跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/04 10:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許兆鈞
研究生(外文):HSU, CHAO-CHUN
論文名稱:氧化鋅奈米複合材料於光催化之應用
論文名稱(外文):Zinc Oxide Nanocomposite for Photocatalytic Applications
指導教授:張育誠張育誠引用關係
指導教授(外文):CHANG,YU-CHENG
口試委員:呂明諺陳錦毅
口試委員(外文):LU, MING-YENCHEN, CHIN-YI
口試日期:2017-07-05
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:98
中文關鍵詞:氧化鋅奈米結構石墨烯/氧化鋅複合材料水溶液合成法銅摻雜氧化鋅奈米線聲波化學法光催化降解
外文關鍵詞:ZnO NanostructuresCu-doped ZnO NaonwiresGraphene/ZnO NanocompositesAqueous Chemical Growth MethodSonochemical MethodPhotocatalytic Activity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:91
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要分為三個部分,分別為氧化鋅奈米結構、銅摻雜之氧化鋅奈米線以及石墨烯/氧化鋅複合材料的合成與應用。
首先,本研究使用簡易的水溶液化學法,在低反應溫度下,於不鏽鋼網基材上成功成長出氧化鋅多孔性薄膜結構。研究中顯示在不同的葉酸濃度下,可以用來操控氧化鋅的形貌。由於氧化鋅多孔性薄膜具備有高的比表面積導致在10瓦特的紫外光燈管照射下,呈現較高的光催化效能。
其次,本研究使用簡易的水溶液化學法在低反應溫度下於表面以沉積氧化鋅晶種之玻璃基材、不鏽鋼網與碳布上成長銅摻雜之氧化鋅奈米線。藉由氯化銅的反應前驅物的濃度來控制銅摻雜之氧化鋅奈米線中銅離子的濃度。銅摻雜之氧化鋅奈米線具有較弱來自於能隙的紫外光放光特性及較強的來自於氧缺陷的綠光放光特性。由於成長在碳布上的銅摻雜之氧化鋅奈米線具有較高的比表面積及較高的光生電子電洞對的分離率,導致其在10瓦特的紫外光燈管照射下呈現較高的光催化降解效率。
最後,本研究以聲波化學法與水溶液化學法成功合成石墨烯/氧化鋅奈米複合材料。在研究中分別探討在加入不同重量的石墨烯,所合成之石墨烯/氧化鋅奈米複合材料,在10瓦特的紫外光與可見光照射下於降解甲基藍之光催化效率之影響。石墨烯/氧化鋅奈米複合材料與市面販售之氧化鋅與二氧化鈦相比具備有較佳的光催化效能。此種新型的石墨烯/氧化鋅複合材料,將可以應用於太陽能轉換、分解水與儲能等相關領域。

There are three subjects in this thesis, which are the synthesis and application of ZnO nanostructures, Cu-doped ZnO nanowires, and graphene/ZnO nanocomposites, respectively.
First, ZnO nanoporous films have been grown on the stainless steel mesh substrates with ZnO seed layer by an aqueous chemical growth method at the low reaction temperature. The concentration of folic acid plays a crucial role for controlling the morphology of ZnO nanostructures. The ZnO nanoporous films can provide a higher surface-to-volume ratio to enhance the higher photocatalytic activity under 10W UV light irradiation.
Second, Cu-doped ZnO nanowires have been fabricated on glass, stainless steel mesh, and carbon cloth substrates with ZnO seed film by a facile aqueous chemical growth method at the low reaction temperature. The concentration of copper(II) chloride was exploited to control the Cu doping concentration. The Cu-doped ZnO nanowires exhibit strong green emission attributed to oxygen vacancies and a very weak UV emission from band gap. Cu-doped ZnO nanowires grown on the carbon cloth substrate can provide a higher surface-to-volume ratio and separation efficiency of photogenerated electron-hole pairs, which exhibit excellent photocatalytic activity for the photodegradation of methylene blue under a 10 W UV light irradiation.
Third, graphene/ZnO nanocomposites have been synthesized by a sonochemical method and aqueous chemical growth method. The photocatalytic activities of the different weight of graphene were evaluated in the photocatalytic degradation of methylene blue under 10 W UV and visible light irradiation. The graphene/ZnO nanocomposites revealed much higher photodegradation efficiency than commercial ZnO or TiO2 nanopowders. The novel graphene/ZnO nanocomposites will offer promising applications, such as solar energy conversion, water splitting, and energy storage.

摘要 I
Abstract IV
總目錄 VI
圖目錄 X
表目錄 XIV
第一章 緒論 1
1.1 研究動機與目的 1
1.1.1 研究動機 1
1.1.2 研究目的 2
第二章 文獻回顧 4
2.1 光催化 4
2.1.1 光催化簡介 4
2.1.2 光催化機制 4
2.1.3 常見的光催化處理方法 5
2.1.4 改善光催化效率的方法 7
2.2 氧化鋅 10
2.2.1 氧化鋅特性 10
2.2.2 氧化鋅的合成 11
2.2.3 氧化鋅的應用 14
2.3 石墨烯 17
2.3.1 石墨烯簡介 17
2.4.2 石墨烯常見的合成方式 18
2.4.3 石墨烯的應用 20
第三章 實驗方法與內容 22
3.1 實驗架構 22
3.2 光催化實驗 24
3.3 實驗藥品與儀器設備 25
3.3.1 實驗藥品 25
3.3.2 實驗儀器 28
3.3.3 分析儀器 29
第四章 結果與討論 39
4.1 氧化鋅奈米結構於光催化之應用 39
4.1.1 氧化鋅奈米結構之形貌 39
4.1.2 氧化鋅奈米結構之微結構分析 43
4.1.3 氧化鋅奈米結構之晶體結構 43
4.1.4 氧化鋅奈米結構之光學分析 44
4.1.5 氧化鋅奈米結構之光催化效能 46
4.2 銅摻雜之氧化鋅奈米線於光催化特性的應用 51
本節主要針對在基材上成長銅摻雜之氧化鋅奈米線於光催化之應用進行探討。 51
4.2.1 銅摻雜之氧化鋅奈米線的形貌 51
4.2.2 銅摻雜之氧化鋅奈米線的微結構分析 53
4.2.3 氧化鋅摻雜銅之晶體結構 55
4.2.4 銅摻雜之氧化鋅奈米線的放光特性 56
4.2.5 銅摻雜之氧化鋅之光催化性能 57
4.2.6 摻雜銅之氧化鋅奈米線於不同基材的比較 61
4.3 石墨烯與氧化鋅奈米複合材料於光催化之應用 64
4.3.1 石墨烯與氧化鋅奈米複合材料之形貌 64
4.3.2 石墨烯與氧化鋅奈米複合材料之微結構分析 65
4.3.3 石墨烯與氧化鋅奈米複合材料的晶體結構 66
4.3.4 石墨烯與氧化鋅奈米複合材料的拉曼及光學放光特性 67
4.3.5 石墨烯與氧化鋅奈米複合材料的光催化效能 69
第五章 結論 73
5.1 氧化鋅奈米結構於光催化之應用 73
5.2 銅摻雜之氧化鋅奈米線於光催化特性的應用 73
5.3 石墨烯與氧化鋅奈米複合材料於光催化之應用 74
第六章 參考文獻 75

[1] F.-H. Ko, W.-J. Lo, Y.-C. Chang, J.-Y. Guo, C.-M. Chen, ZnO nanowires coated stainless steel meshes as hierarchical photocatalysts for catalytic photodegradation of four kinds of organic pollutants, J. Alloy. Compd., 678 (2016) 137-146.
[2] M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: A review, Water Res, 44 (2010) 2997-3027.
[3] O.M. Alfano, D. Bahnemann, A.E. Cassano, R. Dillert, R. Goslich, Photocatalysis in water environments using artificial and solar light, Catal. Today, 58 (2000) 199-230.
[4] S.E. Bailey, T.J. Olin, R.M. Bricka, D.D. Adrian, A review of potentially low-cost sorbents for heavy metals, Water Res, 33 (1999) 2469-2479.
[5] Z.R.R. Tian, J.A. Voigt, J. Liu, B. McKenzie, M.J. McDermott, M.A. Rodriguez, H. Konishi, H.F. Xu, Complex and oriented ZnO nanostructures, Nat. Mater., 2 (2003) 821-826.
[6] U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9 (2008) 1-12.
[7] K. Intarasuwan, P. Amornpitoksuk, S. Suwanboon, P. Graidist, Photocatalytic dye degradation by ZnO nanoparticles prepared from X2C2O4 (X = H, Na and NH4) and the cytotoxicity of the treated dye solutions, SEP PURIF TECHNOL, 177 (2017) 304-312.
[8] J.L. Zhou, C.J. Banks, Removal of humic acid fractions by Rhizopus arrhizus: Uptake and kinetic studies, Environmental Technology, 12 (1991) 859-869.
[9] T.L. Hu, Sorption of Reactive Dyes by Aeromonas biomass, Water Science and Technology, 26 (1992) 357-366.
[10] R.G. Rice, Applications of ozone for industrial wastewater treatment — A review, Ozone: Science & Engineering, 18 (1996) 477-515.
[11] W.H. Glaze, J.-W. Kang, D.H. Chapin, The Chemistry of Water Treatment Processes Involving Ozone, Hydrogen Peroxide and Ultraviolet Radiation, Ozone: Science & Engineering, 9 (1987) 335-352.
[12] M. Yeber, J. Rodríguez, J. Freer, J. Baeza, N. Durán, H.D. Mansilla, Advanced oxidation of a pulp mill bleaching wastewater, Chemosphere, 39 (1999) 1679-1688.
[13] X. Chen, S.S. Mao, Titanium Dioxide Nanomaterials:  Synthesis, Properties, Modifications, and Applications, Chemical Reviews, 107 (2007) 2891-2959.
[14] T. Ivanova, A. Harizanova, T. Koutzarova, B. Vetruyen, Optical and structural study of Ga and In co-doped ZnO films, Colloids and Surfaces A: Physicochemical and Engineering Aspects.
[15] M. Salem, I. Massoudi, S. Akir, Y. Litaiem, M. Gaidi, K. Khirouni, Photoelectrochemical and opto-electronic properties tuning of ZnO films: Effect of Cu doping content, J. Alloy. Compd., 722 (2017) 313-320.
[16] N.N. Kumaran, K. Muraleedharan, Photocatalytic activity of ZnO and Sr2+ doped ZnO nanoparticles, Journal of Water Process Engineering, 17 (2017) 264-270.
[17] M. Dorraj, M. Alizadeh, N.A. Sairi, W.J. Basirun, B.T. Goh, P.M. Woi, Y. Alias, Enhanced visible light photocatalytic activity of copper-doped titanium oxide-zinc oxide heterojunction for methyl orange degradation, Applied Surface Science, 414 (2017) 251-261.
[18] A.N. Kadam, T.G. Kim, D.S. Shin, K.M. Garadkar, J. Park, Morphological evolution of Cu doped ZnO for enhancement of photocatalytic activity, J. Alloy. Compd., 710 (2017) 102-113.
[19] P. Sahatiya, S.S. Jones, P.T. Gomathi, S. Badhulika, Flexible substrate based 2D ZnO (n)/graphene (p) rectifying junction as enhanced broadband photodetector using strain modulation, 2D Mater., 4 (2017) 10.
[20] T.H. Yang, Y.W. Harn, L.D. Huang, M.Y. Pan, W.C. Yen, M.C. Chen, C.C. Lin, P.K. Wei, Y.L. Chueh, J.M. Wu, Fully integrated Ag nanoparticles/ZnO nanorods/graphene heterostructured photocatalysts for efficient conversion of solar to chemical energy, J. Catal., 329 (2015) 167-176.
[21] S. Akir, A. Hamdi, A. Addad, Y. Coffinier, R. Boukherroub, A.D. Omrani, Facile synthesis of carbon-ZnO nanocomposite with enhanced visible light photocatalytic performance, Applied Surface Science, 400 (2017) 461-470.
[22] R. Georgekutty, M.K. Seery, S.C. Pillai, A highly efficient Ag-ZnO photocatalyst: Synthesis, properties, and mechanism, J. Phys. Chem. C, 112 (2008) 13563-13570.
[23] U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, A comprehensive review of ZnO materials and devices, J. Appl. Phys., 98 (2005) 103.
[24] I. Udom, M.K. Ram, E.K. Stefanakos, A.F. Hepp, D.Y. Goswami, One dimensional-ZnO nanostructures: Synthesis, properties and environmental applications, Mater. Sci. Semicond. Process, 16 (2013) 2070-2083.
[25] B. Bott, T.A. Jones, B. Mann, The detection and measurement of CO using ZnO single crystals, Sensors and Actuators, 5 (1984) 65-73.
[26] I. Khan, A.A.M. Ibrahim, M. Sohail, A. Qurashi, Sonochemical assisted synthesis of RGO/ZnO nanowire arrays for photoelectrochemical water splitting, Ultrasonics Sonochemistry, 37 (2017) 669-675.
[27] L.K. Putri, W.J. Ong, W.S. Chang, S.P. Chai, Heteroatom doped graphene in photocatalysis: A review, Applied Surface Science, 358 (2015) 2-14.
[28] L.C.-K. Liau, J.-S. Huang, Energy-level variations of Cu-doped ZnO fabricated through sol-gel processing, J. Alloy. Compd., 702 (2017) 153-160.
[29] M. Imai, M. Watanabe, A. Mochihara, H. Tominaga, K. Yoshino, Q. Shen, T. Toyoda, S. Hayase, Atmospheric growth of ZnO films deposited by spray pyrolysis using diethylzinc solution, Journal of Crystal Growth, 468 (2017) 473-476.
[30] F.H. Ko, W.J. Lo, Y.C. Chang, J.Y. Guo, C.M. Chen, ZnO nanowires coated stainless steel meshes as hierarchical photocatalysts for catalytic photodegradation of four kinds of organic pollutants, J. Alloy. Compd., 678 (2016) 137-146.
[31] J. Yu, X. Yu, Hydrothermal Synthesis and Photocatalytic Activity of Zinc Oxide Hollow Spheres, Environmental Science & Technology, 42 (2008) 4902-4907.
[32] K.L. Montoya-Cisneros, J.C. Rendón-Ángeles, Z. Matamoros-Veloza, K. Yanagisawa, Rapid synthesis and characterization of Zn substituted hydroxyapatite nanoparticles via a microwave-assisted hydrothermal method, Materials Letters, 195 (2017) 5-9.
[33] S. Akir, A. Hamdi, A. Addad, Y. Coffinier, R. Boukherroub, A. Dakhlaoui Omrani, Facile synthesis of carbon-ZnO nanocomposite with enhanced visible light photocatalytic performance, Applied Surface Science, 400 (2017) 461-470.
[34] Y.C. Chang, ZnO nanopinecone arrays with enhanced photocatalytic performance in sunlight, RSC Adv., 4 (2014) 20273-20280.
[35] R.S. Wagner, W.C. Ellis, VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH, Applied Physics Letters, 4 (1964) 89-90.
[36] M. Endo, K. Takeuchi, S. Igarashi, K. Kobori, M. Shiraishi, H.W. Kroto, The production and structure of pyrolytic carbon nanotubes (PCNTs), Journal of Physics and Chemistry of Solids, 54 (1993) 1841-1848.
[37] M.F. Meléndrez, F. Solis-Pomar, C.D. Gutierrez-Lazos, P. Flores, A.F. Jaramillo, A. Fundora, E. Pérez-Tijerina, A new synthesis route of ZnO nanonails via microwave plasma-assisted chemical vapor deposition, Ceramics International, 42 (2016) 1160-1168.
[38] F. Wang, L. Chen, Y. Wang, M. Yao, S. Hao, J. Ouyang, Z. Huang, Effect of deposition time on growth of ZrC/SiC composite coating synthesized by low pressure chemical vapor deposition, Ceramics International, 43 (2017) 2853-2858.
[39] Z.L. Wang, J.H. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays, Science, 312 (2006) 242-246.
[40] L. Lin, Y. Xie, S. Wang, W. Wu, S. Niu, X. Wen, Z.L. Wang, Triboelectric Active Sensor Array for Self-Powered Static and Dynamic Pressure Detection and Tactile Imaging, ACS Nano, 7 (2013) 8266-8274.
[41] W. Zhong Lin, Zinc oxide nanostructures: growth, properties and applications, Journal of Physics: Condensed Matter, 16 (2004) R829.
[42] A. Kubacka, M. Fernández-García, G. Colón, Advanced Nanoarchitectures for Solar Photocatalytic Applications, Chemical Reviews, 112 (2012) 1555-1614.
[43] S. Ebrahim, M. Soliman, M. Anas, M. Hafez, T. Abdel-Fattah, Dye-Sensitized Solar Cell Based on Polyaniline/Multiwalled Carbon Nanotubes Counter Electrode, Int. J. Photoenergy, (2013) 6.
[44] M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P.D. Yang, Nanowire dye-sensitized solar cells, Nat. Mater., 4 (2005) 455-459.
[45] I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To, R. Noufi, 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor, Prog. Photovoltaics, 16 (2008) 235-239.
[46] M. Lashgari, P. Elyas-Haghighi, M. Takeguchi, A highly efficient pn junction nanocomposite solar-energy-material [nano-photovoltaic] for direct conversion of water molecules to hydrogen solar fuel, Solar Energy Materials and Solar Cells, 165 (2017) 9-16.
[47] J. Fang, H. Fan, H. Tian, G. Dong, Morphology control of ZnO nanostructures for high efficient dye-sensitized solar cells, Materials Characterization, 108 (2015) 51-57.
[48] M.B. Upama, N.K. Elumalai, M.A. Mahmud, M. Wright, D. Wang, C. Xu, F. Haque, K.H. Chan, A. Uddin, Interfacial engineering of electron transport layer using Caesium Iodide for efficient and stable organic solar cells, Applied Surface Science, 416 (2017) 834-844.
[49] N. Zhang, C.X. Shan, H.Q. Tan, Q. Zhao, S.P. Wang, Z.C. Sun, Y.D. Xia, D.Z. Shen, Black-colored ZnO nanowires with enhanced photocatalytic hydrogen evolution, Nanotechnology, 27 (2016) 6.
[50] R. Lamba, A. Umar, S.K. Mehta, S.K. Kansal, Enhanced visible light driven photocatalytic application of Ag2O decorated ZnO nanorods heterostructures, Separation and Purification Technology, 183 (2017) 341-349.
[51] M. Kaur, S. Kailasaganapathi, N. Ramgir, N. Datta, S. Kumar, A.K. Debnath, D.K. Aswal, S.K. Gupta, Gas dependent sensing mechanism in ZnO nanobelt sensor, Applied Surface Science, 394 (2017) 258-266.
[52] B. Gong, T. Shi, W. Zhu, G. Liao, X. Li, J. Huang, T. Zhou, Z. Tang, UV irradiation-assisted ethanol detection operated by the gas sensor based on ZnO nanowires/optical fiber hybrid structure, Sensors and Actuators B: Chemical, 245 (2017) 821-827.
[53] X. Wang, G. Liu, G.Q. Lu, H.-M. Cheng, Stable photocatalytic hydrogen evolution from water over ZnO–CdS core–shell nanorods, International Journal of Hydrogen Energy, 35 (2010) 8199-8205.
[54] X. Wang, G. Liu, Z.-G. Chen, F. Li, L. Wang, G.Q. Lu, H.-M. Cheng, Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures, Chemical Communications, (2009) 3452-3454.
[55] E.R. Ezeigwe, M.T.T. Tan, P.S. Khiew, C.W. Siong, One-step green synthesis of graphene/ZnO nanocomposites for electrochemical capacitors, Ceramics International, 41 (2015) 715-724.
[56] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438 (2005) 197-200.
[57] K.-F. Chiu, H.-J. Leu, S.-H. Su, P.-C. Yang, Carbon-Laminated Silicon/Graphene Composite Anodes with Improved Capacity and Cycling Stability, ECS Transactions, 73 (2016) 259-274.
[58] P.R. Wallace, The Band Theory of Graphite, Physical Review, 71 (1947) 622-634.
[59] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science, 306 (2004) 666.
[60] W.S. Hummers, R.E. Offeman, Preparation of Graphitic Oxide, J. Am. Chem. Soc., 80 (1958) 1339-1339.
[61] L. Staudenmaier, Verfahren zur Darstellung der Graphitsäure, Berichte der deutschen chemischen Gesellschaft, 31 (1898) 1481-1487.
[62] J. Hu, H.Q. Wang, F. Dong, Z.B. Wu, A new strategy for utilization of NIR from solar energy-Promotion effect generated from photothermal effect of Fe3O4@SiO2 for photocatalytic oxidation of NO, Appl. Catal. B-Environ., 204 (2017) 584-592.
[63] N. Papasimakis, Z.Q. Luo, Z.X. Shen, F. De Angelis, E. Di Fabrizio, A.E. Nikolaenko, N.I. Zheludev, Graphene in a photonic metamaterial, Opt. Express, 18 (2010) 8353-8359.
[64] H. Ozerli, A. Bekereci, A. Turut, S. Karatas, Electrical and photovoltaic properties of Ag/p-Si structure with GO doped NiO interlayer in dark and under light illumination, J. Alloy. Compd., 718 (2017) 75-84.
[65] M. Cobos, B. Gonzalez, M.J. Fernandez, M.D. Fernandez, Chitosan-graphene oxide nanocomposites: Effect of graphene oxide nanosheets and glycerol plasticizer on thermal and mechanical properties, J. Appl. Polym. Sci., 134 (2017) 14.
[66] G. Jayalakshmi, K. Saravanan, T. Arun, K. Suresh, B. Sundaravel, B.K. Panigrahi, D. Kanjilal, Structure and electron field emission properties of ion beam reduced graphene oxide sheets, Carbon, 119 (2017) 172-178.
[67] A. Klechikov, J.H. Sun, I.A. Baburin, G. Seifert, A.T. Rebrikova, N.V. Avramenko, M.V. Korobov, A.V. Talyzin, Multilayered intercalation of 1-octanol into Brodie graphite oxide, Nanoscale, 9 (2017) 6929-6936.
[68] A.V. Talyzin, G. Mercier, A. Klechikov, M. Hedenström, D. Johnels, D. Wei, D. Cotton, A. Opitz, E. Moons, Brodie vs Hummers graphite oxides for preparation of multi-layered materials, Carbon, 115 (2017) 430-440.
[69] O. Jankovský, P. Marvan, M. Nováček, J. Luxa, V. Mazánek, K. Klímová, D. Sedmidubský, Z. Sofer, Synthesis procedure and type of graphite oxide strongly influence resulting graphene properties, Applied Materials Today, 4 (2016) 45-53.
[70] H. Yu, B. Zhang, C. Bulin, R. Li, R. Xing, High-efficient Synthesis of Graphene Oxide Based on Improved Hummers Method, Scientific Reports, 6 (2016) 36143.
[71] X.L. Li, G.Y. Zhang, X.D. Bai, X.M. Sun, X.R. Wang, E. Wang, H.J. Dai, Highly conducting graphene sheets and Langmuir-Blodgett films, Nat. Nanotechnol., 3 (2008) 538-542.
[72] S. Park, R.S. Ruoff, Chemical methods for the production of graphenes, Nat Nano, 4 (2009) 217-224.
[73] D. Nuvoli, L. Valentini, V. Alzari, S. Scognamillo, S.B. Bon, M. Piccinini, J. Illescas, A. Mariani, High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid, Journal of Materials Chemistry, 21 (2011) 3428-3431.
[74] Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun'Ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, High-yield production of graphene by liquid-phase exfoliation of graphite, Nat Nano, 3 (2008) 563-568.
[75] V. Alzari, D. Nuvoli, S. Scognamillo, M. Piccinini, E. Gioffredi, G. Malucelli, S. Marceddu, M. Sechi, V. Sanna, A. Mariani, Graphene-containing thermoresponsive nanocomposite hydrogels of poly(N-isopropylacrylamide) prepared by frontal polymerization, Journal of Materials Chemistry, 21 (2011) 8727-8733.
[76] P.E. Sheehan, L.J. Whitman, Detection limits for nanoscale biosensors, Nano Lett., 5 (2005) 803-807.
[77] F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene, Nat Mater, 6 (2007) 652-655.
[78] J. Wu, K. Tao, J. Miao, L.K. Norford, Improved Selectivity and Sensitivity of Gas Sensing Using a 3D Reduced Graphene Oxide Hydrogel with an Integrated Microheater, ACS Applied Materials & Interfaces, 7 (2015) 27502-27510.
[79] G. Lu, L.E. Ocola, J. Chen, Gas detection using low-temperature reduced graphene oxide sheets, Applied Physics Letters, 94 (2009) 083111.
[80] M. Yarmohammadi, The electronic properties, electronic heat capacity and magnetic susceptibility of monolayer boron nitride graphene-like structure in the presence of electron-phonon coupling, Solid State Communications, 253 (2017) 57-62.
[81] Y. Cao, D. Chai, Z. Luo, M. Jiang, W. Xu, C. Xiong, S. Li, H. Liu, D. Fang, Lithium vanadate nanowires@reduced graphene oxide nanocomposites on titanium foil with super high capacities for lithium-ion batteries, Journal of Colloid and Interface Science, 498 (2017) 210-216.
[82] K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature, 457 (2009) 706-710.
[83] K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Communications, 146 (2008) 351-355.
[84] X. Wang, L.J. Zhi, K. Mullen, Transparent, conductive graphene electrodes for dye-sensitized solar cells, Nano Letters, 8 (2008) 323-327.
[85] C. Berger, Z.M. Song, T.B. Li, X.B. Li, A.Y. Ogbazghi, R. Feng, Z.T. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics, J. Phys. Chem. B, 108 (2004) 19912-19916.
[86] Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, J.R. Gong, Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production of CdS-Cluster-Decorated Graphene Nanosheets, J. Am. Chem. Soc. 133 (2011) 10878-10884.
[87] Q. Xiang, J. Yu, M. Jaroniec, Graphene-based semiconductor photocatalysts, Chem. Soc. Rev. 41 (2012) 782-796.


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top