(3.80.6.131) 您好!臺灣時間:2021/05/14 02:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱士平
論文名稱:利用液相沉積法開發氧化鋅奈米柱與二氧化鈦緻密層於染料敏化太陽能電池之研究
論文名稱(外文):Development of ZnO Nano-rod and TiO2 Compact Layer by Liquid Phase Deposition for Dye Sensitized Solar Cell
指導教授:黃俊杰黃俊杰引用關係胡大湘胡大湘引用關係
指導教授(外文):HUANG, JUNG-JIEHU,TA-HSIANG
口試委員:陳兆南王偉凱李得勝林建良黃俊杰胡大湘
口試委員(外文):CHEN,CHAO-NAN and and andWANG, WEI-KAILEE, DER-SHENGLIN, CHIEN-LIANGHUANG, JUNG-JIEHU,TA-HSIANG
口試日期:2017-06-21
學位類別:博士
校院名稱:大葉大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:84
中文關鍵詞:氧化鋅奈米柱二氧化鈦緻密層低溫水熱法液相沉積法染料敏化太陽能電池
外文關鍵詞:ZnO nano-rodTiO2 compact layerlow temperature hydrothermal methodliquid phase depositiondye-sensitized solar cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:86
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用低溫水熱法製備氧化鋅奈米柱為染料敏化太陽能電池之工作電極。使用硝酸鋅與六甲基四胺為起始原料,透過改變硝酸鋅濃度探討氧化鋅奈米柱之成長特性。當硝酸鋅為0.05 M所沉積之氧化鋅奈米柱有最佳沿c軸成長的結晶特性,其柱體間隙所提供高比表面積可提升染料吸附面積,其染料敏化太陽能電池光電流密度與光電轉換效率分別為1.89 mA/cm2與0.43%。為了進一步提升染料敏化太陽能電池效率,本研究將以液相沉積法製備二氧化鈦緻密層薄膜於透明導電玻璃上,用以隔絕導電層與電解液界面間電子再結合反應,利用六氟鈦酸銨(0.2M)與硼酸(0.5M)混合溶液,藉由沉積時間調變緻密層厚度。並進一步探討緻密層厚度對於染料敏化太陽能電池之影響。當二氧化鈦緻密層厚度在53 nm時,有最低的界面阻抗,因此光電流密度由1.89 mA/cm2提升至2.59 mA/cm2,可改善元件光電轉換效率由0.43%提升至0.75%。
The purpose of this study is to prepare zinc oxide (ZnO) nano-rod via the low temperature hydrothermal method for the application as working electrodes in dye-sensitized solar cells. Zinc nitrate and hexamethylenetetramine were used as starting materials for exploring the characteristics of the ZnO nanorod’s growth in zinc nitrate of varying concentrations. When the zinc nitrate was in the concentration of 0.05 M, the deposited ZnO nanorod had the best crystallization characteristics in its growth along the c-axis while the high specific surface area provided by the gaps in the rod could increase the dye absorption area. The dye-sensitized solar cell with the ZnO nanorod achieved a photocurrent density of 1.89 mA/cm2 and a photoelectric conversion efficiency of 0.43%. To further improve the cell’s efficiency, a titanium dioxide (TiO2) compact layer was prepared on a transparent conductive glass via the liquid phase disposition (LPD) for the purpose of blocking the interfacial electron recombination reaction between the conductive layer and the electrolyte. A mixed solution of hexafluorotitanate (0.2 M) and boric acid (0.5 M) was used for modifying the thickness of the compact layer by varying the disposition duration and further exploring how the thickness of the compact layer affected the dye-sensitized solar cell. When the TiO2 compact layer was in the thickness of 53 nm, the interfacial resistance was the lowest and the cell’s photocurrent density increased from 1.89 to 2.59 mA/cm2, which was able to improve the component’s photoelectric conversion efficiency from 0.43 to 0.75%.
中文摘要 …………………………………………………………………iii
Abstract…………………………………………………………………iv
誌謝………………………………………………………………………………v
目錄……………………………………………………………………………vi
圖目錄………………………………………………………………………ix
表目表………………………………………………………………xii

第一章 緒論………………………………………………………………1
1.1前言………………………………………………………………1
1.2研究動機與目的………………………………………………………………3
第二章 理論與文獻回顧………………………………………………………………5
2.1 染料敏化太陽能電池發展背景與演進………………………………………………………………5
2.2 染料敏化太陽能電池的組成結構與發電原理………………………………………………………………9
2.3 染料敏化太陽能電池的電流-電壓輸出特性………………………………………………………………13
2.4 氧化鋅簡介………………………………………………………………………………………………………………………………15
2.4.1 垂直型氧化鋅奈米柱之成長………………………………………………………………19
2.4.2 氧化鋅的製作方法………………………………………………………………………………………………21
2.4.2.1 化學溶液法………………………………………………………………………………………………21
2.4.2.2 鋅蒸氣氧化法………………………………………………………………………………………………24
2.4.2.3 物理氣相法………………………………………………………………………………………………26
2.4.2.4 模板法………………………………………………………………………………………………28
2.5 水熱法法應用於氧化鋅的合成與演進………………………………………………………………………………………………30
2.6 氧化鋅材料應用於染料敏化太陽能電池………………………………………………………………………………………………35
2.7 染料敏化太陽能電池二氧化鈦緻密層發展……………………………………………………………………………37
2.7.1 網印法………………………………………………………………………………………………………………………………39
2.7.2 噴霧熱解法………………………………………………………………………………………………41
2.7.3 濺鍍法……………………………………………………………………………………………… 43
2.7.4 溶膠凝膠法………………………………………………………………………………………………45
第三章 研究方法………………………………………………………………………………………………46
3.1 實驗藥品與儀器………………………………………………………………………………………………46
3.1.1 實驗藥品………………………………………………………………………………………………46
3.1.2 實驗儀器……………………………………………………………………………………………………………47
3.2 氧化鋅奈米陣列沉積………………………………………………………………………………………………48
3.2.1 製備氧化鋅晶種層………………………………………………………………………………………………48
3.2.2 製備氧化鋅奈米柱………………………………………………………………………………………………49
3.2.3 LPD-TiO2緻密層薄膜………………………………………………49
3.2.4 敏化氧化鋅奈米柱光電極製作………………………………………………………………………………………………50
3.2.5 電解液與對電極製備………………………………………………………………………………………………50
3.2.6 染料敏化太陽能電池之封裝………………………………………………………………………………………………51
3.3 材料特性分析………………………………………………………………………………………………53
3.3.1 場發射電子顯微鏡………………………………………………………………………………………………53
3.3.2 X射線繞射分析………………………………………………………………………………………………53
3.3.3 紫外光/可見光分光光譜儀………………………………………………………………………………………………53
3.3.4 場發射穿透式電子顯微鏡………………………………………………………………………………………………54
3.4 染料敏化太陽能電池元件分析………………………………………………………………………………………………55
第四章 結果與討論………………………………………………………………………………………………56
4.1 水熱法製備氧化鋅奈米柱………………………………………………………………………………………………56
4.1.1 硝酸鋅濃度對氧化鋅奈米柱表面形貌分析……………………………………………………………………………………………57
4.1.2 硝酸鋅濃度對氧化鋅奈米柱結晶特性分析………………………………………………………………………………………………59
4.1.3 硝酸鋅濃度對氧化鋅奈米柱光學分析………………………………………………………………………………………………61
4.1.4 不同硝酸鋅濃度所製備氧化鋅奈米柱對於元件轉換
效率之影響………………………………………………………………………………………………………………………………………………63
4.2 液相沉積法製備二氧化鈦緻密層於染料敏化太陽能元件結
構………………………………………………………………………………………………………………………………………………………………………………………………65
4.2.1 液相沉積法沉積二氧化鈦緻密層原理………………………………………………………………………………………………65
4.2.2 二氧化鈦緻密層薄膜表面形貌與截面分析………………………………………………………………………………………………67
4.2.3 二氧化鈦緻密層結晶特性分析………………………………………………………………………………………………69
4.2.4 LPD-TiO2緻密層薄膜之TEM分析………………………………………………………………………………………………71
4.2.5 不同二氧化鈦緻密層厚度所製備氧化鋅奈米柱對於
元件轉換效率之影響………………………………………………………………………………………………73
第五章 結論………………………………………………………………………………………………………………………………………………77
參考文獻………………………………………………………………………………………………………………………………………………78

[1]產業技術綜合研究所(AIST)研究報告,12月,2004年。
[2]A. B. Walker, L. M. Peter, K. Lobato, P. J. Cameron, J. Phys. Chem. B 110, pp.25504-25507, 2006.
[3]M. Grätzel, B. O’Regan, Nature 353, pp.737-740, 1991.
[4]Z. S. Wang, M. Yanagida, K. Sayama, H. Sugihara, Chem. Mater. 18, pp. 2912-2916, 2006.
[5]K. Hara, Y. Dan-Oh, C. Kasada, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Arakawa, Langmuir 20, pp.4205-4210, 2004.
[6]K. Hara, T. Nishikawa, M. Kurashige, H. Kawauchi, T. Kashima, K. Sayama, K. Alka, and H. Arakawa, Sol. Energy Mater. 85, pp.21-30, 2005.
[7]A. Furube, R. Katoh, K. Hara, T. Sato, S. Murata, H. Arakawa, and M. Tachiya, J. Phys. Chem. B 109, pp. 16406-16414, 2005.
[8]G. Redmond, D. Fitzmaurice, J. Phys. Chem. 97, pp. 1426-1430, 1993.
[9]G. Boschloo, D. Fitzmaurice, J. Phys. Chem. B 103, pp. 7860-7868, 1999.
[10]C. A. Kelly, F. Farzad, D. W. Thompson, J. M. Stipkala, G. J. Meyer, Langmuir vol. 15, pp. 7047-7152, 1999.
[11]S. Kambe, S. Nakade, T. Kitamura, Y. Wada, S. Yanagida, J. Phys. Chem. B 06, pp. 2967-2972, 2002.
[12]S. A. Haque, Y. Tachibana, R. L. Willis, J. E. Moser, M. Grätzel, D. R. Klug, and J.R. Durrant, J. Phys. Chem. B 104, pp. 538-586, 2000.
[13]J. Bisquert, J. Phys. Chem. B, 106, pp. 325-333, 2002.
[14]翁敏航, 太陽能電池-原理、元件、材料、製程與檢測技術, 東華書局, 5月, 2010。
[15]P. Roy, D. Kim, K. Lee, E. Spieckerb and P. Schmuki, Nanoscale 2, pp. 45-49, 2010.
[16]D. Cahen, G. Hodes, M. Grätzel, J.F. Guillemoles and I. Riess, J. Phys. Chem. B 104, pp. 2053-2059, 2000.
[17]A. Zaban, S. Ferrere and B.A. Gregg, J. Phys. Chem. B, 102, pp. 452-460, 1998.
[18]林明獻, 太陽能電池技術入門, 全華圖書股份有限公司, 7月, 2012。
[19]G. Neumann, Phys. Status Solidi B, 105, pp. 605-612, 1981.
[20]D. J. Leary, J. O. Barnes, and A. G. Jordan, J. Electrochem. Soc. 129, pp. 1382-1386, 1982.
[21]S.Y. Chu, W.Water and J.T. Liaw, J. Eur. Cera. Soc. 23, pp. 1593-1598, 2003.
[22]W. Water and S.E. Chen, Sens. Actuators. B Chem. 136, pp. 371-375, 2009.
[23]P. Nunes, D. Costa, E. Fortunato and R. Martins, Vacuum 64, pp. 293-297, 2002.
[24]S. Tuzemen, G. Xiong, J. Wilkinson, B. Mischuck, K.B. Ucer and R.T. Williams, Physica B 308, pp. 1197-1200, 2001.
[25]J.J. Wu and S.C. Liu, Adv. Mater. 14, pp. 215-218, 2002.
[26]Z.W. Pan, Z.R. Dai and Z.L. Wang, Science 291, pp. 1947-1949, 2001.
[27]Y.W. Heo, V. Varadarajan, M. Kaufman, K. Kim and D.P. Norton, Appl. Phys. Lett. 81, pp. 3046-3048, 2002.
[28]J.Y. Lao, J.G. Wen and Z.F. Ren, Nano. Lett. 2, pp. 1287-1291, 2002.
[29]K.L. Lim, J.H. Song, H.J. Jung, and W.K. Choi, J. Appl. Phys.87, pp. 3573-3575, 2000.
[30]B. Liu and H. C. Zeng, J. Am. Chem. Soc. 125, pp. 4430-4431, 2003.
[31]S. Yamabi and H. Imai, J. Mater. Chem. 12, pp. 3773-3378, 2002.
[32]S. Peulon and D. Lincot, J. Electrochem. Soc. 145, pp. 864-874, 1998.
[33]X. P. Gao, Z.F. Zheng, H.Y. Zhu, G.L. Pan, J.L. Bao, F.Wu and D.Y. Song, Chem. Commun. 12, pp. 1428-1429, 2004.
[34]M.J. Zheng, L.D. Zhang, G.H. Li and W.Z. Shen, Chem. Phys. Lett. 363, pp. 123-128, 2002.
[35]L. Vayssieres, Pure Appl. Chem. 78, pp. 1741-1747, 2006.
[36]Z. Zuowan, P. Weiming, K. Shaoying and D. Hai, J. Mater. Process. Technol. 89, pp. 415-418, 1999.
[37]M. Satoh, N. Tanaka, Y. Ueda and S.O.H. Saitoh, Jpn. J. Appl. Phys.38, pp.586-590, 1999.
[38]D.L. Guo, X. Huang, G.Z. Xing, Z.Zhang, G.P Li, M.He, H. Zhang, H. Chen, and T. Wu, Phys. Rev. B 83, pp. 0454031-0454038, 2011.
[39]Q. Cheng and K. Ostrikov, CrystEngComm 13, 3455-3461, 2011.
[40]D. Yu, T. Trad, J.T.M. Jr, V. Craciun, and C.R.Taylor, Nanoscale Res Lett. 5, pp. 1333-1339, 2010.
[41]G.Q. Ding, W.Z. Shen, M.J. Zheng, and D.H. Fan, Appl. Phys. Lett. 88, pp. 1031061-1031063, 2006.
[42]Y.C. Wang, I.C. Leuz and M.H. Hon, Electrochem. Solid-State Lett. 5, C53-C55, 2002.
[43]L. Vayssieres, K. Keis, S.E. Lindquist, and A. Hagfeldt, J. Phys. Chem. B 105, pp.3350-3352, 2001.
[44]L. Vayssieres, K. Keis, A. Hagfeldt, and S. Lindquist, Chem. Mater. 13, pp. 4395-4398, 2001.
[45]Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, and M.J. Mcdermott, J. Am. Chem. Soc. 124, pp.12954-12955, 2002.
[46]K. Govender, D.S. Boyle, P.B. Kenway, and P. O’Brien, J .Mater. Chem. 14, pp.2575-2591, 2004.
[47]L.E. Greene, M. Law, J. Goldberger, F. Kim, J.C. Johnson, Y. Zhang, R.J. Saykally, and P. Yang, Chem. Int. 42, pp.3031-3034, 2003.
[48]M. Grätzel, Nature, 414, pp. 338-342, 2001.
[49]M. Quintana, T. Edvinsson, A. Hagfeldt, G. Boschloo, J. Phys. Chem. C, 111, pp. 1035-1039, 2007.
[50]M. Grätzel, Inorg. Chem., 44, pp. 6841-6851, 2005.
[51]D.T. Lebedev, E.A. Weidmann, Physica Satus Solidi A, R5, pp. 165-170, 1998.
[52]M. Adachi, J. Jiu, S. Isoda, Y. Mori, F. Uchida, Nanotechnology Science and Application, 1, pp. 1-7, 2008.
[53]J. Xia, N. Masaki, K. Jiang, Y. Wada and S. Yanagida, Chem. Lett. 35, pp. 252-253, 2006.
[54]E. Palomares, J.N. Clifford, S.A. Haque, T. Lutz and J.R. Durrant, J. Am. Chem. Soc. 125, pp. 475-482, 2003.
[55]Z. Zaban, S.G. Chen, S. Chappel and B.A. Gregg, Chem. Commun. 22, pp. 2231-2232, 2000.
[56]S. Yang, Y. Huang, C. Huang and X. Zhao, Chem. Mater. 14, pp. 1500-1504, 2002.
[57]Y. Diamant, S.G. Chen, O. Melamed and A. Zaban, J. Phys. Chem. B 107, pp. 1977-1981, 2003.
[58]T. Taguchi, X. Zhang, I. Sutanto, K. Tokuhiro, T.N. Rao, H. Watanabe, T. Nakamori, M. Uragami and A. Fujishima, Chem. Commun. 19, pp. 2480-2481, 2003.
[59]V.P.S. Perera and K. Tennakone, Sol. Energy Mater. Sol. Cells 79, pp. 249-255, 2003.
[60]B. Levy and W. Liu, J. Phys. Chem. B 101, pp. 1810-1816, 1997.
[61]J. Lagemaat, N.G. Park and A.J. Frank, J. Phys. Chem. B 104, pp. 2044-2052, 2000.
[62]B.A. Gregg, F. Pichot, S. Ferrere and C.L. Fields, J. Phys. Chem. B 105, pp. 1422-1429, 2001.
[63]F.S. Francisco, G.B. Germa, B. Juan, B. Peter and Z. Arie, J. Electrochem. Soc. 150, pp. E293- E298, 2003.
[64]P.J. Cameron and L.M Peter, J. Phys. Chem. B 107, pp. 14394-14400, 2003.
[65]P.J. Cameron and L.M Peter, J. Phys. Chem. B 109, pp. 930-936, 2005.
[66]X.Z. Liu, Z. Huang, K.X. Li, H. Li, D.M. Li, L.Q. Li and Q.B. Meng, Chinese Phys. Lett. 23, pp. 2606-2611, 2006.
[67]S. Ito, K. Ishikawa, C.J. Wen, S. Yoshida and T. Watanabe, Bull. Chem. Soc. Jpn. 73, pp. 2609-2614, 2000.
[68]S. Ito, P. Comte, R. Charvet, P. Pechy, U. Bach, L. Scmidt-Mende, S.M. Zakeeruddin, A. Kay, M.K. Nazeeruddin and M. Grätzel, Chem. Commun. 34, pp. 4351-4354, 2005.
[69]M.H. Abdullah and M. Rusop, Appl. Surf. Sci. 284, pp. 278-284, 2013.
[70]M.H. Abdullah and M. Rusop, Ceram. Int. 40, pp. 967-975, 2014.
[71]H.J. Snaith and M. Grätzel, Adv. Mater. 18, pp. 1910-1914, 2006.
[72]J.H. Chun and J.S. Kim, J Nanosci Nanotechnol. 14, pp. 6226-6230, 2014.
[73]Y. Masuda, S. Ieda and K. Koumoto, Langmuir 19, pp. 4415-4519, 2003.
[74]S. Iizuka, S. Ooka, A. Nakata, M. Mizuhata, S. Deki, Electrochim. Acta 51, pp. 802-816, 2005.
[75]H. Yua, S. Zhanga, H. Zhaoa, G. Willb, P. Liua, Electrochim. Acta 54, pp. 1319-1324, 2009.
[76]J.S. Chou and S.C. Lee, J. Electrochem. Soc. 141, pp. 3214-3218, 1994.
[77]Q. Qin, G.B. McKenna, J. Non-Cryst. Solids 352, pp. 2977-2985, 2006.

電子全文 電子全文(網際網路公開日期:20220628)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔