(3.226.72.118) 您好!臺灣時間:2021/05/12 06:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉美儀
研究生(外文):LIU, MEI-YI
論文名稱:液相法合成氫氧基磷灰石之燒結及性質研究
論文名稱(外文):Sintering and Properties of Hydroxyapatite Using Liquid Approach
指導教授:何文福李弘彬李弘彬引用關係
指導教授(外文):HO, WEN-FULEE, HUNG BIN
口試委員:許學全吳世經
口試委員(外文):HSU, HSUEH-CHUANWU, SHIH-CHING
口試日期:2017-06-07
學位類別:碩士
校院名稱:大葉大學
系所名稱:醫療器材設計與材料碩士學位學程
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:44
中文關鍵詞:氫氧基磷灰石奈米顆粒沉澱法生物廢棄物燒結
外文關鍵詞:HydroxyapatiteNanoparticlesPrecipitationbiowasteSintering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:101
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
封面內頁
簽名頁
中文摘要…iii
ABSTRACT…iv
誌謝…v
目錄…vi
圖目錄…ix
表目錄…xi

第一章 前言…1
1.1 研究背景…1
1.2 研究動機…4
第二章 文獻回顧…5
2.1 人體磷灰石組織…5
2.1.1 骨骼…5
2.1.2 牙齒…5
2.2 磷酸鈣陶瓷(CPCs) …6
2.2.1 磷酸鈣陶瓷發展…6
2.2.2 磷酸鈣陶瓷應用…6
2.2.3 磷酸鈣陶瓷種類…7
2.3 氫氧基磷灰石(HA) …8
2.3.1 HA之純化及製造…9
2.3.2 人工合成HA之發展方向…13
2.3.3 HA之燒結…14
第三章 實驗方法與步驟…18
3.1 實驗流程…18
3.2 實驗材料及儀器…19
3.2.1 原料…19
3.2.2 實驗器具…19
3.2.3實驗設備…20
3.3 實驗流程…20
3.3.1沉澱法合成HA…20
3.2.2 HA粉末造粒…20
3.3.3 HA生胚成形及燒結…21
3.4 分析…21
3.4.1 結晶相分析…21
3.4.2 結晶度計算…22
3.4.3 顯微組織分析…22
3.4.4 截線法計算晶粒尺寸…22
3.4.5 抗壓強度量測…22
3.4.6 相對密度量測…22
3.4.7 微硬度量測…23
3.4.8 破裂韌性量測…24
第四章 結果與討論…25
4.1 原料…25
4.1.1 生物廢棄物…25
4.2 粉末分析…27
4.2.1 沉澱法合成出HA粉末形貌分析…27
4.3 結晶相分析…27
4.3.1 沉澱法合成之HA依序經造粒、成形及燒結 後試片之XRD分析…27
4.3.2 沉澱法合成之HA依序經造粒、成形及燒結後試片之結晶度…28
4.4 機械性質…31
第五章 結論…40
參考文獻 …41

[1]Robinson C, Connell S, Kirkham J, Shorea R, Smith A. Dental enamel - a biological ceramic: regular substructures in enamel hydroxyapatite crystals revealed by atomic force microscopy. Journal of Materials Chemistry 14:2242-2248, 2004.
[2]Girija EK, Suresh Kumar G, Thamizhavel A, Yokogawa Y, Narayana Kalkura S. Role of material processing on the thermal stability and sinterability of nanocrystalline hydroxyapatite. Powder Technology 225:190-195, 2012.
[3]Haberko K, Bućko MM, Brzezińska-Miecznik J, Haberko M, Mozgawa W, Panz T, et al. Natural hydroxyapatite—its behaviour during heat treatment. Journal of the European Ceramic Society 26:537-542, 2006.
[4]Kusrini E, Sontang M. Characterization of x-ray diffraction and electron spin resonance: Effects of sintering time and temperature on bovine hydroxyapatite. Radiation Physics and Chemistry 81:118-125, 2012.
[5]de Jong WF. Le substance minerale dans le os. Recueil des Travaux Chimiques des 45:445-450, 1926.
[6]Rivera EM, Araiza M, Brostow W. Synthesis of hydroxyapatite from eggshells. Materials Letters 41:128-134, 1999.
[7]Wu SC, Hsu HC, Wu YN, Ho WF. Hydroxyapatite synthesized from oyster shell powders by ball milling and heat treatment. Materials Characterization 62:1180-1187, 2011.
[8]Afzal MAF, Kesarwani P, Reddy KM, Kalmodia S, Basu B, Balani K. Functionally graded hydroxyapatite-alumina-zirconia biocomposite: Synergy of toughness and biocompatibility. Materials Science and Engerineering C 32:1164-1173, 2012.
[9]Kumar GS, Thamizhavel A, Girija EK. Microwave conversion of eggshells into flower-like hydroxyapatite nanostructure for biomedical applications. Materials Letters 76:198-200, 2012.
[10]Li C, Liu S, Li G, bai J, Wang W, Du Q. Hydrothermal synthesis of large-sized hydroxyapatite whiskers regulated by glutamic acid in solutions with low supersaturation of precipitation. Advanced Powder Technology 22:537-543, 2011.
[11]J. WT, Celaletdin E, H. DR, W. SR, Rena B. Enhanced osteoclast-like cell functions on nanophase ceramics. Biomaterials 22:1327-1333, 2001.
[12]Young RA, Elliott JC. Atomic-scale bases for several properties of apatites. Archives of Oral Biology 11:699-707, 1966.
[13]Liu J, Ye X, Wang H, Zhu M, Wang B, Yan H. The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method. Ceramics International 29:629-633, 2003.
[14]Fung YC. Biomechanics:Mechanical Properties of Living Tissues. Springer-Verlag Incorporated, New York, 1993, p. 500.
[15]Kalita SJ, Bhardwaj A, Bhatt HA. Nanocrystalline calcium phosphate ceramics in biomedical engineering. Materials Science and Engineering C 27:441-449, 2007.
[16]Sachiko HS, Jun S, Makoto S, Hideaki E. Determination of fracture toughness of human permanent and primary enamel using an indentation microfracture method. Journal of Materials Science: Materials in Medicine 23:2047-2054, 2012.
[17]Ayatollahi MR, Karimzadeh A. Nano-indentation measurement of fracture toughness of dental enamel. International Journal of Fracture 183:113-118, 2013.
[18]Ge J, Cui FZ, Wang XM, Feng HL. Property variations in the prism and the organic sheath within enamel by nanoindentation. Biomaterials 26:3333-3339, 2005.
[19]LeGeros RZ. Effect of carbonate on the lattice parameters of apatite. Nature 205:403-404, 1965.
[20]Bow JS, Liou SC, Chen SY. Structural characterization of room-temperature synthesized nano-sized β-tricalcium phosphate. Biomaterials 25:3155-3161, 2004.
[21]Wang J, Shaw LL. Nanocrystalline hydroxyapatite with simultaneous enhancements in hardness and toughness. Biomaterials 30:6565-6572, 2009.
[22]Piccirillo C, Pullar RC, Costa E, Santos-Silva A, Pintadoa MME, Castro PML. Hydroxyapatite-based materials of marine origin: A bioactivity and sintering study. Materials Science and Engineering C 51:309-315, 2015.
[23]Ramesh S, Tan CY, Tolouei R, Amiriyan M, Purbolaksono J, Sopyan I, Teng WD. Sintering behavior of hydroxyapatite prepared from different routes. Materials and Design 34:148-154, 2012.
[24]Kumar GS, Girija EK. Flower-like hydroxyapatite nanostructure obtained from eggshell: a candidate for biomedical applications. Ceramics International 39(7):8293-8299, 2013.
[25]Yang C, Guo YK, Zhang ML. Thermal decomposition and mechanical properties of hydroxyapatite ceramic. Transactions of Nonferrous Metals Society of China 20:254-258, 2010.
[26]Prabakaran K, Rajeswari S. Spectroscopic investigations on the synthesis of nano-hydroxyapatite from calcined eggshell by hydrothermal method using cationic surfactant as template. Spectrochimica Acta Part A 74:1127-1134, 2009.
[27]Ou SF, Chiou SY, Ou KL. Phase transformation on hydroxyapatite decomposition. Ceramics International 39:3809-3816, 2013.
[28]Kamalanathan P, Ramesh S, Bang LT, Niakan A, Tan CY, Purbolaksono J Chandran H, Teng WD. Synthesis and sintering of hydroxyapatite derived from eggshells as a calcium precursor. Ceramics International 40:16349-16359, 2014.
[29]Ramesh S, Tan CY, Bhaduri SB, Teng WD, Sopyan I. Densification behaviour of nanocrystalline hydroxyapatite bioceramics. Journal of Materials Processing Technology 206(1-3):221-230, 2008.
[30]Ramesh S, Aw KL, Tolouei R, Amiriyan M, Tan CY, Hamdi M, Purbolaksono J, Hassan MA, Teng WD. Sintering properties of hydroxyapatite powders prepared using different methods. Ceramics International 39:111-119, 2013.
[31]Thuault A, Savary E, Hornez JC, Moreau C, Descamps M, Marinel S, Leriche A. Improvement of the hydroxyapatite mechanical properties by direct microwave sintering in single mode cavity. Journal of the European Ceramic Society 34:1865-1871, 2014.
[32]Ou SL, Chiou SY, Ou KL. Phase transformation on hydroxyapatite decomposition. Ceramics International 39:3809-3816, 2013.
[33]Mazaheri M, Haghighatzadeh M, Zahedi AM, Sadrnezhaad SK. Effect of a novel sintering process on mechanical properties of hydroxyapatite ceramics. Journal of Alloys and Compounds. 471:180-184, 2009.
[34]Bose S, Dasgupta S, Tarafder S, Bandyopadhyay A. Microwave-processed nanocrystalline hydroxyapatite: simultaneous enhancement of mechanical and biological properties. Acta Biomaterialia 6:3782-3790, 2010.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔