|
[1] Wahl (2005). "A Short History of Electrochemistry". Galvanotechtnik. 96 (8): 1820–1828. [2] P. Costamagna, S. Srinivasan “Part II. Engineering, technology development and application aspects”,J. Power Sources 102 (2001) 253. [3] D.R. Crow. Principles and Applications of Electrochemistry. CRC Press. 15 September 1994. [4] 黃啟銘,大同大學材料工程研究所碩士論文,2007。 [5] NASA Tech Briefs (Technical report). NASA. 20 March 2007. MSC-23045. Retrieved 17 January 2015. [6] Zhiwei Yang; et al. (2004). "Novel inorganic/organic hybrid electrolyte membranes" . Pap.-Am. Chem. Soc., Div. Fuel Chem. 49 (2): 599. [7] Townsend, Carl W. & Naselow, Arthur B., "US Patent 5266421 – Enhanced membrane-electrode interface", issued 2008-11-30, assigned to Hughes Aircraft. [8] "New Proton Exchange Membrane Developed – Nafion promises inexpensive fuel-cells". Softpedia. Retrieved 2008-07-18. [9] 有機/無機奈米複合質子交換膜的研究進展 材料科學與工程學報,2005,23 (1),137-141。 [10] Church, Steven (January 6, 2006). "Del. Firm installs fuel cell". The News Journal. P. B7. [11] Heitner-Wirguin, C. (1996). "Recent advances in perfluorinated ionomer membranes: structure, properties and applications". Journal of Membrane Science. 120: 1–33. [12] Mauritz, K. A., Moore, R. B .; Moore (2004). "State of Understanding of Nafion". Chemical Reviews. 104 (10): 4535-4585. [13] 記景發,國立成功大學化學工程研究所碩士論文,2006。 [14] A.J.Bard,L.R. Faulkner, "Electrochemical methods fundamentals and applications-second edition", John Wiley & Sons,Inc., New York, 2001. [15] Yeager E. Dioxygen electrocatalysis: mechanisms in relation to catalyst structure. Journal of Molecular Catalysis. 1986;38(1-2):5-25. [16] Nenad M, Hubert G, Philip NR. Kinetics of oxygen reduction on Pt(hkl) electrodes:implications for the crystallite size effect with supported Pt electrocatalysts.Journal of The Electrochemical Society. 1997 ;144(5) :1591-7. [17] Blizanac BB, Ross PN, Markovic NM. Oxygen reduction on silver low-index single-crystal surfaces in alkaline solution: rotating ring diskAg(hkl) studies. The Journal of Physical Chemistry B. 2006 ;110(10) :4735-41. [18] Kinoshita K. Electrochemical oxygen technology. John Wiley & Sons. 1992. [19] E. Yeager, Electrochim. Acta 29 (1984) 1527. [20] A. Damjanovic, M.A. Genshaw, J.O.M. Bockris, J. Chem. Phys. 45 (1966) 4057. [21] Furuya N, Aikawa H. Comparative study of oxygen cathodes loaded with Ag and Pt catalysts in chlor-alkali membrane cells. Electrochimica Acta. 2000;45(25-26):4251-6. [22] Gzow E, Schulze M. Long-term operation of AFC electrodes with CO2 containing gases. Journal of Power Sources. 2004;127(1-2):243-51. [23] Demarconnay L, Coutanceau C, Leger JM. Electroreduction of dioxygen (ORR) in alkaline medium on Ag/C and Pt/C nanostructured catalysts-effect of the presence of methanol. Electrochimica Acta. 2004 ;49(25):4513-21. [24] Gamburzev S, Petrov K, Appleby AJ. Silver–carbon electrocatalyst for air cathodes in alkaline fuel cells. Journal of Applied Electrochemistry. 2002;32(7):805-9. [25] Tang Z, Liu S, Dong S, Wang E. Electrochemical synthesis of Ag nanoparticles on functional carbon surfaces. Journal of Electroanalytical Chemistry. 2001;502(1-2):146-51. [26] Ardizzone S, Falciola M, Trasatti S. Effect of the nature of the precursor on the electrocatalytic properties of thermally prepared ruthenium oxide. Journal of The Electrochemical Society. 1989;136(5):1545-50. [27] Bagotzky VS, Shumilova NA, Khrushcheva EI. Electrochemical oxygen reduction on oxide catalysts. Electrochimica Acta. 1976;21(11):919- [28] Paulus UA, Schmidt TJ, Gasteiger HA, Behm RJ. Oxygen reduction on a high-surface area Pt/vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. Journal of Electroanalytical Chemistry. 2001;495(2):134 -4 [29] Kirby, B. J. (2010). Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices: Chapter 11: Species and Charge Transport. [30] Probstein, R. (1994). Physicochemical Hydrodynamics. [31] Haug Aea. “Stability of a Pt-Pd core-shell catalyst: a comparative fuel cell and RDE study”. Chem. Soc 2010. [32] Wroblowa HS, Y.C. P, Razumney G. “Electroreduction of oxygen-new mechanistic criterion”.chem.69 (1976)195-201. [33] Kinoshita K. “Electrochemical oxygen technology”InterScience (1992). [34] Michel L, Eric P, Fre´de´ric J, Jean-Pol D. “ Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells” Science 324 (2009) 5923,71-74. [35] Maruyama J, Inaba M, Ogumi Z. “ Rotating ring-disk electrode study on the cathodic oxygen reduction at Nafion®-coated gold electrodes”. Journal of Electroanalytical Chemistry. 458 (1998) 175-82. [36] C. Wang, N.M. Markovic, V.R. Stamenkovic, ACS Catal. 2 (2012) 891–898. [37] C. Wang, M. Chi, D. Li, D. van der Vliet, G. Wang, Q. Lin, J.F. Mitchell, K.L. More, N.M. Markovic, V.R. Stamenkovic, ACS Catal. 1 (2011) 1355–1359. [38] V.R. Stamenkovic, B. Fowler, B.S. Mun, G. Wang, P.N. Ross, C.A. Lucas, N. H. Lv et al. / Nano Energy 29 (2016) 149–165 163 M. Marković, Science 315 (2007) 493–497. [39] J. Zhang, H. Yang, J. Fang, S. Zou, Nano Lett. 10 (2010) 638–644. [40] S.-I. Choi, S. Xie, M. Shao, J.H. Odell, N. Lu, H.-C. Peng, L. Protsailo, S. Guerrero,J. Park, X. Xia, J. Wang, M.J. Kim, Y. Xia, Nano Lett. 13 (2013) 3420–3425. [41] C. Cui, L. Gan, M. Heggen, S. Rudi, P. Strasser, Nat. Mater. 12 (2013) 765–771. [42] Wang, C.; van der Vliet, D.; Chang, K.-C.; You, H.; Strmcnik,D.; Schlueter, J. A.; Markovic, N. M.; Stamenkovic, V. R.Monodisperse Pt3Co Nanoparticles as a Catalyst for the Oxygen Reduction Reaction: Size-Dependent Activity. J. Phys. Chem. C 2009,113 (45), 19365−19368. [43] Wang, C.; Wang, G.; van der Vliet, D.; Chang, K.-C.; Markovic,N. M.; Stamenkovic, V. R. Monodisperse Pt3Co Nanoparticles as Electrocatalyst: The Effects of Particle Size and Pretreatment on Electrocatalytic Reduction of Oxygen. Phys. Chem. Chem. Phys. 2010,12 (26), 6933−6939. [44] Min, M.-k.; Cho, J.; Cho, K.; Kim, H. Particle Size and Alloying Effects of Pt-Based Alloy Catalysts for Fuel Cell Applications. [45] P.N. Ross, J. Electrochem. Soc. 126 (1979) 78–82. [46] N.M. Markovic, R.R. Adzic, B.D. Cahan, E.B. Yeager, J. Electroanal. Chem. 377 (1994) 249–259. [47] N.M. Markovic, H.A. Gasteiger, P.N. Ross, J. Phys. Chem. 99 (1995) 3411–3415. [48] H.A. Gasteiger, P.N. Ross, J. Phys. Chem. 100 (1996) 6715–6721. [49] K. Kinoshita, J. Electrochem. Soc. 137 (1990) 845–848. [50] J.M. Feliu, A. Fernandez-Vega, A. Aldaz, J. Clavilier, J. Electroanal. Chem. Interfacial. [51] Hillier, J .; Baker, R.F. Microanalysis by means of electrons. J. Appl. Phys. 1944, 15 (9): 663-675. [52] Ahn C C (ed.) (2004) Transmission electron energy loss spectrometry in material science and the EELS Atlas, Wiley, Weinheim, Germany. [53] Azároff, L. V .; R. Kaplow, N. Kato, R. J. Weiss, A. J. C. Wilson, R. A. Young. X-ray diffraction. McGraw-Hill. 1974. [54] Coats, A. W. .; Redfern, J. P. Thermogravimetric Analysis: A Review. Analyst. 1963, 88: 906-924. [55] Tikhonov, N. A .; Arkhangelsky, I. V .; Belyaev, S. S .; Matveev, A. T. Carbonization of non nonwoven materials. Thermochimica Acta. 2009, 486: 66-70. [56] Siegbahn, K.; Edvarson, K. I. Al (1956). "β-Ray spectroscopy in the precision range of 1 : 1e6". Nuclear Physics. 1 (8): 137–159. [57] R. Sellin, J. M. Clacens, C. Countanceau, Carbon, 48, 2244-2254, 2010. [58] John Newman, J. Phys. Chem., 1966, 70 (4), 1327-1328 [59] Bard, Allen J.; Larry R. Faulkner (2000-12-18). Electrochemical Methods: Fundamentals and Applications (2 ed.). Wiley. p. 339. [60] Stassi A, D'Urso C, Baglio V, Di Blasi A, Antonucci V, Arico AS,et al. "Elctrocatalytic behaviour for oxygen reduction reaction of small nanostrured crystalline bimettallic Pt-M supported catalyst". J Appl Electrochem 36(2006) 1143-1149.
|