文,朝陽科技大學資訊工程系,臺中,2015。
[2]Nasim Nezamoddini, Sarah S. Lam Reliability and topology based network design using pattern mining guided genetic algorithm Expert Systems with Applications Volume 42, Issue 21, 30 November 2015, Pages 7483–7492
[3]Takashi Ito,Kenichi Takahashi,Michimasa Inaba Obtaining Repetitive Actions for Genetic Programming with Multiple Trees Procedia Computer Science Volume 96, 2016, Pages 120-128
[4]Ali Husseinzadeh Kashan, Ali Akbar Akbari, Bakhtiar Ostadi Grouping evolution strategies:An effective approach for grouping problems Applied Mathematical Modelling Volume 39, Issue 9, 1 May 2015, Pages 2703–2720
[5]Saúl Domínguez-Isidro, Efrén Mezura-Montes, Luis-Guillermo Osorio-Hernández, “Evolutionary programming for the length minimization of addition chains”, Engineering Applications of Artificial Intelligence, Vol 37, 2015, pp. 125-134.
[6]J. Kennedy, "Particle swarm optimization," in Encyclopedia of machine learning, ed: Springer, 2011, pp. 760-766.
[7]J.Kennedy, R.C. Eberhart, “Particle Swarm Optimization”, IEEE International Conference on Neural Networks, Vol 4, 1995, pp. 1942-1948.
[8]Xu Zhou, Yanheng Liu, Jindong Zhang, Tuming Liu, Di Zhang “An ant colony based algorithm for overlapping community detection in complex networks”, Physica A: Statistical Mechanics and its Applications, Vol 427, 2015, pp. 289-301.
[9]Hanning Chen, Ben Niu, Lianbo Ma, Weixing Su, Yunlong Zhu “Bacterial colony foraging optimization”, Neurocomputing, Vol 137, 2014, pp. 268-284.
[10]Yanbin Gao, Lianwu Guan, Optimal artificial fish swarm algorithm for the field calibration on marine navigation Measurement Volume 50, April 2014, Pages 297–304
[11]Xiao-long Zheng, Ling Wang A two-stage adaptive fruit fly optimization algorithm for unrelated parallel machine scheduling problem with additional resource constraints Expert Systems with Applications Volume 65, 15 December 2016, Pages 28–39
[12]Erik Cuevas, Miguel Cienfuegos, Daniel Zaldívar, Marco Pérez-Cisneros A swarm optimization algorithm inspired in the behavior of the social-spider Expert Systems with Applications Volume 40, Issue 16, 15 November 2013, Pages 6374–6384
[13]Yang, X. S., Nature-Inspired Metaheuristic Algoirthms, 2nd Edition, Luniver Press, (2010).
[14]X.-S. Yang, A new metaheuristic bat-inspired algorithm, in: J. Gonzlez, D. Pelta,C. Cruz, G. Terrazas, N. Krasnogor (Eds.), Nature Inspired Cooperative Strategiesfor Optimization (NICSO 2010), Vol. 284 of Studies in Computational Intelli-gence, Springer, Berlin, Heidelberg, 2010, pp. 65–74.
[15]Selim Yılmaz,∗, Ecir U. Küc¸ üksille A new modification approach on bat algorithm for solving optimization problems Applied Soft Computing 28 (2015) 259–275
[16]Eneko Osaba, Xin-She Yang, Fernando Diaz, Pedro Lopez-Garcia, Roberto Carballedo An improved discrete bat algorithm for symmetric and asymmetric Traveling Salesman Problems Engineering Applications of Artificial Intelligence 48 (2016) 59–71
[17]T.P. Talafuse & E.A. Pohl (2016) A bat algorithm for the redundancy allocation problem, Engineering Optimization, 48:5, 900-910
[18]交通部觀光局行政資訊系統, 觀光統計圖表. [Online]. Available: http://admin.taiwan.net.tw/public/public.aspx?no=315.
[19]李欽明,旅館客房管理實務(精華版),揚智文化事業股份有限公司,2010第96-97頁。
[20]李欽明,旅館客房管理實務,揚智文化事業股份有限公司,1998。
[21]SimOpt.org, Booking limits at a hotel: Baby. [Online]. Available: http://www.simopt.org, 2011.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top