跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/06 02:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊惠婷
研究生(外文):YANG, HUEI-TING
論文名稱:以乳酸菌模板製備二氧化矽中空棒
論文名稱(外文):Preparation of Silica Hollow Rods Using Bifidobacterium Templates
指導教授:袁維勵
指導教授(外文):YUAN, WEI-LI
口試委員:翁于晴曾怡享袁維勵
口試委員(外文):WENG,YU-CHINGTSENG,YI,I-HSIANGYUAN,WEI-LI
口試日期:2017-02-13
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:54
中文關鍵詞:中空棒溶膠凝膠法比菲德氏箘生物模板
外文關鍵詞:Hollow RodsSol-Gel MethodBifidobacteriumBiological Template
相關次數:
  • 被引用被引用:1
  • 點閱點閱:121
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
有機與無機中空粒子是目前應用廣泛的特殊材料。可以用於光學元件與作為藥物載體。一般製備微、奈米中空粒子之方法以「模板法」最常見。首先以有機、無機材料包覆模板顆粒,再以鍛燒或溶劑去除模板而得到中空粒子。模板可為球體、圓柱或是平板。而細菌的形態可以是球形(球菌)、棒狀(桿菌)、弧形(弧菌)或是螺旋形(螺旋菌)。在本研究中,我們以比菲德氏菌(Bifidobacterium)做為生物模板,製作微米級二氧化矽中空棒。二氧化矽外殼之形成乃藉由進行溶膠凝膠反應。結果顯示,二氧化矽溶膠顆粒可以順利形成厚膜,包覆於比菲德氏菌表面。鍛燒後,細菌模板順利移除而微米中空棒也如預期製備完成,再經由粒徑分析儀與Bio-TEM等儀器分析尺寸、中空與形貌。


關鍵詞:中空棒、溶膠凝膠法、比菲德氏菌、生物模板
Organic and inorganic hollow particles are widely used special materials. They can be used in optical devices and as a drug vehicle. The most common method to prepare micro/nano hollow particles is the “template” method. First, the template particles are coated with an organic or inorganic material. Then the template moieties are removed by calcination or by solvent dissolution to obtain hollow particles. The template may be spheres, cylinders, or plates. And the morphology of the bacteria can be spherical (Coccus), rodlike (Bacillus), curved (Vibrio), or spiral (Spirillum). In this study, we used Bifidobacterium as a bio-template to produce micro-sized silica hollow rods. Silica shells were formed by the sol-gel reaction. The results showed that silica sol particles could form a thick film over the surface of Bifidobacterium. After calcination, the bacterial templates were removed and the micro hollow rods were obtained as expected. The samples were analyzed by the Submicron Particle Size Analyzer, Bio-TEM, and other instruments for particle size, hollowness, and morphology.


Keywords: Hollow Rods, Sol-Gel Method, Bifidobacterium, Bio-Template

摘  要
Abstract
目  錄
圖目錄
表目錄
第一章 緒論
1.1前言
1.2研究動機
1.3奈米材料簡介
1.3.1表面效應(Surface effects)
1.3.2小尺寸效應(Small scale effects)
1.3.3量子尺寸效應(Quantum effects)
1.3.4巨觀量子隧道效應(Macroscopic quantum tunnelling effects)
第二章 文獻回顧
2.1中空球簡介
2.2中空球製備方法
2.3溶膠-凝膠法(Sol-gel method)
2.4 乳酸菌
第三章 實驗
3.1實驗藥品
3.2實驗儀器
3.3實驗方法與步驟
3.3.1實驗架構
3.3.2 溶膠凝膠法之製備系統
3.3.3 以乳酸菌為模板製備二氧化矽中空棒
3.4分析方法
3.4.1粒徑分析儀(Submicron Particle Size Analyzer)
3.4.2 掃描式電子顯微鏡(Scanning Electron Microscopy,SEM)
3.4.3穿透式電子顯微鏡(Transmission Electron Microscopy,TEM)
第四章 結果與討論
4.1製備溶膠凝膠
4.1.1水解時間對溶膠粒子之粒徑分析
4.2模板之取得方式與分析
4.2.1取得乳酸菌之實驗流程
4.2.2穿透式顯微鏡分析
4.3以乳酸菌為模板製備二氧化矽中空棒
4.3.1穿透式式顯微鏡分析
4.3.2掃描式電子顯微鏡分析
第五章 結論

1.馬遠榮, 奈米科技. 2002: 商周出版.
2.林景正 and 賴宏仁, 奈米材料技術與發展趨勢. 工業材料, 1999. 153: p. 95-101.
3.Eigler, D.M. and E.K. Schweizer, Positioning single atoms with a scanning tunnelling microscope. Nature, 1990. 344(6266): p. 524-526.
4.賴炤銘 and 李錫隆, 奈米材料的特殊效應與應用. Chemistry, 2003. 61(4): p. 585-597.
5.Rahman, I., et al., Size-dependent physicochemical and optical properties of silica nanoparticles. Materials Chemistry and Physics, 2009. 114(1): p. 328-332.
6.高逢時, 奈米科技. 科學發展, 第三百八十六期, 第 66-71 頁, 2005.
7.Josephson, B.D., The discovery of tunnelling supercurrents. Reviews of Modern Physics, 1974. 46(2): p. 251.
8.Aden, A.L. and M. Kerker, Scattering of electromagnetic waves from two concentric spheres. Journal of Applied Physics, 1951. 22(10): p. 1242-1246.
9.Caruso, F., Hollow capsule processing through colloidal templating and self-assembly. Chemistry- A European Journal, 2000. 6(3): p. 413-419.
10.黃郡苓, 以細菌模板大量生產二氧化矽微奈米中空球. 逢甲大學化工系, 2010.
11.Kim, S.-W., et al., Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki coupling reactions. Journal of the American Chemical Society, 2002. 124(26): p. 7642-7643.
12.Cochran, J.K., Ceramic hollow spheres and their applications. Current Opinion in Solid State and Materials Science, 1998. 3(5): p. 474-479.
13.Huang, H., et al., Nanocages derived from shell cross-linked micelle templates. Journal of the American Chemical Society, 1999. 121(15): p. 3805-3806.
14.Rengarajan, R., et al., Colloidal photonic superlattices. Physical Review B, 2001. 64(20): p. 205103.
15.Tan, H., et al., Multifunctional amphiphilic carbonaceous microcapsules catalyze water/oil biphasic reactions. Chemical Communications, 2011. 47(43): p. 11903-11905.
16.Qi, X., et al., Production and characterization of hollow glass microspheres with high diffusivity for hydrogen storage. international journal of hydrogen energy, 2012. 37(2): p. 1518-1530.
17.Schlapbach, L. and A. Züttel, Hydrogen-storage materials for mobile applications. Nature, 2001. 414(6861): p. 353-358.
18.Kitamura, R. and L. Pilon, Radiative heat transfer in enhanced hydrogen outgassing of glass. international journal of hydrogen energy, 2009. 34(16): p. 6690-6704.
19.Shi, S. and J.-Y. Hwang, Research frontier on new materials and concepts for hydrogen storage. International journal of hydrogen energy, 2007. 32(2): p. 224-228.
20.張百慧, et al., 自模本法製備介孔空心無機微/納米結構. 高等學校化學學報, 2012. 34(1): p. 1-14.
21.Lou, X.W.D., L.A. Archer, and Z. Yang, Hollow micro‐/nanostructures: Synthesis and applications. Advanced Materials, 2008. 20(21): p. 3987-4019.
22.Sasidharan, M., et al., Novel titania hollow nanospheres of size 28±1 nm using soft-templates and their application for lithium-ion rechargeable batteries. Chemical Communications, 2011. 47(24): p. 6921-6923.
23.Huang, M. and Y. Wang, Synthesis of calcium phosphate microcapsules using yeast-based biotemplate. Journal of Materials Chemistry, 2012. 22(2): p. 626-630.
24.鮑豔, 楊永強, and 馬建中, 模本法製備中空結構材料的研究進展. 無機材料學報, 2013. 28(5): p. 459-468.
25.Decher, G., Fuzzy nanoassemblies: toward layered polymeric multicomposites. science, 1997. 277(5330): p. 1232-1237.
26.Furusawa, K., W. Norde, and J. Lyklema, A method for preparing surfactant-free polystyrene latices of high surface charge. Colloid & Polymer Science, 1972. 250(9): p. 908-909.
27.Caruso, F., R.A. Caruso, and H. Möhwald, Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science, 1998. 282(5391): p. 1111-1114.
28.Caruso, R.A., A. Susha, and F. Caruso, Multilayered titania, silica, and laponite nanoparticle coatings on polystyrene colloidal templates and resulting inorganic hollow spheres. Chemistry of Materials, 2001. 13(2): p. 400-409.
29.Kim, J.M., et al., Design of SiO 2/ZrO 2 core–shell particles using the sol–gel process. Ceramics International, 2009. 35(3): p. 1243-1247.
30.Liz-Marzán, L.M., M. Giersig, and P. Mulvaney, Synthesis of nanosized gold− silica core− shell particles. Langmuir, 1996. 12(18): p. 4329-4335.

電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top