跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/21 03:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭威
研究生(外文):PENG, WEI
論文名稱:二元鉑電觸媒催化氧氣還原之特性分析與感測應用
論文名稱(外文):Characterzation of Pt-Based Electrocatalysts for Oxygen Reduction in Oxygen Sensors.
指導教授:翁于晴翁于晴引用關係
指導教授(外文):WENG,YU-QING
口試委員:杜景順翁于晴袁維勵
口試委員(外文):DU,JING-SHUNWENG,YU-QINGYUAN,WEI-LI
口試日期:2017-07-19
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:117
中文關鍵詞:鉑合金觸媒氧氣還原反應氧氣感測旋轉電極
外文關鍵詞:Platinum alloy catalystoxygen reduction reactionoxygen sensorrotating electrod
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的為比較鉑鈷、鉑鎳、鉑釔和鉑鎵電極催化氧氣還原之效能並評估其作為氧氣感測器之適用性。我們利用化學還原法製備奈米級二元鉑合金電觸媒負載於碳黑載體(XR-72)上,並將觸媒修飾在Nafion薄膜做為感測電極使用,利用穿透式電子顯微鏡(TEM),熱重分析儀(TGA)、能量分散式光譜儀(EDX)與高解析X光繞射儀(XRD)來檢測二元鉑合金電觸媒之粒徑、合金負載量、元素成份及結晶性,利用線性掃描、旋轉電極和塔佛曲線來求得二元鉑電化學觸媒催化氧氣還原之起始電位、電子轉移係數和標準反應速率常數,研究結果顯示鉑鈷、鉑鎳、鉑釔和鉑鎵合金電觸媒皆為面心立方結構,平均粒徑為3 ~ 5 (nm),Pt3Ni1/C與Pt3Co1/C觸媒相較其它觸媒對催化氧氣還原有較高的活性,其中又以Pt3Ni1/C觸媒有最高之氧氣還原電流值,而二元鉑電觸媒催化氧氣還原之電子轉移數都接近4,代表此類觸媒可以直接將氧氣還原成水。
The purpose of this study was to compare the efficiency of platinum-cobalt, platinum-nickel, platinum-yttrium and platinum-gallium electrodes for oxygen reduction reaction and to evaluate its suitability as an oxygen sensor. We use the chemical reduction method to prepare binary platinum alloy electrocatalysts in carbon black (XR-72) support. These electrocatalysts were modified on the Nafion film as a sensing electrode.The transmission electron microscpy (TEM), thermogravimetric analysis (TGA), energy dispersive spectroscopy (EDX) and high-resolution X-ray diffraction analyzer (HRXRD) were used to analyze particle size, alloy loading, elemental composition and crystallinity of binary platinum alloy electrocatalysts. The onset potential, electron transfer coefficient and standard reaction rate constant of the binary platinum electrocatalysts were investigated by linear scanning, rotating ring-disk electrode and Tafel curve methods. The results found that platinum and cobalt, platinum and nickel, platinum yttrium and platinum gallium alloy electrocatalysts are all shown face-centered cubic structure, and have the average particle size of 3 to 5 (nm). The Pt3Ni1/C and Pt3Co1/C electocatalysts have a better electrochemical activity for oxygen reduction reaction. The Pt3Ni1/C electrocatalysts have the highest current value for oxygen reduction reaction. The electron transfer number of binary platinum alloy catalyst was close to 4. It indicate that oxygen was directly reduced to water on binary platinum electrocatalysts.
第一章 序論 1
1-1氧氣之簡介 1
1-2化學感測器簡介 3
1-3電化學感測器的種類介紹 6
1-3-1電位式 6
1-3-2電流式 9
1-3-3電阻式 11
1-3-4導電式 12
1-3-5電容式 13
1-4陰極觸媒在氧氣還原上之展望 16
1-5感測電極之構造 19
1-5-1還原劑 19
1-5-2氣體擴散層 21
1-5-3質子交換膜 22
1-5-4載體碳黑 26
第二章 原理與反應機制 28
2-1 金屬電極上氧氣還原反應之理論 28
2-1-1氧氣還原途徑 28
2-1-2氧氣還原機制 30
2-1-3觸媒表面還原反應 32
2-2 氧氣感測 35
2-2-1循環伏安法 35
2-2-2計時電流法 38
2-2-3極限電流 40
2-2-4極化反應現象介紹 44
2-2-5擴散方程式 45
2-2-6旋轉電極及環-盤電極(RDE & RRDE) 50
第三章 實驗設備與製備方式 51
3-1藥品與材料 51
3-2實驗設備與儀器 53
3-3 實驗步驟 55
3-3-1 Nafion® 117 薄膜的前處理 55
3-3-2白金與各過渡金屬合金觸媒電極製備方法 56
3-3-3白金合金觸媒 Pt-M/C 製備條件 61
3-3-4合金觸媒之物理與化學性質分析 63
3-3-5氧氣感測 67
3-3-6氧氣感測分析方法 68
3-3-7旋轉電極動力學分析 69
第四章 實驗結果與討論 70
4-1 觸媒之物理與化學特性分析 70
4-1-1觸媒組成分析 70
4-1-2 觸媒晶型結構分析 72
4-1-3 熱重分析儀 (TGA) 74
4-1-4 觸媒型態與粒徑分析 77
4-2 PtxMy/C/Nafion 電極之氧氣感測分析 81
4-2-1 循環伏安圖 81
4-2-2 極化曲線 83
4-2-3 應答校正曲線與濃度較正曲線 86
4-2-4 應答時間與回復時間 90
4-3 二元鉑電觸媒之塔佛曲線分析 92
4-4 二元鉑電觸媒之電子轉移探討 95
4-5二元鉑電觸媒之過氧化物分析 102
第五章 結論 105
參考文獻 106

[1] Wahl (2005). "A Short History of Electrochemistry". Galvanotechtnik. 96 (8): 1820–1828.
[2] P. Costamagna, S. Srinivasan “Part II. Engineering, technology development and application aspects”,J. Power Sources 102 (2001) 253.
[3] D.R. Crow. Principles and Applications of Electrochemistry. CRC Press. 15 September 1994.
[4] 黃啟銘,大同大學材料工程研究所碩士論文,2007。
[5] NASA Tech Briefs (Technical report). NASA. 20 March 2007. MSC-23045. Retrieved 17 January 2015.
[6] Zhiwei Yang; et al. (2004). "Novel inorganic/organic hybrid electrolyte membranes" . Pap.-Am. Chem. Soc., Div. Fuel Chem. 49 (2): 599.
[7] Townsend, Carl W. & Naselow, Arthur B., "US Patent 5266421 – Enhanced membrane-electrode interface", issued 2008-11-30, assigned to Hughes Aircraft.
[8] "New Proton Exchange Membrane Developed – Nafion promises inexpensive fuel-cells". Softpedia. Retrieved 2008-07-18.
[9] 有機/無機奈米複合質子交換膜的研究進展 材料科學與工程學報,2005,23 (1),137-141。
[10] Church, Steven (January 6, 2006). "Del. Firm installs fuel cell". The News Journal. P. B7.
[11] Heitner-Wirguin, C. (1996). "Recent advances in perfluorinated ionomer membranes: structure, properties and applications". Journal of Membrane Science. 120: 1–33.
[12] Mauritz, K. A., Moore, R. B .; Moore (2004). "State of Understanding of Nafion". Chemical Reviews. 104 (10): 4535-4585.
[13] 記景發,國立成功大學化學工程研究所碩士論文,2006。
[14] A.J.Bard,L.R. Faulkner, "Electrochemical methods fundamentals and applications-second edition", John Wiley & Sons,Inc., New York, 2001.
[15] Yeager E. Dioxygen electrocatalysis: mechanisms in relation to catalyst structure. Journal of Molecular Catalysis. 1986;38(1-2):5-25.
[16] Nenad M, Hubert G, Philip NR. Kinetics of oxygen reduction on Pt(hkl) electrodes:implications for the crystallite size effect with supported Pt electrocatalysts.Journal of The Electrochemical Society. 1997 ;144(5) :1591-7.
[17] Blizanac BB, Ross PN, Markovic NM. Oxygen reduction on silver low-index single-crystal surfaces in alkaline solution: rotating ring diskAg(hkl) studies. The Journal of Physical Chemistry B. 2006 ;110(10) :4735-41.
[18] Kinoshita K. Electrochemical oxygen technology. John Wiley & Sons. 1992.
[19] E. Yeager, Electrochim. Acta 29 (1984) 1527.
[20] A. Damjanovic, M.A. Genshaw, J.O.M. Bockris, J. Chem. Phys. 45 (1966) 4057.
[21] Furuya N, Aikawa H. Comparative study of oxygen cathodes loaded with Ag and Pt catalysts in chlor-alkali membrane cells. Electrochimica Acta. 2000;45(25-26):4251-6.
[22] Gzow E, Schulze M. Long-term operation of AFC electrodes with CO2 containing gases. Journal of Power Sources. 2004;127(1-2):243-51.
[23] Demarconnay L, Coutanceau C, Leger JM. Electroreduction of dioxygen (ORR) in alkaline medium on Ag/C and Pt/C nanostructured catalysts-effect of the presence of methanol. Electrochimica Acta. 2004 ;49(25):4513-21.
[24] Gamburzev S, Petrov K, Appleby AJ. Silver–carbon electrocatalyst for air cathodes in alkaline fuel cells. Journal of Applied Electrochemistry. 2002;32(7):805-9.
[25] Tang Z, Liu S, Dong S, Wang E. Electrochemical synthesis of Ag nanoparticles on functional carbon surfaces. Journal of Electroanalytical Chemistry. 2001;502(1-2):146-51.
[26] Ardizzone S, Falciola M, Trasatti S. Effect of the nature of the precursor on the electrocatalytic properties of thermally prepared ruthenium oxide. Journal of The Electrochemical Society. 1989;136(5):1545-50.
[27] Bagotzky VS, Shumilova NA, Khrushcheva EI. Electrochemical oxygen reduction on oxide catalysts. Electrochimica Acta. 1976;21(11):919-
[28] Paulus UA, Schmidt TJ, Gasteiger HA, Behm RJ. Oxygen reduction on a high-surface area Pt/vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. Journal of Electroanalytical Chemistry. 2001;495(2):134 -4
[29] Kirby, B. J. (2010). Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices: Chapter 11: Species and Charge Transport.
[30] Probstein, R. (1994). Physicochemical Hydrodynamics.
[31] Haug Aea. “Stability of a Pt-Pd core-shell catalyst: a comparative fuel cell and RDE study”. Chem. Soc 2010.
[32] Wroblowa HS, Y.C. P, Razumney G. “Electroreduction of oxygen-new mechanistic criterion”.chem.69 (1976)195-201.
[33] Kinoshita K. “Electrochemical oxygen technology”InterScience (1992).
[34] Michel L, Eric P, Fre´de´ric J, Jean-Pol D. “ Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells” Science 324 (2009) 5923,71-74.
[35] Maruyama J, Inaba M, Ogumi Z. “ Rotating ring-disk electrode study on the cathodic oxygen reduction at Nafion®-coated gold electrodes”. Journal of Electroanalytical Chemistry. 458 (1998) 175-82.
[36] C. Wang, N.M. Markovic, V.R. Stamenkovic, ACS Catal. 2 (2012) 891–898.
[37] C. Wang, M. Chi, D. Li, D. van der Vliet, G. Wang, Q. Lin, J.F. Mitchell, K.L. More, N.M. Markovic, V.R. Stamenkovic, ACS Catal. 1 (2011) 1355–1359.
[38] V.R. Stamenkovic, B. Fowler, B.S. Mun, G. Wang, P.N. Ross, C.A. Lucas, N. H. Lv et al. / Nano Energy 29 (2016) 149–165 163 M. Marković, Science 315 (2007) 493–497.
[39] J. Zhang, H. Yang, J. Fang, S. Zou, Nano Lett. 10 (2010) 638–644.
[40] S.-I. Choi, S. Xie, M. Shao, J.H. Odell, N. Lu, H.-C. Peng, L. Protsailo, S. Guerrero,J. Park, X. Xia, J. Wang, M.J. Kim, Y. Xia, Nano Lett. 13 (2013) 3420–3425.
[41] C. Cui, L. Gan, M. Heggen, S. Rudi, P. Strasser, Nat. Mater. 12 (2013) 765–771.
[42] Wang, C.; van der Vliet, D.; Chang, K.-C.; You, H.; Strmcnik,D.; Schlueter, J. A.; Markovic, N. M.; Stamenkovic, V. R.Monodisperse Pt3Co Nanoparticles as a Catalyst for the Oxygen Reduction Reaction: Size-Dependent Activity. J. Phys. Chem. C 2009,113 (45), 19365−19368.
[43] Wang, C.; Wang, G.; van der Vliet, D.; Chang, K.-C.; Markovic,N. M.; Stamenkovic, V. R. Monodisperse Pt3Co Nanoparticles as Electrocatalyst: The Effects of Particle Size and Pretreatment on Electrocatalytic Reduction of Oxygen. Phys. Chem. Chem. Phys. 2010,12 (26), 6933−6939.
[44] Min, M.-k.; Cho, J.; Cho, K.; Kim, H. Particle Size and Alloying Effects of Pt-Based Alloy Catalysts for Fuel Cell Applications.
[45] P.N. Ross, J. Electrochem. Soc. 126 (1979) 78–82.
[46] N.M. Markovic, R.R. Adzic, B.D. Cahan, E.B. Yeager, J. Electroanal. Chem. 377 (1994) 249–259.
[47] N.M. Markovic, H.A. Gasteiger, P.N. Ross, J. Phys. Chem. 99 (1995) 3411–3415.
[48] H.A. Gasteiger, P.N. Ross, J. Phys. Chem. 100 (1996) 6715–6721.
[49] K. Kinoshita, J. Electrochem. Soc. 137 (1990) 845–848.
[50] J.M. Feliu, A. Fernandez-Vega, A. Aldaz, J. Clavilier, J. Electroanal. Chem. Interfacial.
[51] Hillier, J .; Baker, R.F. Microanalysis by means of electrons. J. Appl. Phys. 1944, 15 (9): 663-675.
[52] Ahn C C (ed.) (2004) Transmission electron energy loss spectrometry in material science and the EELS Atlas, Wiley, Weinheim, Germany.
[53] Azároff, L. V .; R. Kaplow, N. Kato, R. J. Weiss, A. J. C. Wilson, R. A. Young. X-ray diffraction. McGraw-Hill. 1974.
[54] Coats, A. W. .; Redfern, J. P. Thermogravimetric Analysis: A Review. Analyst. 1963, 88: 906-924.
[55] Tikhonov, N. A .; Arkhangelsky, I. V .; Belyaev, S. S .; Matveev, A. T. Carbonization of non nonwoven materials. Thermochimica Acta. 2009, 486: 66-70.
[56] Siegbahn, K.; Edvarson, K. I. Al (1956). "β-Ray spectroscopy in the precision range of 1 : 1e6". Nuclear Physics. 1 (8): 137–159.
[57] R. Sellin, J. M. Clacens, C. Countanceau, Carbon, 48, 2244-2254, 2010.
[58] John Newman, J. Phys. Chem., 1966, 70 (4), 1327-1328
[59] Bard, Allen J.; Larry R. Faulkner (2000-12-18). Electrochemical Methods: Fundamentals and Applications (2 ed.). Wiley. p. 339.
[60] Stassi A, D'Urso C, Baglio V, Di Blasi A, Antonucci V, Arico AS,et al. "Elctrocatalytic behaviour for oxygen reduction reaction of small nanostrured crystalline bimettallic Pt-M supported catalyst". J Appl Electrochem 36(2006) 1143-1149.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top