跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/01/16 06:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李建億
研究生(外文):LI,JIAN-YI
論文名稱:常壓電漿聚合氧化鋁薄膜增強可撓式碳纖維片表面硬度之研究
論文名稱(外文):Enhance Surface Hardness of Flexible Carbon Fiber Sheets by Atmospheric Pressure Plasma-Polymerized Aluminum Oxide Thin Films
指導教授:林永森林永森引用關係
指導教授(外文):LIN,YUNG-SEN
口試委員:高泉豪林佳鋒
口試委員(外文):KAO,CHYUAN-HAURLIN,CHIA-FENG
口試日期:2017-08-24
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:153
中文關鍵詞:常壓電漿聚合可撓式基板表面硬度氧化鋁碳纖維片
外文關鍵詞:surface hardnessflexible substratesAtmospheric-Pressure Plasma polymerizationaluminum oxidecarbon fiber sheets
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
可撓式基板為碳纖維片,而碳纖維片具有輕、薄、耐衝擊及可撓曲等等的優勢,且已廣泛運用於許多產品裡,但目前市面上碳纖維片的表面不具有硬度,在運送產品的過程中會導致產品表面刮傷,因此增強碳纖維片的表面硬度就變得非常重要。故本研究以此為目標。
由於常壓電漿(Atmospheric-Pressure Plasma)具有鍍膜速率快、室溫製程、以及不須抽真空的優點的情況下進行聚合薄膜,本研究主旨在以常壓電漿聚合技術(Atmospheric-Pressure Plasma polymerization)以不同空氣流量、不同氧氣濃度、不同的基板移動速率以及不同的電漿火炬高度將AlOxCyNz薄膜披覆於可撓式碳纖維片基板上,提升可撓式碳纖維片基板的硬度。以鉛筆測試法測試基板的表面硬度;以冷場發射掃描式電子顯微鏡觀測其薄膜厚度及表面型態;以X射線光電子光譜學分析薄膜原子組成結構。本實驗結果顯示,經常壓電漿聚合之FCFSs/ AlOxCyNz表面硬度可由2B提升至6H。

Flexible substrates are carbon fiber sheets. And carbon fiber sheets(CFSs) got some advantageous like lightweights, thin, impact resistance, and flexible. These substrates were used in vary products. In the process of transporting products will lead to product surface scratches because surface of carbon fiber sheets is lack of hardness. So it’s very important to enhance surface hardness of flexible carbon fiber sheets . So it get these properties to our motive of the study.
Due to the advantageous of Atmospheric-Pressure Plasma are under room temperature and un-need to vacuum and high deposition rate but still can polymerization the thin films. So the motive of the study is the deposition AlOxCyNz film on the flexible carbon fiber sheets(FCFSs) substrates with Atmospheric-Pressure Plasma polymerization in different carrier gas air flow, different carrier gas O2 concentrations, different substrates moving velocity and different torch height to promote the ability of surface hardness. Pencil test system is used for checking the surface hardness, analyzing the film thickness and surface morphology by Cold Field Emission Scanning Electron Microscope and analyzing composition structure by x-ray photoelectron spectroscopy. Experiment result show the FCFSs/AlOxCyNz surface after getting Atmospheric-Pressure plasma polymerization its surface hardness is promoted to 6H from 2B.

總目錄
中文摘要 iii
Abstract iv
圖目錄 viii
表目錄 xv
符號說明 xvii
第一章 前言 1
1-1 概述 1
1-2 研究動機與目的 2
1-3論文架構 2
第二章 原理與文獻回顧 3
2-1 可撓式碳纖維複合材料 3
2-1-1 碳纖維複合材料之優點 3
2-1-2碳纖維發展概述 5
2-1-3碳纖維之編織 10
2-1-4碳纖維複合材料之應用 10
2-2 硬度薄膜 15
2-2-1 透明硬度薄膜種類 16
2-2-2 透明硬度薄膜之應用 17
2-2-3透明防刮材料文獻回顧 22
2-3硬度薄膜之製備方法 25
2-3-1電漿化學氣相沈積(PECVD) 25
2-3-2常壓電漿(Atmospheric Plasma) 29
2-4常壓電漿分類 31
2-4-1常壓電漿之形式 35
第三章 實驗方法與步驟 40
3-1 常壓電漿聚合-透明硬度薄膜之程序與條件 41
3-1-1常壓電漿聚合系統 42
3-1-2可撓式CFSs基板之前處理 42
3-1-3製備程序及製程條件 43
3-2硬度薄膜之基本物理性質分析 43
3-2-1 ASTM D3363標準之硬度薄膜表面硬度測試 43
3-2-2硬度薄膜表面磨耗測試 44
3-2-3 ASTM D3359標準之硬度薄膜密著性測試 49
3-3薄膜基本性質分析 51
3-3-1 ESCA於硬度薄膜表面化學元素組成分析 51
3-3-2 FESEM於硬度薄膜表面形態及膜厚之分析 51
3-3-3薄膜沈積速率計算於膜厚分析 52
3-3-4 AFM於硬度薄膜表面粗糙度測定 53
3-3-5表面孔隙度計算於表面形態分析 53
第四章 結果與討論 54
4-1 製備參數製備對透明硬度薄膜之物理性質影響 54
4-1-1不同Torch與基板高度(L)製備對於硬度薄膜之物理性質影響 54
4-1-1-1硬度薄膜表面硬度之影響 54
4-1-1-2硬度薄膜表面磨耗之影響 55
4-1-1-3硬度薄膜與FCFSs基板密著性之影響 57
4-1-1-4硬度薄膜穿透率量測 57
4-1-2不同來回移動速率(v)硬度薄膜之物理性質影響 59
4-1-2-1硬度薄膜表面硬度之影響 59
4-1-2-2硬度薄膜表面磨耗之影響 60
4-1-2-3硬度薄膜與FCFSs密著性之影響 62
4-1-2-4硬度薄膜穿透率量測 63
4-1-3不同流量(sccm)的空氣製備對於硬度薄膜之物理性質影響 65
4-1-3-1硬度薄膜表面硬度之影響 65
4-1-3-2硬度薄膜表面磨耗之影響 66
4-1-3-3硬度薄膜與FCFSs基板密著性之影響 68
4-1-4不同氮氣氧氣比例製備對於硬度薄膜之物理性質影響 70
4-1-4-1硬度薄膜表面硬度之影響 70
4-1-4-2硬度薄膜表面磨耗之影響 72
4-1-4-3硬度薄膜與FCFSs基板密著性之影響 73
4-2製備參數對製備AlOxCyNz硬度薄膜之薄膜性質分析 77
4-2-1不同流量(sccm)的空氣製備硬度薄膜性質影響 77
4-2-1-1硬度薄膜膜厚及沈積速率之分析 77
4-2-1-2硬度薄膜表面形態及表面邊界比例之分析 79
4-2-1-3硬度薄膜表面粗糙度之測定 83
4-2-2不同氮氣氧氣比例製備硬度薄膜性質影響。 91
4-2-2-1 硬度薄膜膜厚及沈積速率之分析 91
4-2-2-2硬度薄膜表面形態及邊界比例之分析 92
4-2-2-3硬度薄膜表面粗糙度之測定 96
4-3製備參數對製備AlOxCyNz硬度薄膜之ESCA元素鍵結分析 102
4-3-1不同流量(sccm)的空氣製備硬度薄膜之ESCA元素鍵結分析 102
4-3-2不同氮氣氧氣比例製備硬度薄膜之ESCA元素鍵結分析 113
第五章 結論 123
參考文獻 125














圖目錄
圖2-1纖維複合材料性質之位置圖[12] 4
圖2-2 Karbona公司所生產之碳纖維自行車零件[16] 13
(a)自行車車身 (b)自行車車頭 (c)自行車輪框 13
圖2-3 NOKIA公司所生產之碳纖維外殼的手機[17] 13
圖2-4 Golfcel公司所生產的高爾夫球捍及捍頭[18] 14
圖2-5茂塑公司所生產之(a)碳纖維鞋墊及(b)刀柄[19] 14
圖2-6 Acer-Aspire-V-Nitro-VN7-791筆記型電腦[23] 17
圖2-7 Acer Veriton Z 薄型桌上型電腦[24] 18
圖2-8 Dell-Inspiron-15-7000筆記型電腦[25] 18
圖2-9 SEIKO與E Ink生產的電子紙式手錶[26] 19
圖2-10日本Bridgestone公司快速響應液態粉顯示器QR-LPD(quick response-liquid powder display) [27] 19
圖2-11 Flexible OLED display [28] 20
圖2-12日本Fujitu公司可撓式顯示器[29] 20
圖2-13 HTC-Desire828智慧型手機[30] 21
圖2-14 720armour 運動太陽眼鏡[31] 21
圖3-1實驗步驟與分析流程圖 41
圖3-2常壓電漿聚合系統示意圖 42
圖3-3 ASTM D3363標準之表面硬度測試示意圖 43
圖3-4磨耗測試機台示意圖 44
圖3-5 FCFSs原始基板-磨耗前 45
圖3-6 FCFSs原始基板-磨耗後 45
圖3-7 FCFSs原始基板-磨耗前-Scan 46
圖3-8 FCFSs原始基板-磨耗後-Scan 46
圖3-9鍍膜後基板-磨耗前 47
圖3-10鍍膜後基板-磨耗後 47
圖3-11鍍膜後基板-磨耗前-Scan 48
圖3-12鍍膜後基板-磨耗後-Scan 48
圖3-13 FCFSs/AlOxCyNz之FESEM截面圖 52
圖4-1以Pencil test測試以不同Torch與基板高度(L) 1.5cm、2.5cm及3cm常壓電漿聚合後之FCFSs/AlOxCyNz基板的表面硬度比較 55
圖4-2以100克重於不同高度(L)下備製FCFSs/AlOxCyNz基板之磨耗耗損率比較圖 56
圖4-3不同Torch與基板高度(L)聚合PET/ AlOxCyNz基板與PET原始基板之穿透率比較圖 58
圖4-4不同Torch與基板高度(L)對表面硬度及特性波長下之穿透率的比較圖 59
圖4-5以Pencil test測試以移動速率為5cm/s、10cm/s、15cm/s、20cm/s之常壓電漿聚合後之FCFSs/AlOxCyNz基板的表面硬度比較 60
圖4-6以100克重於不同基板來回移動速率(v)下製備FCFSs/AlOxCyNz基板之磨耗耗損率比較圖 61
圖4-7不同基板來回移動速率(v)聚合PET/AlOxCyNz基板與PET原始基板之穿透率比較圖 64
圖4-8不同基板來回移動速率(v)對表面硬度及特性波長下之穿透率的比較圖 65
圖4-9以Pencil test測試以不同流量(scccm)空氣 0sccm、1sccm、1.5sccm及2sccm常壓電漿聚合後之FCFSs/AlOxCyNz基板的表面硬度比較 66
圖4-10 100克重於不同流量(scccm)空氣下備製FCFSs/AlOxCyNz基板之磨耗耗損率比較圖 67
圖4-11不同流量(scccm)空氣聚合PET/ AlOxCyNz基板與PET原始基板之穿透率比較圖 69
圖4-12不同流量(scccm)空氣對表面硬度及特性波長下之穿透率的比較圖 70
圖4-13以Pencil test測試以不同氮氣氧氣比例 O2(0%)、O2(10%)、O2(25%)及O2(40%)常壓電漿聚合後之FCFSs/AlOxCyNz基板的表面硬度比較 71
圖4-14 100克重於不同氮氣氧氣比例下備製FCFSs/AlOxCyNz基板之磨耗耗損率比較圖 72
圖4-15不同氮氣氧氣比例聚合PET/ AlOxCyNz基板與PET原始基板之穿透率比較圖 75
圖4-16不同氮氣氧氣比例對表面硬度及特性波長下之穿透率的比較圖 76
圖4-17不同流量(sccm)的空氣的薄膜厚度與沈積速率之趨勢圖 78
圖4-18 (a) FCFSs原始基板及製備參數為空氣流量(b) 0 sccm、(c) 1 sccm、(d) 1.5 sccm及(e) 2 sccm時在放大3萬倍時之表面形態 79
(a) FCFSs 原始基板 79
(b)空氣流量 0sccm 80
(c)空氣流量 1sccm 80
(d)空氣流量 1.5sccm 81
(e)空氣流量 2sccm 81
圖4-19不同流量的空氣稀釋對表面孔隙度及表面硬度比較圖 82
圖4-20(a)、(b)、(c)、(d)、(e)及(f)分別為以AFM量測FCFSs基板以及經常壓電漿聚合後之不同流量(sccm)的空氣之 83
FCFSs/ AlOxCyNz基板之表面粗糙度: 83
(a) FCFSs原始基板 83
(b) FCFSs原始基板(經過改質) 84
(c)空氣流量 0 sccm 84
(d)空氣流量 1 sccm 85
(e)空氣流量 1.5 sccm 85
(f)空氣流量 2 sccm 86
圖4-21 (a)、(b)、(c)、(d)、(e)及(f)以AFM量測FCFSs原始基板與經常壓電漿聚合之不同流量(sccm)的空氣FCFSs/ AlOxCyNz基板之表面3D圖 86
(a) FCFSs原始基板 87
(b) FCFSs原始基板(經過改質) 87
(c)空氣流量 0 sccm 88
(d)空氣流量 1 sccm 88
(e)空氣流量 1.5 sccm 89
(f)空氣流量 2 sccm 89
圖4-22以AFM測試不同流量(sccm)的空氣下之表面粗糙度趨勢圖 90
圖4-23不同氮氣氧氣比例的薄膜厚度與沈積速率之趨勢圖 91
圖4-24 (a)、(b)、(c)及(d)分別為及製備參數為氮氣氧氣比例 O2(0%)、O2(10%)、O2(25%)及O2(40%)時在放大3萬倍時之表面形態 92
(a)氮氣氧氣比例 O2(0%) 93
(b)氮氣氧氣比例 O2(10%) 93
(c)氮氣氧氣比例 O2(25%) 94
(d)氮氣氧氣比例 O2(40%) 94
圖4-25為不同氮氣氧氣比例對表面孔隙度及表面硬度比較圖 95
圖4-26(a)、(b)、(c)及(d)分別為以AFM量測FCFSs基板與經常壓電漿聚合之不同氮氣氧氣比例FCFSs/ AlOxCyNz基板之 96
表面粗糙度: 96
(a)氮氣氧氣比例 O2(0%) 96
(b)氮氣氧氣比例 O2(10%) 97
(c)氮氣氧氣比例 O2(25%) 97
(d)氮氣氧氣比例 O2(40%) 98
圖4-27 (a)、(b)、(c)及(d)以AFM量測FCFSs原始基板與經常壓電漿聚合之不同氮氣氧氣比例FCFSs/AlOxCyNz基板之表面3D圖 98
(a)氮氣氧氣比例 O2(0%) 99
(b)氮氣氧氣比例 O2(10%) 99
(c)氮氣氧氣比例 O2(25%) 100
(d)氮氣氧氣比例 O2(40%) 100
圖4-28 以AFM測試不同氮氣氧氣比例下之表面粗糙度趨勢圖 101
圖4-29不同流量(sccm)的空氣下Al、O、C及N元素的分配比例 102
圖4-30不同流量(sccm)的空氣下Al2p元素XPS分析比較 105
圖4-31不同流量(sccm)的空氣下O1s元素XPS分析比較 107
圖4-32不同流量(sccm)的空氣下C1s元素XPS分析比較 109
圖4-33不同流量(sccm)的空氣下N1s元素XPS分析比較 111
圖4-34不同氮氣氧氣比例下Al、O、C及N元素的分配比例 113
圖4-35不同氮氣氧氣比例下Al2p元素XPS分析比較 115
圖4-36不同氮氣氧氣比例下O1s元素XPS分析比較 117
圖4-37不同氮氣氧氣比例下C1s元素XPS分析比較 119
圖4-38不同氮氣氧氣比例下N1s元素XPS分析比較 121





表目錄
表2-1碳纖維的發展史[14] 6
表2-2碳纖維及其複合材料之用途[14] 12
表2-3常壓電漿優缺點比較表 31
表3-1實驗參數條件 40
表3-2 ASTM D3359標準之硬度薄膜密著性測試[104] 49
表4-1不同Torch與基板高度(L)對AlOxCyNz與FCFSs密著性之影響 57
表4-2不同基板來回移動速率(v)對AlOxCyNz與FCFSs密著性之影響 62
表4-3不同流量(scccm)空氣對AlOxCyNz與FCFSs密著性之影響 68
表4-4不同氮氣氧氣比例對AlOxCyNz與FCFSs密著性之影響 73
表4-5 FESEM量測不同流量(sccm)的空氣下AlOxCyNz硬度薄膜厚度表 78
表4-6 FESEM量測不同氮氣氧氣比例稀釋下AlOxCyNz硬度薄膜厚度表 92
表4-7各元素下化學鍵組成的鍵結位置 103
表4-8不同流量(sccm)的空氣Al2p之XPS鍵結比例分析表 104
表4-9不同流量(sccm)的空氣O1s之XPS鍵結比例分析表 106
表4-10不同流量(sccm)的空氣C1s之XPS鍵結比例分析表 108
表4-11不同流量(sccm)的空氣N1s之XPS鍵結比例分析表 110
表4-12不同流量(sccm)的空氣x、y及z的比值 112
表4-13不同氮氣氧氣比例Al2p之XPS鍵結比例分析表 114
表4-14不同氮氣氧氣比例O1s之XPS鍵結比例分析表 116
表4-15不同氮氣氧氣比例C1s之XPS鍵結比例分析表 118
表4-16不同氮氣氧氣比例N1s之XPS鍵結比例分析表 120
表4-17不同氮氣氧氣比例x、y及z的比值 122

[1] N. C. Das, D. Khastgir, T. K. Chaki and A. Chakraborty, Composites : Part A 31 (2000) 1069-1081
[2] X. Luo and D. D. L. Chung, Composites : Part B 30 (1999) 227-231
[3] S. Koul, R. Chandra, S. K. Dhawan, Polymer 41 (2000) 9305-9310
[4]行政院國科會,科學發展月刊,第28卷,第6期 (89年6月) 435-441
[5] C. Y. Huang and C. C. Wu, European Polymer Joural 36 (2000) 2729-2737
[6] D. D. L. Chung, Carbon 39 (2001) 279-285
[7] G. Lu, X. Li and H. Jiang, Composites Science and Technology 56 (1996) 193-200
[8]張明倫,林新智,陳敏璋,以氧化鋁保護純銅之研究,國立台灣大學材料科學與工程研究所,2011。
[9] 廖國樺,以原子層沉積法成長氧化鋁薄膜作為矽晶片鈍化層之研究,國立臺灣科技大學化學工程系,2013
[10]邱首凱,塑膠複合材料電磁屏蔽效應之研究,國立中山大學光電工程研究所,2001。
[11]戴傳家,雷射收發模組電磁屏蔽之研究,國立中山大學光電工程研究所,2002。
[12]大谷杉郎,大谷朝男,碳纖維材料入門,復漢出版印行,1983。
[13] T. A. Edison, US Patent No.470925 (1892)
[14]馬振基,高分子複合材料,正中書局,1995。
[15]郭文雄教授,逢甲大學航空工程系 複合材料零組件,http://www.aero.fcu.edu.tw/media/
[16] http://www.karbonamotor.com/
[17] http://www.slashphone.com/87/2589.html
[18] http://www.golfcel.com/
[19] http://www.carbon-fiber.com.tw/
[20]李佩璇,含硬膜之可撓性基板的力學分析及應用,國立成功大學工程科學研究所,2005。
[21] C. Wild, P. Koidl, W. Muller-Sebert, H. Walcher, R. Kohl, N. Herres, R. Locher, R. Samlenski, and R. Brenn, Diamond Relat. Mater. 2 (1993) 158-168
[22] X. M. He, K. C. Walter, M. Nastasi, S. -T. Lee, and X. S. Sun, Thin Solid Films 355-356 (1999) 167-173
[23] https://www.acer.com/ac/zh/TW/content/model/NX.MQRTA.004
[24] https://www.acer.com/ac/zh/TW/content/professional-series/veritonz
[25] http://www.dell.com/tw/p/inspiron-15-7567-laptop/pd?oc=ins15-7567-d2848btw&ref=PD_OC
[26] http://www.seikowatches.com/baselworld/2007/press/details/070412 11.html
[27] http://www.bridgestone.com.tw/
[28] Flexible OLED display
[29] http://www.fujitsu-general.com/
[30] http://www.htc.com/tw/smartphones/htc-desire-828/
[31] http://www.720armour.com.tw/_chinese/12_search/01_list.php
[32] C. H. Lin, H. L. Wang, and M. H. Hon, Surface and Coating Technology 90 (1997) 102-106
[33] E. H. A. Dekempeneer, S. Kuypers, K. Vercammen, J. Meneve, J. Smeets, P. N. Gibosn, and W. Gissler, Surface and Coating Technology 100-101 (1998) 45-48
[34] X. M. He, K. C. Walter, M. Nastasi, S. -T. Lee, and X. S. Sun, Thin Solid Films 355-356 (1999) 167-173
[35] K. Koski, J. Hölsä, and P. Juliet, Surface and Coating Technology 120-121 (1999) 303-312
[36] Ko-Shao Chen, Mu-Rong Yang, Shao-Ta Hsu, and Tzong-Zeng Wu, Surface and Coating Tchnology 123 (2000) 204-209
[37] R. Beckmann, K. -D. Nauenburg, T. Naumann, U. Patz, G. Ickes, H. Hagedorn, and J. Snyder, Society of Vacuum Coaters (2001) 288-294
[38] J. M. Kenny, E. Braca, G. Saraceni, L. Lozzi, and S. Santucci, Thin Solid Film 415 (2002) 195-200
[39] J. Madocks, Society of Vacuum Coaters (2003) 137-142
[40] M. C. M. van de Sanden, Y. Barrell, M. Creatore, M. Schaepkens, C. D. Iacovangelo, and T. Miebach, Sanden, Surface and Coating Tchnology 180–181 (2004) 367-371
[41] V. N. Zhitomirsky, T. David, R. L. Boxman, S. Goldsmith, A. Verdyan, Ya. M. Soifer, and L. Rapoport, Thin Solid Films 492 (2005) 187-194
[42] H. V. Boenig, Fundamental of Plasma Chemistry and Technology, Technomic. Publishing Co. Inc., New York (1988)
[43] H. V. Boenig, Plasma Science and Technology, Cornell University Press, New York (1982)
[44] H. V. Boenig, Plasma Polymerization in Encyclopedia of Polymer Science and Engineering, 2nd Ed. 11, 248 (1987)
[45]施信君,以電漿輔助化學氣相沈積研製碳披覆光纖,逢甲大學材料科學研究所,1998。
[46] 李正中,薄膜光學與鍍膜技術,藝軒圖書出版社,台北,1999
[47] 何政昌,常壓電漿技術之研究,國立成功大學化工所碩士論文,2003。
[48] J. R. Roth, Industrial Plasma Engineering. Philadelphia, PA: IOP, 1, (1995),453–463.
[49] S. Kanazawa, M. Kogoma, T. Moriwaki, and S. Okazaki, “Carbon Film Formation By Cold Plasma At Atmospheric Pressure,” in Proc. 8th Int.Symp. Plasma Chemistry, Tokyo, Japan,3, (1987), 1839–1844.
[50] U. Kogelschatz “Filamentary, Patterned, and Diffuse BarrierDischarge” IEEE transactions on plasma science, no 4, 30, (2002)
[51] R. Bartnikass, “Note on discharges in helium under a.c. conditions”Brit. J. appl. Phys.,ser. 2, 1, (1968), 659-661
[52] K. G. Donohoe, “The Development and Characterization of an Atmospheric pressure Plasma Chemical Reactor,” Ph.D. dissertation, Calif. Inst. Tech., Pasadena CA, (1976)
[53]G Konohoe and T. Wydeven “Plasma polymerization of ethylene in an atmospheric pressure discharge,” J. Appl. Polymer Sci., 23, (1979) 2591–2601
[54] S. Yagi, M. Hishii, N. Tabata, H. Nagai, and A. Nagai, “SilentdischargeCO laser,” Laser Eng., no. 3, 5 , (1977),171–176
[55] M. Tanaka, S. Yagi, and N. Tabata, “High frequency silent dischargeand its application to cw CO laser application,” in Proc. 8th Ind. ConfGas Discharges and Their Applications, Oxford, UK, 1, (1985),551–554
[56] K. Yasui, M. Kuzumoto, S. Ogawa, M. Tanaka, and S. Yagi,“Silent-discharge excited TEM 2.5 kW CO laser,” IEEE J. QuantumElectron., 25, (1989) , 836–840
[57] H. Nagai, M. Hishii, M. Tanaka, Y. Myoi, H. Wakata, T. Yagi, and N.Tabata, “CW 20-KW SAGE CO laser for industrial use,” IEEE J.Quantum Electron., 29 , (1993) , 2898–2909
[58] S. Yagi and M. Kuzumoto, “Silent discharges in ozonisers and CO2lasers,” Aust. J. Phys., 48 , (1995) , 411–418R.W.B.Pears and A.G.Gaydan.,”The identification of Molecular”
[59]S. Kanagawa, M. Kogoma, T. Moriwaki, and S. Okazaki “Stable glowplasma at atmospheric pressure,” J. Phys. D, Appl. Phys., 21, (1988),838–840
[60] T. Yokoyama, M. Kogoma, T. Moriwaki, and S. Okazaki, “The echanism of the stabilized glow plasma at atmospheric pressure,” J.Phys. D, Appl. Phys., 23, (1990) , 1125–1128
[61] S. Okazaki, M. Kogoma, M. Uehara, and Y. Kimura, “Appearance of a table glow discharge in air, argon, oxygen and nitrogen at atmospheric pressure using a 50 Hz source,” J. Phys. D, Appl. Phys., 26, (1993) , 889–892
[62] M. Kogoma and S. Okazaki, “Raising of ozone formation efficiency in a homogeneous glow discharge plasma at atmospheric pressure,” J. Phys. D, Appl. Phys., 27, (1994) , 1985–1987
[63] F. Massines, C. Mayoux, R. Messaoudi, A. Rabehi, and P. Ségur, “Experimental study of an atmospheric pressure glow discharge application to polymers surface treatment,” in Proc. 10th Ind. Conf. Gas Dischargesand Their Applications, Swansea, U.K., 2 , (1992) , 730–733
[64] F. Massines, R. B. Gadri, P. Decomps, A. Rabehi, P. Ségur, and C. Mayoux, “Atmospheric pressure dielectric controlled glow discharges:Diagnostics and modeling,” in Proc. 22rd Int. Conf. Phenomena inIonized Gases, Hoboken, NJ, 363, (1996), 306–315.
[65] F. Massines, A. Rabehi, P. Decomps, R. B. Gadri, P. Ségur, and C. Mayoux, “Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by a dielectric barrier,” J. Appl. Phys.,83, (1998), 2950–2957
[66] F. Massines and G. Gouda, “A comparison of polypropylen-surface treatment by filamentary, homogeneous and glow discharges in helium at atmospheric pressure,” J. Phys. D, Appl. Phys., 31, ( 1998), 3411–3420
[67] F. Massines, R. Messaoudi, and C. Mayoux, “Comparison between air filamentary and helium glow dielectric barrier discharges for the polypropylene surface treatment,” Plasmas Polymers, 3, (1998), 43–59
[68] N. Gherardi, G. Gouda, E. Gat, A. Ricard, and F. Massines, “Transition from glow silent discharge to micro-discharges in nitrogen gas,” Plasma Sources Sci. Technol., 9, (2000),340–346
[69] J. R. Roth, M. Laroussi, and C. Liu, “Experimental generation of a steady-state glow discharge at atmospheric pressure,” in Proc. 27th Int. Conf. Plasma Science, Tampa, FL, 1992.
[70] T. C. Montie, K. Kelly-Wintenberg, and J. R. Roth, “An overview of research using a one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials,” IEEE Trans. Plasma Sci., 28, (2000), 41–50
[71] P. P. Tsai, L. C. Wadsworth, and J. R. Roth, “Surface modification of fabrics using a one- atmosphere glow discharge plasma to improve wettability,” Textile Res. J., 67, (1997),359–369
[72] Koinuma, H. Ohkudo, T. Hashimoto "Development and application of a microbeam plasma generator" Applied Physics Letters, no.7, 60, (1992), 816
[73] K. Inomata, H. Ha, K. A. Chaudhary, H. Koinuma "Open air deposition of SiO2 film from a cold torch of tetramethoxysilane-H2-Ar system" Applied Physics Letters, no.1, 64, (1992),46
[74] R. F. Hicks et al. “The Atmospheric-Pressure Plasma Jet: A Review and Comparison to Other Plasma Sources” IEEE transactions on plasma science, no. 6, 26, (1998),1685
[75] S. E. Babayan, J. Y. Jeong, V. J. Tu, J. Park, G. S. Selwyn and R. F. Hicks “Deposition of silicon dioxide films with an atmospheric-pressure plasma jet” Plasma Sources Sci. Technol. 7 (1998) 286-288.
[76] J. Park, I. Henins, H. W. Herrmann, G. S. Selwyn, R.F. Hicks “Discharge Phenomena of an Atmospheric Pressure Radio-Frequency Capacitive Plasma Source” Journal of Applied Physics, n1, 89, (2001) ,20-28
[77] G. R. Nowling, S. E. Babayan, V. Jankovic and R. F. Hicks “Remote plasma-enhanced chemical vapor deposition of silicon nitride at atmospheric pressure” Plasma Sources Sci. Technol. 11,(2002), 97-103
[78] R. F. Hicks et al. United States Patent Application Publication US2002/0129902 A1
[79] R. H. Stark and K. H. Schoenbach “Direct current high-pressure glow discharges” Journal of Applied Physcis, n 4, 85, (1999), 2075-2080
[80] A. Ei-Habachi and K. H. Schoenbach “Emission of excimer radiation from direct current, high-pressure hollow cathode discharges” Appl. Phys. Lett. 72(1), (1997), 22-24
[81] J. G. Eden et al. “Microdischarge devices fabricated in silicon” Appl. Phys. Lett., No. 9, 71, (1997),1165-1167
[82] J. W. Frame, P. C. John, T. A. DeTemple, and J. G. Eden “Continuous-wave emission in the ultraviolet from diatomic excimers in a microdischarge” Applied Physics Letters, n 21, 72 , (1998), 2634-2636
[83] J. G. Eden, C. J. Wagner, J. Gao, N. P. Ostrom, and S. J. Park “Microdischarge array-assisted ignition of a high-pressure discharge:Application to arc lamps” Applied Physics Letters, n 26, 79, (2001),4304-4306
[84] C. J. Wagner, N. P. Ostrom, S. J. Park, J. Gao, and J. G. Eden “Reduction in the Breakdown Voltage of a High-Pressure Discharge With an Array of 200-400-μm-Diameter Microdischarges: Application to Arc Lamp Ignition” IEEE Transactions on Plasma Science, n 1, 30, (2002), 194-195
[85] H. Barankova et al “Fused hollow cathode cold atmospheric plasma” APPLIED PHYSICS LETTERS , n 3, 76, ( 2000), 285-287
[86] L. Bardos,and H. Barankova “Radio frequency hollow cathode source for large area cold atmospheric plasma applications” Surface and Coating Technology, 133, (2000), 522-527,
[87] H. Barankova, and L. Bardos “Hollow cathode plasma sources for large area surface treatment” Surface and Coating Technology, 146, (2001),486-490,
[88] H. Barankova, and L. Bardos “Fused hollow cathode cold atmospheric plasma source for gas treatment” Catalysis Today, v 72 (2002) 237-241
[89] Yu. Akishev, A. Deryugin, A. Napartovich, N. Trushkin, J. Phys. D: Appl. Phys., n 10, 26 ,(1993),1630-1637,
[90] E. E. Kunhardt “Generation of Large-Volume, Atmospheric-Pressure, Nonequilibrium Plasmas” IEEE transactions on plasma science, n 1, 28, (2000),189
[91] K. S. Nam, S. R. Lee, J. J. Rha, K. H. Lee, and J. K. Kim “Apparatus for generating low temperature plasma at atmospheric pressure” United States Patent 6,441,554
[92] S. I. Kim and E. E. Kunhardt “Capillary electrode discharge plasma display panel device and method of fabricating the same” United States Patent 6,255,777
[93] S. I. Kim and E. E. Kunhardt “Method of fabricating capillary electrode discharge plasma display panel device” United States Patent 6,475,049
[94] D. Kim, S. Kim, W. Kokonaski “Capillary discharge plasma display panel with optimum capillary aspect ratio” United States Patent 6,545,411
[95] M. J. Shenton, M. C. Lovell-Hoare and G. C. Stevens "Adhesion enhancement of polymer surfaces by atmospheric plasma treatment" J. Phys. D: Appl. Phys., 34, (2001) ,2754–2760
[96] M. Laroussi et al “The Resistive Barrier Discharge” IEEE TRANSACTIONS ON PLASMA SCIENCE, n 1, 30, (2002) ,158-159
[97] M. Konuma, Film Deposition by Plasma Techniques, Springer-Verlag, New York, (1992)
[98] M. A. Lieberman, and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing. New York, Wiley, (1994)
[99] W. Elenbaas, The High Pressure Mercury Vapor Discharge. Amsterdam, The Netherlands, North-Holland, (1951)
[100] M. I. Boulos “Thermal plasma Processing” IEEE transactions on plasma science, n 6, 19, (1991), 1078-1089
[101] J. R. Roth, Industrial Plasma Engineering. Philadelphia, PA: IOP, 1, (1995),453–463.
[102] R. Bartnikass, “Note on discharges in helium under a.c. conditions” Brit. J. appl. Phys.,ser. 2, 1, (1968), 659-661
[103] ASTM Digital Library, Designation: D 3363-00
[104] ASTM Digital Library, Designation: D 3359-02

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top