跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/10 11:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:潘建宗
研究生(外文):PAN,JIAN-ZONG
論文名稱:以氧化石墨烯(GO)製備二維界面活性劑
論文名稱(外文):Preparation of 2D Surfactant with Graphene Oxide (GO)
指導教授:袁維勵
指導教授(外文):YUAN,WEI-LI
口試委員:翁于晴曾怡享袁維勵
口試委員(外文):WENG,YU-CHINGTSENG,YI,I-HSIANGYUAN,WEI-LI
口試日期:2017-07-05
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:91
中文關鍵詞:氧化石墨烯醯胺化醯氯
外文關鍵詞:Graphene OxideAmideAcid chloride
相關次數:
  • 被引用被引用:0
  • 點閱點閱:297
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了取代製作PLED或OLED時所使用的ITO導電玻璃,本研究提出一種以氧化石墨烯(graphene oxide,GO)薄片作為頭基之二維界面活性劑(surfactant,SFT)的方法。也就是將許多長碳鏈分子以簡單的化學反應接枝到氧化石墨烯兩個親水表面之其中一面,形成類似水母(jellyfish)的結構(但觸手數量更多)。這使得改質後的氧化石墨烯一面親水而另一面疏水,可以在沈積GO薄膜時增進其對塑膠軟板之附著力與平整度。
石墨烯為疏水性,因此需藉由Hummers法將石墨烯氧化、脫層為氧化石墨烯。而GO為水溶性,表面帶有親水之官能基如-OH基(羥基)、-COOH基(羧基)與-O-基(環氧基)。
本研究所使用的兩種方法中之一種為先將GO兩個表面之羧基與氯化亞碸(thionyl chloride)反應而轉變成醯氯(acyl chloride)基。再將改質後之GO加入水包油(O/W)乳液中,使GO以類似Pickering乳液之機制分配到總面積甚大之油水界面。然後將乙二胺(ethylene diamine,EDA)加入水中並與GO 接水面上之醯氯基進行醯胺化反應,使接水面鈍化並保持親水。再將該GO過濾、洗淨後,加入溶有十二烷胺(dodecyl amine,DDA)之酒精中使GO接油面之醯氯基與DDA之胺基進行接枝反應,鈍化接油面並保持其疏水性。如此便可製備出一面親水、一面疏水之新型氧化石墨烯界面活性劑(GO-SFT)。對於此種二維之氧化石墨烯界面活性劑,除了期望它在塗層間能降低界面能之外,還希望它能形成類似肥皂泡之雙層(bilayer)結構,那將會帶進更多有趣的應用。本研究結果已經證實GO-SFT之水溶液能(1)吹出泡泡,(2)找出CMC,以及(3)乳化油水系統。未來將嚐試沈積大面積的氧化石墨烯薄膜於塑膠軟板。


關鍵詞:氧化石墨烯、醯胺化、醯氯、界面活性劑

To replace the ITO conducting glass used in PLED or OLED, a method was proposed in this study to prepare a 2D surfactant (SFT) using graphene oxide (GO) flakes as headgroup. The method involves using simple chemical reactions to graft long chain molecules of hydrocarbon to one of the two hydrophilic surfaces of GO, rendering a jellyfish-like structure (but with more tails). As such, the modified GO flakes become hydrophilic on one side and hydrophobic on the other, helpful in enhancing the adhesion to and evenness over the plastic flexible substrate when a layer of GO is deposited.
Since graphene is hydrophobic, it needs oxidization and exfoliation to be converted to graphene oxide (GO) by the Hummers’ method. GO is hydrophilic with hydrophilic functional groups on its surface such as -OH groups (hydroxyl groups), -COOH groups (carboxyl groups), and -O- groups (epoxy groups).
One of the two methods used in this study was to convert the carboxylic groups on the two surfaces of GO into acyl chloride groups by reacting with thionyl chloride. The modified GO was then added to an O/W emulsion for GO to be distributed to the oil-water interface comprising a large total area in a way like the Pickering emulsion. Next ethylene diamine (EDA) was added to the water phase to react with the acyl chloride groups on the water-facing side of GO for passivation and hydrophilicity. After filtering and rinsing, GO was collected and added to an ethanol solution dissolved with dodecyl amine (DDA) for the grafting reaction to occur between the acyl chloride groups on the oil-facing side of GO and the amine groups of DDA for passivation and hydrophobicity. The as prepared GO-SFT is hydrophilic on one side and hydrophobic on the other. The 2D GO-SFT is expected not only to reduce the interface energy between coatings but also to form bilayer-like structures as seen in soap bubbles, which will bring in more interesting applications. Results of the research show that the aqueous solution of GO-SFT may (1) blow bubbles, (2) identify CMC, and (3) emulsify oil-water systems. In the future, large area GO ultrathin films will be deposited on plastic flexible substrates.


Keywords: Graphene oxide, Amide, Acid chloride , Surfactant

第一章 緒論
1-1 前言
1-2 研究動機
1-3 石墨烯材料簡介
1-4 石墨烯材料製備
1-4-1 化學氣相沈積法(Chemical Vapor Deposition, CVD)
1-4-2 高溫還原法
1-4-3 聯胺蒸氣還原法
1-4-4 氧化減薄石墨片法
1-4-5 切割碳奈米管法
1-4-6 乙氧鈉裂解
1-5 氧化石墨烯材料簡介
1-6 氧化石墨烯製備
第二章 文獻回顧
2-1 高分子發光二極體(Polymer Light - Emitting Diode、PLED)
2-1-1 PLED發光原理
2-1-2 PLED元件裝置
2-2 有機發光二極體簡介(Organic Light-Emitting Diode、OLED)
2-2-1 OLED發光原理
2-2-2 OLED優點
2-3 界面活性劑簡介 (Surfactant)
2-3-1 陽離子型界面活性劑簡介
2-3-2 陰離子型界面活性劑簡介
2-3-3 兩性界面活性劑簡介
2-3-4 非離子界面活性劑簡介
2-4 界面活性劑的演進史
2-5 乳液基礎介紹 (micelle)
2-5-1 乳液的結構與應用
2-5-2 三大種類的乳液
2-6 皮克林乳液
2-6-1 皮克林乳液的類型
2-7 臨界微胞濃度(Critical micelle concentration,CMC)
2-8 表面張力(Surface tension)
2-8-1 表面張力測量
2-9 醯氯 (Acyl chloride)
2-9-1 醯氯反應
2-10 醯胺 (Amide)
2-10-1 醯胺反應
第三章 實驗
3-1 實驗藥品
3-2 實驗儀器
3-3 實驗方法一與步驟一
3-3-1 實驗架構一
3-3-2 製備石墨烯界面活性劑實驗步驟
3-3-3 反應示意圖
3-4 實驗方法二與步驟二
3-4-1 實驗架構二
3-4-2 實驗前置作業 氧化石墨烯之醯氯化反應
3-4-3 製備石墨烯界面活性劑實驗步驟
3-4-4 實驗示意圖
3-5 實驗分析
3-5-1 X射線光電子能譜儀(X-ray photoelectron spectroscopy,XPS)
3-5-2 傅立葉轉換紅外光譜儀 (Fourier-Transform Infrared Spectrometer,FTIR)
3-5-3 穿透式電子顯微鏡(Transmission Electron Microscopy,TEM)
3-5-4 原子力顯微鏡(Atomic Force Microscope,AFM)
第四章 結果與討論(一)
4-1 實驗方法(一)製備GO-SFT二維界面活性劑
4-2 測量石墨烯界面活性劑之臨界微胞濃度(CMC)
4-2-1 不同溫度與時間下石墨烯界面活性劑之臨界微胞濃度
4-2-2 石墨烯界面活性劑臨界微胞濃度(CMC)測量方法
4-3 石墨烯界面活性劑重複性測試
4-3-1 50℃/ 30 min石墨烯界面活性劑重複性
4-3-2 70℃/ 15 min石墨烯界面活性劑重複性
4-4 石墨烯界面活性劑乳化性測試
4-5 石墨烯界面活性劑吹泡測試
4-6 傅立葉轉換紅外光譜儀分析 (FTIR)
4-7 X射線光電子能譜儀分析 (XPS)
4-8 結論
第五章 結果與討論(二)
5-1 實驗方法(二)製備GO-SFT二維界面活性劑
5-2 測量石墨烯界面活性劑之臨界微胞濃度
5-3 石墨烯界面活性劑重複性測試
5-4 石墨烯界面活性劑乳化性測試
5-5 石墨烯界面活性劑吹泡測試
5-6 傅立葉轉換紅外光譜儀分析 (FTIR)
5-7 X射線光電子能譜儀分析 (XPS)
5-8 穿透式電子顯微鏡分析 (TEM)
5-9 原子力顯微鏡分析 (AFM)
5-10 結論
第六章 總結
參考文獻

參考文獻
1.Lee C, Wei X, Kysar JW, Hone J.,Measurement of the Elastic Properties and
Intrinsic Strength of Monolayer Graphene. Science. 321 (5887): 385,2008.
2.A. K. Geim & K. S. Novoselov., The rise of graphene. Nature Materials Vol.
6, 183 - 192 ,2007.
3.Kalaitzidou, K., Fukushima, H., Drzal, L. T., Multifunctional
polypropylene composites produced by incorporation of exfoliated graphite
nanoplatelets. Carbon 45 June 2007 : p.1446-1452
4.Kim, H., Miura, Y., and Macosko, C. W., Graphene Polyurethane Nanocom-
posites for Improved Gas Barrier and Electrical Conductivity. Chemistry of
Materials, 2010 : p.3441-3450
5.Wei, Y., Yang, C. C., and Ding T. Z., A One-Step Method to Synthesize N, N'-
bis (4'-minophenyl) -1, 4-quinonenediimine and Its Derivatives.Tetrahedron
Letters. ,1996 : p.731-734
6.Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I,
Tutuc E, Banerjee SK, Colombo L, Ruoff RS., Large-area synthesis of high-
quality and uniform graphene films on copper
foils., Science. 2009 Jun 5;324(5932).
7.Sasha Stankovich, Dmitriy A. Dikin, Geoffrey H. B. Dommett, Kevin M.
Kohlhaas, Eric J. Zimney, Eric A. Stach, Richard D. Piner, SonBinh T. Nguye
& Rodney S. Ruoff., Graphene-based composite materials, Nature, 442, 282 ,
2006.
8.G. Eda et al.,High-yield production of graphene by liquid-phase exfoliation
of graphite,Nature Nanotech., 3, 210 , 2008.
9.H. M. Wang, Y. H. Wu, Z. H. Ni, and Z. X. Shen., Electronic transport and
layer engineering in multilayer graphene structures , Appl. Phys. Lett. 92,
053504 , 2008.
10.Liying Jiao, Li Zhang, Xinran Wang, Georgi Diankov & Hongjie Dai.,Narrow.,
Graphene nanoribbons from carbon nanotubes
,Nature., 458 (7240): 877, 2009.
11.Mohammad Choucair, Pall Thordarson & John A., Stride.,Gram-scale production
of graphene based on solvothermal synthesis and sonication . Nature 4, 30 -
33 , 2009.
12.黃嘉興、Laura J. Cote、Jeamyung Kim、Vincent C. Tung、Jiayan Luo、Franklin
Kim., 舊材料的新見解—氧化石墨烯之界面活性 ,工業材料雜誌, 2011.03 : p.291.
13.IH Tseng, YM Sung, PY Chang, SW Lin, Photocatalytic Performance of Titania
Nanosheets Templated by Graphene Oxide, Journal of Photochemistry and
Photobiology A: Chemistry, 339, 1-11, 2017-02.
14.CJ Chang, KL Huang, KW Chu, YH Wei, IH Tseng, Sulfonated Graphene Oxide–
Doped Zincoxysulfide Composites with Enhanced Photocatalytic Hydrogen
Production Performance, International Journal of Hydrogen Energy, 41(16),
21755-21763, 2016.08.
15.曾怡享、蔡美慧、陳信旭、葉瑞銘, 電活性聚亞醯胺/氧化石墨烯複合薄膜氣體阻障性質研究.
,Journal of Technology, 28(4), 229-234, 2013.12.
16.B. C. Brodie et al., On the Atomic Weight of Graphite., Philos. Trans. R.
Soc. London, 149, 249 (1959)
17.William S. HummersJr., Richard E. Offeman., Preparation of Graphitic
Oxide., Soc., 80, 1339 (1958)
18.Y. Xu et al., J. Am. Chem. , Flexible Graphene Films via the Filtration of
Water-Soluble Noncovalent Functionalized Graphene., SheetsSoc., 130, 5856 (2008)
19.J. H.; Bradley , D. D. C.; Brown, A. R.; Marks, R. N.; Mackay,
K.; Friend, R. H.; Bums, P. L.; Holmes, A. B., Conjugated Polymer And
Molecular Interfaces., Nature, 347, 539, 1990.
20.刈米孝夫&王鳳英,界面活性劑的原理與應用., 2007: p.3-5.
21.廖明隆,界面化學與界面活性劑., 1994: p.13.
22.Ian W. Hamley., Introduction to Soft Matter., 2007.
23.Yves Chevalier, Marie-Alexandrine Bolzinger., Emulsions stabilized with
solid nanoparticles: Pickering emulsions., Journal of Colloid and Interface
Science Volume 439, 20 December 2013: p.23-34.
24.楊飛,王君,藍強,孫德軍,李傳憲, Pickering 乳狀液的研究進展., 化學進展學報, 2009.
25.李玲,表面活性劑與奈米技術 ,化學工業出版.,2005: p.10.
26.Pierre-Gilles de Gennes,Francoise Brochard-Wyart,David Quere Capillarity
and Wetting Phenomena.,“ Drops, Bubbles, Pearls, Waves”. ISBN 0-387-00592-7
27.Clayden, Jonathan., Organic chemistry. Oxford: Oxford University Press.,
2001: p.276-296.
28.Vijaya R. Pattabiraman & Jeffrey W. Bode., Rethinking amide bond
synthesis.,Nature 480, 22 December 2011: p.471-479
29.張樹鵬、宋海歐、姚冬婷、韓建美、余榮冰、羅玉婷,“三聚氰胺化學修飾氧化石墨烯奈米表面
材料及製備方法”,專利 CN103241735 B ,2014/11/05
30.Jonathan K. Wassei, Kitty C. Cha, Vincent C. Tung, Yang and Richard .
KanerJ. Mater. Chem., The effects of thionyl chloride on the properties of
graphene and graphene–carbon nanotube composites., J. Mater. Chem., 21,
3391, 2011.
31.Stuart C. Thickett. Per B. Zetterlund., Graphene oxide (GO) nanosheets as
oil-in-water emulsion stabilizers : Influence of oil phase polarity.
Journal of Colloid and Interface Science Volume 442, 15 March 2015 : p. 67-
74.
32.Charles J. Pouchert., The Aldrich library of infrared spectra., 1985

電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top