跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/04 00:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊越英
研究生(外文):DUONG VIET ANH
論文名稱:非匹配不確定可變結構系統之不變條件創新解析與控制
論文名稱(外文):Novel Invariance Conditions and Control for Mismatched Uncertain Variable Structure Systems
指導教授:蔡耀文
指導教授(外文):YAO-WEN TSAI
口試委員:張政元謝欣然張義芳蔡渙良蔡耀文
口試委員(外文):CHANG, CHENG-YUANSHIEH, HSIN-JANGCHANG, YIH-FANGTSAI, HUAN-LIANGYAO-WEN TSAI
口試日期:2017-06-12
學位類別:博士
校院名稱:大葉大學
系所名稱:機械與自動化工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:117
中文關鍵詞:可變結構系統非匹配不確定成分線性矩陣不等式不變條件完全不變特性
外文關鍵詞:variable structure systemsmismatched uncertaintylinear matrix inequality (LMI)invariance conditiontotal invariance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:76
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
針對傳統匹配條件不滿足的非匹配不確定可變結構系統,本文導出一組創新的不變條件。在確保傳統可變結構系統設計的快速響應、強健性佳,與穩定性的優點下,本文設計新的滑動模式控制器與推論新的不變條件。本文同時討論如何將此新法應用於小型系統與大型系統。
對於小型系統,基於本文提出新的等效狀態(equivalent state)概念以及兩組切換平面,重要的充分且必要不變條件將予導出,使得系統在滑動模式中的動態行為跟匹配與非匹配不確定成分完全無關。利用線性矩陣不等式,本文提出明確的線性切換平面設計法則,以保證系統在新的滑動模式下為二次形式穩定(quadratically stable)。新的控制法則會確保系統在新的滑動模式下操作。
對於大型系統,一個由兩組切換平面所組成的全新滑動模式將會提出,為降低保守性,每一個子系統的不確定成分與互連項目分離為匹配與非匹配項目。若滿足新提出的不變條件,每一個子系統在新的滑動模式下將會與不確定成分與互連項目完全無關。這裡要特別強調,本文提出的重要不變條件不只是必要的,而且是充分的。再者,利用線性矩陣不等式方法,在滑動模式下的等效降階系統之充分條件被導出,一個分散式控制器能確保整體系統的穩定度。
為了拓展以上提出全新可變結構控制方法的效能,更進一步的,由兩組指數形式的切換平面的設計也會提出,使得系統對於匹配與非匹配不確定成分具有完全不變特性。藉由指數形式切換平面的自然特性,系統的操作特質將會沒有到達階段(reaching phase)以避免系統在此階段的非強健性質。在此同時,系統的狀態不只在 就會在新的滑動模式下操作,而且在整個初始值到最終值的操作,系統會對於匹配與非匹配不確定成分具有完全不變的特性。最後,本文也提供一組電腦模擬的例子以驗證本文提出全新設計方法的效能。

This dissertation concerns a novel approach of the invariance condition of mismatched uncertain variable structure systems in which the matched conditions or conventional invariance conditions are not satisfied. New invariance conditions are investigated in mismatched uncertain variable structure systems associated with a new sliding mode control, at the same time, retaining the benefits achieved in conventional variable structure systems design, namely, fast response, good robustness and stability. The main developments proposed in this dissertation are for both small-scale and large-scale systems.
For a small-scale system, based on new equivalent state idea and two sets of switching surfaces, necessary and sufficient invariance conditions are derived such that matched and mismatched uncertainties completely vanish from the sliding mode dynamics. In terms of linear matrix inequalities, we give explicit formulas of linear switching surfaces to guarantee that the system in the new sliding mode is quadratically stable. A control law is also given to perform the new sliding mode.
For a large-scale system, a new sliding mode that consists of two sets of switching surfaces is also proposed. In every subsystem, uncertainties and interconnections are all separated into matched and mismatched components to reduce the conservatism. As a result, new invariance conditions are derived such that each subsystem in the new sliding mode is completely invariant to both uncertainties and interconnections. We also show that these conditions are not only necessary but also sufficient. In addition, sufficient conditions are derived such that the equivalent reduced-order system in the new sliding mode is asymptotically stable within the framework of linear matrix inequalities. A decentralized controller is synthesized to assure stability of the overall system.
In order to extend the effectiveness of the above variable structure control (VSC) scheme, total invariance to both matched and mismatched uncertainties in VSC systems associated with two sets of exponential-type switching surfaces is proposed. By nature of these surfaces, the reaching phase is eliminated to avoid the non-robustness associated with that phase. Simultaneously, the system state variables are not only confined to the new sliding mode from the initial time , but also invariant to matched and mismatched uncertainties from the initial state to the steady state. A simulation example is also provided to demonstrate the validity of the proposed approach.

INSIDE FROM COVER
SIGNATURE PAGE
中文摘要... iii
ABSTRACT... v
ACKNOWLEDGEMENTS... vii
NOMENCLATURE... viii
TABLE OF CONTENTS... ix
LIST OF FIGURES... xii

Chapter 1: Introduction... 1
1.1 Motivation... 1
1.2 Organization and contributions... 2
Chapter 2: Review of the VSS theory... 5
2.1 Introduction... 5
2.2 Regular form... 6
2.3 Matched uncertainty elimination... 8
2.4 Mismatched uncertainty elimination... 9
2.4.1 First effort (Shyu et. al, 2000)... 10
2.4.2 Second effort (Chan et. al, 2000...) 12
2.4.3 Third effort (Choi, 2003)... 13
Chapter 3: Necessary and Sufficient Invariance Conditions in Mismatched Uncertain Variable Structure Systems... 17
3.1 Introduction... 17
3.2 System description and preliminaries... 18
3.3 Main results... 20
3.3.1 New invariance conditions... 21
3.3.2 Switching surfaces design... 26
3.3.3 Control law design... 32
3.4 Design Example... 34
3.5 Conclusion... 39
Chapter 4: A Novel Interpretation of the Invariance Condition of Mismatched Uncertain Large-Scale Systems... 40
4.1 Introduction... 40
4.2 System description and preliminaries... 43
4.3 Main results... 45
4.3.1 Switching phase design... 46
4.3.2 New invariance conditions... 54
4.3.3 Control law design... 61
4.4 Numerical Example... 64
4.5 Conclusion... 70
Chapter 5: Total Invariance to Both Matched and Mismatched Uncertainties in Variable Structure Control Systems... 72
5.1 Introduction... 72
5.2 Problem statement... 73
5.3 Main results... 75
5.3.1 New invariance conditions... 76
5.3.2 Switching surfaces design... 81
5.3.3 Control law design... 86
5.4 Numerical example... 88
5.5 Conclusion... 91
Chapter 6: Conclusions and Future Works... 93
6.1 Conclusion and Summary... 93
6.2 Future works... 94
References... 96
LIST OF PUBLICATIONS... 103


[1]Boyd, S., Ghaoui, E. L., Feron, E., and Balakrishna, V., Linear matrix inequalities in system and control theory, SIAM, Philadelphia, Pa, USA, 1994.
[2]Chan, M. L., Tao, C. W., and Lee, T. T., “Sliding mode controller for linear systems with mismatched time-varying uncertainties,” Journal of the Franklin Institute, vol. 337, no. 2 3, pp. 105 115, 2000.
[3]Chang, J. -L., “Dynamic sliding mode controller design for reducing chattering,” Journal of the Chinese Institute of Engineers, vol. 37, no. 1, pp. 71-78, 2014.
[4]Choi, H. H., “An explicit formula of linear sliding surfaces for a class of uncertain dynamic systems with mismatched uncertainties,” Automatica, vol. 34, no. 8, pp. 1015-1020, 1998.
[5]Choi, H. H., “An LMI-based switching surface design method for a class of mismatched uncertain systems,” IEEE Transactions on Automatic Control, vol. 48, no. 9, pp. 1634-1638, 2003.
[6]Chwa, D., Choi, J. Y., and Seo, J. H., “Compensation of actuator synamics in nonlinear missile control,” IEEE Transactions on Control Systems Technology, vol. 12, no. 4, pp. 620-626, 2004.
[7]Drazenovic, B., “The invariance conditions in variable structure systems,” Automatica, vol. 5, no. 3, pp. 287-295, 1969.
[8]El-Ghezawi, O. M. E., Zinober, A. S. I., and Billings, S. A., “Analysis and design of variable structure systems using geometric approach,” International Journal of Control, vol. 38, no. 3, pp. 657-671, 1983.
[9]Errouissi, R., Ouhrouche, M., Chen, W. H., and Trzynadlowski, A. M., “Robust Nonlinear Predictive Controller for Permanent-magnet Synchronous Motors with an Optimized Cost Function,” IEEE Transactions on Industrial Electronics, vol. 59, no. 7, pp. 2849-2858, 2012.
[10]Henderson, H. V. and Searle, S. R., “On deriving the inverse of a sum of matrices,” SIAM Review, vol. 23, no. 1, pp. 53-60, 1981.
[11]Horn, R. A. and Johnson, C. R., Matrix Analysis, Cambridge University Press,New York, 2013.
[12]Hung, J. Y., W. Gao, and Hung, J. C., “Variable structure control: A survey,” IEEE Transactions on Industrial Electronics, vol. 40, no. 1, pp. 2-22, 1993.
[13]Khargonekar, P. P., Petersen, I. R., and Zhou, K., “Robust stabilization of uncertain linear systems: Quadratic Stabilizability and Control Theory,” IEEE Transactions on Automatic Control, vol. 35, no. 3, pp. 356-361, 1990.
[14]Kwan, C. M., “Sliding mode control of linear systems with mismatched uncertainties,” Automatica, vol. 31, no. 2, pp. 303-307, 1995.
[15]Liu, H. and Li, S., “Speed control for pmsm servo system using predictive functional control and extended state observer,” IEEE Transactions on Industrial Electronics, vol. 59, no. 2, pp. 1171-1183, 2012.
[16]Liu, S. -C. and Lin, S. -F., “Robust sliding control for mismatched uncertain fuzzy time-delay systems using linear matrix inequality approach,” Journal of the Chinese Institute of Engineers, vol. 36, no. 5, pp. 589-597, 2013.
[17]Ma, Y. and Fu, L., “Robust non-fragile control with memory state feedback for a class of singular time-delay systems,” Journal of the Chinese Institute of Engineers, vol. 39, no. 2, pp. 131-138, 2016.
[18]Rubagotti, M., Estrada, A., Castanos, F., Ferrara, A., and Fridman, L., “Integral sliding mode control for nonlinear systems with matched and unmatched perturbations,” IEEE Transactions on Automatic Control, vol. 56, no. 11, pp. 2699-2704, 2011.
[19]Shyu, K. K., Tsai, Y. -W., and Lai, C. K., “Estimating stability regions for mismatched uncertain variable systems with bounded controllers,” International Journal of Systems Science, vol. 32, no. 5, pp. 621-627, 2001.
[20]Shyu, K. K., Tsai, Y. -W., Yu, Y., and Chang, K. C., “Dynamic output feedback sliding mode design for a class of linear unmatched uncertain systems,” International Journal of Control, vol. 73, no. 16, pp. 1463–1474, 2000.
[21]Utkin, V. I., “Variable structure systems with sliding modes,” IEEE Transactions on Automatic Control, vol. 22, no. 2, pp. 212-222, 1977.
[22]De Carlo, R. A., Zak, S. H., and Mathews, G. P., “Variable structure control of nonlinear multivariable systems: a tutorial,” In Proceedings of the IEEE, pp. 212-232, 1988.
[23]Choi, H. H., “A new method for variable structure control system design: a linear matrix inequality approach,” Automatica, vol. 33, no. 11, pp. 2089-2092, 1997.
[24]Bag, S. K., Spurgeon, S. K., and Edwards, C., “Output feedback sliding mode design for linear uncertain systems,” IEE Proceeding, Control Theory and Applications, vol. 144, no. 3, pp. 209-216, 1997.
[25]Khurana, H., Ahson, S. I., and Lamba, S. S., “On stabilization of large-scale control systems using variable structure systems theory,” IEEE Trans. on Automatic Control, vol. 31, no. 2, pp. 176-178, 1986
[26]Chang, K. Y. and Wang, W. J., “ norm constraint and variance control for stochastic uncertain large-scale systems via sliding mode concept,” IEEE Trans. on Circuits and Cystems–I: Fundamental Theory and Applications, vol. 46, no. 10, pp. 1275-1280, 1999.
[27]Shyu, K. K., Liu, W. J., and Hsu, K. C., “Design of large-scale time-delayed systems with dead-zone input via variable structure control,” Automatica, vol. 41, no. 7, pp. 1239-1246, 2005.
[28]Chung, C. W. and Chang, Y., “Design of a sliding mode controller for decentralised multi-input systems,” IET Control Theory and Applications, vol. 5, no. 1, pp. 221-230, 2011.
[29]Kalsi, K., Lian, J., and Zak, S. H., “Decentralized dynamic output feedback control of nonlinear interconnected systems,” IEEE Trans. on Automatic Control, vol. 55, no. 8, pp. 1964-1970, 2010.
[30]Yan, X. G., Spurgeon, S. K., and Edwards, C., “Global decentralised static output feedback sliding mode control for interconnected time-delay systems,” IET Control Theory and Applications, vol. 6, no. 2, pp. 192-202, 2012.
[31]Qureshi, A. and Abido, M. A., “Decentralized discrete-time quasi-sliding mode control of uncertain linear interconnected systems,” International Journal of Control, Automation and Systems, vol. 12, no. 2, pp. 349-357, 2014.
[32]Tsai, Y. W. and Huynh, V. V., “A multitask sliding mode control for mismatched uncertain large-scale systems,” International Journal of Control, vol. 88, no. 9, pp. 1911-1923, 2015.
[33]Choi, H. H., “Frequency domain interpretations of the invariance condition of sliding mode control theory,” IET Control Theory and Applications, vol. 1, no. 4, pp. 869-874, 2007.
[34]Shyu, K. K., Tsai, Y. -W., Yu, Y., and Lai, C. K., “Decentralized dynamic output feedback controllers for interconnected systems with mismatched uncertainties using new sliding mode control,” International Journal of Systems Science, vol. 31, no. 8, pp. 1011-1020, 2000.
[35]Gao, C. and Zhao, L., “Decentralized variable structure control for uncertain large-scale time-delayed systems: a new approach,” Journal of Dynamic Systems, Measurement, and Control, vol. 135, no. 3, pp. 0310091-0310096, 2013.
[36]Prasad, S., Purwar, S., and Kishor, N., “H-infinity based non-linear sliding mode controller for frequency regulation in interconnected power systems with constant and time-varying delays,” IET Generation, Transmission and Distribution, vol. 10, no. 11, pp. 2771-2784, 2016.
[37]Liu, X. and Han, Y., “Decentralized multi-machine power system excitation control using continuous higher-order sliding mode technique,” Electrical Power and Energy Systems, vol. 82, pp. 76-86, 2016.
[38]Koo, G. B., Park, J. B., and Joo, Y. H., “Decentralized fuzzy observer-based output-feedback control for nonlinear large-scale systems: an LMI approach,” IEEE Trans. on Fuzzy Systems, vol. 22, no. 2, pp. 406-419, 2014.
[39]Wu, L., Su, X., and Shi, P., “Sliding mode control with bounded L 2 gain performance of Markovian jump singular time-delay systems,” Automatica, vol. 48, no. 8, pp. 1929-1933, 2012.
[40]Li, F., Wu, L., Shi, P., and Lim, C.C., “State estimation and sliding mode control for semi-Markovian jump systems with mismatched uncertainties,” Automatica, vol. 51, pp. 385-393, 2015.
[41]Matthews, G. P. and DeCarlo, R. A., “Decentralized tracking for a class of interconnected nonlinear systems using variable structure control,” Automatica, vol. 24, pp. 187–193, 1988.
[42]Shyu, K. K. and Hung, J. C., “Totally invariant variable structure control systems,” IECON 97, 23rd International Conference on Industrial Electronics, Control and Instrumentation, New Orleans, USA, vol. 3, pp. 1119-1123, 1997.
[43]Utkin, V. and J. Shi, “Integral sliding mode in systems operating under uncertainty conditions,” in Proc. 35th Conf. Decision Control, Kobe, Japan, pp. 4591–4596, Dec. 1996.
[44]Choi, H. H., “LMI-based sliding surface design for integral sliding mode control of mismatched uncertain systems,” IEEE Transactions on Automatic Control, vol. 52, no. 4, pp. 736-742, 2007.
[45]Veselic, B., Drazenovic, B., and Milosavljevic, C., “Integral sliding manifold design for linear systems with additive unmatched disturbances,” IEEE Transactions on Automatic Control, vol. 61, no. 9, pp. 2544-2549, 2016.
[46]Veselic, B., Drazenovic, B., and Milosavljevic, C., “Sliding manifold design for linear systems with unmatched disturbances,” J. Franklin Inst., vol. 351, no. 4, pp. 1920–1938, 2014.
[47]Polyakov, A. and Poznyak, A., “Invariant ellipsoid method for minimization of unmatched disturbances effects in sliding mode control,” Automatica, vol. 47, no. 7, pp. 1450–1454, 2011.
[48]Castanos, F. and Fridman, L., “Analysis and design of integral sliding manifolds for systems with unmatched perturbations,” IEEE Transactions on Automatic Control, vol. 51, no. 5, pp. 853–858, 2006.
[49]Rubagotti, M., Raimondo, D. M., Ferrara, A., and Magni, L., “Robust model predictive control with integral sliding mode in continuous-time sampled-data nonlinear systems,” IEEE Transactions on Automatic Control, vol. 56, no. 3, pp. 556–570, Mar. 2011.
[50]Cao, W. -J. and Xu, J. -X., “Nonlinear integral-type sliding surface for both matched and unmatched uncertain systems,” IEEE Transactions on Automatic Control, vol. 49, no. 8, pp. 1355–1360, Aug. 2004.
[51]Tsai, Y. -W., Mai, K. H., and Shyu, K. K., “Sliding mode control for unmatched uncertain systems with totally invariant property and exponential stability,” Journal of the Chinese Institute of Engineers, vol. 29, no. 1, pp. 179-183, 2006.
[52]Weinmann, A., Uncertain Models and Robust Control. New York: Springer-Verlag, 1991.
[53]Edwards, C. and Spurgeon, S. K., Sliding mode control: Theory and applications. London: Taylor and Francis Ltd, 1998.
[54]Zinober, A. S. I. Deterministic Control of Uncertain Systems, Peter Peregrinus, Stevenage, UK, 1990.
[55]Ryan, E. P. and Corless, M., “Ultimate Boundedness and Asymptotic Stability of a Class of Uncertain Dynamical Systems via Continuous and Discontinuous Feedback Control,” IMA Journal of Mathematical Control and Information, vol. 1, pp. 223-242, 1984.
[56]Utkin, V. I. and Young, K. D., “Methods for constructing discontinuity planes in multidimensional variable structure systems,” Automation and Remote Control, vol. 39, pp. 1466-1470, 1978.
[57]H. H. Choi, “On the existence of linear sliding surfaces for a class of uncertain dynamic systems with mismatched uncertainties,” Automatica, vol. 35, pp. 1707–1715, 1999.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊