(18.210.12.229) 您好!臺灣時間:2021/03/03 17:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊方寧
研究生(外文):YANG, FANG-NING
論文名稱:低成本航空公司的差別定價與營收最佳化
論文名稱(外文):Differential Pricing and Revenue Optimization for Low-Cost Airlines
指導教授:溫傑華溫傑華引用關係
指導教授(外文):WEN, CHIEH-HUA
口試委員:楊志文郭仲偉
口試委員(外文):YANG, CHIH-WENKUO, CHUNG-WEI
口試日期:2017-07-18
學位類別:碩士
校院名稱:逢甲大學
系所名稱:運輸科技與管理學系
學門:運輸服務學門
學類:運輸管理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:132
中文關鍵詞:定價離散選擇模式營收最佳化航空公司
外文關鍵詞:PricingDiscrete choice modelRevenue optimizationAirline
相關次數:
  • 被引用被引用:0
  • 點閱點閱:273
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討低成本航空公司的差別定價與營收最佳化。蒐集低成本航空票價的現況資料,透過敘述性問卷設定低成本航空差別費率情境,考量出發日期與航班以及購票時點的促銷(早鳥優惠),並且模擬票價不定時降價的促銷活動,建構旅客選擇模式。本研究採用離散選擇模式分別針對低成本航空分析旅客出發日期、航班與購票日期之選擇行為,建立不同選擇模式。最後建立營收最佳化模式,研擬航空的定價策略。
本研究針對2017年端午節連續假期5月27至30日做敘述性模擬情境,訪問搭乘低成本航空公司(台灣虎航)航班之臺灣籍旅客於桃園機場進行調查539份問卷。根據模式估計結果顯示,民眾在進行航班選擇時,票價為優先考慮的因素。最佳化模式估計結果顯示,最佳化票價會和設限的最大值相同。本研究除了探討選擇航班的因素,進而探討營收最佳化,並且以距離出發日期的天數做區隔,更符合實際的差別定價情形,將來可提供給各家航空公司之實質的參考依據。

The purpose of this study is to explore differential pricing and revenue optimization for low-cost airlines. This study observes and collects actual data on air fares and designs questionnaire surveys to understand air travelers’ preferences for differential and dynamic pricing. Discrete choice models in the form of multinomial logit are used to explain the travelers’ choice of daparture date and time. In addition, the multinomial logit model is used to examine air travelers’ booking date preferences. The revenue optimization models integrated with choice models are formulated to determine the optimal fares.
This study collecred the stated preference datafor the 2017 Dragon Boat Festival holiday. Totally 539 distributed questionnaires were collected from the Taiwanese air travelers who took the low cost carriers (Tigerair Taiwan) at the Taiwan Taoyuan International Airport. The model estimates show that the fare is an important factor affecting flight selection. Then the optimization fares are the same as the maximum of the limit. Divide from the number of days before the departure date (150/90/30 days), so that more realistic with realistic dynamic pricing. The empirical results provide important insights for setting airfares.

致謝 i
摘  要 ii
Abstract iii
Chapter 1 Introduction 1
1.1 Research Background and Motivation 1
1.2 Research Problem and Objectives 5
1.3 Research Methods 6
1.4 Flow Chart 7
Chapter 2 Literature Review 9
2.1 Dynamic Pricing 9
2.2 Revenue Management 11
2.3 The Purchase Behavior 13
2.4 Choice Models 15
2.5 Optimization Models 20
Chapter 3 Research Methods 22
3.1 Stated Preference Design 22
3.1.1 Flight Departure Choice Behavior 24
3.1.2 Purchase Behavior 29
3.1.3 Method of Investigation 33
3.2 Choice Modeling for Flight Choice 34
3.3 Choice Modeling for Booking Date 35
3.4 Revenue Optimization 36
3.4.1 The Objective Function 37
3.4.2 The Constraint Function 38
Chapter 4 Data 39
4.1 Survey and Sampling Design 39
4.2 Data Collection and Analysis 40
4.3 Crosstab Analysis 48
Chapter 5 Estimation Results 49
5.1 Model Estimation for Flight Departure Choice 49
5.2 Model Estimation for Booking Date Choice 54
5.3 Revenue Optimization 58
Chapter 6 Conclusion 66
6.1 Study Result 66
6.2 Contributions 68
6.3 Limitations and Directions for Future Studies 69
References 70
Appendix 78
Questionnaire 118

Alegre, J., & Pou, L. (2006). The length of stay in the demand for tourism. Tourism management, 27(6), 1343-1355.
Alegre, J., Mateo, S., & Pou, L. (2011). A latent class approach to tourists’ length of stay. Tourism Management, 32(3), 555-563.
Barnhart, C., Belobaba, P., & Odoni, A. R. (2003). Applications of operations research in the air transport industry. Transportation science, 37(4), 368-391.
Barros, C. P., & Machado, L. P. (2010). The length of stay in tourism. Annals of Tourism Research, 37(3), 692-706.
Bergantino, A. S., & Capozza, C. (2015). Airline Pricing Behavior Under Limited Inter‐Modal Competition. Economic Inquiry, 53(1), 700-713.
Berrittella, M., La Franca, L., & Zito, P. (2009). An analytic hierarchy process for ranking operating costs of low cost and full service airlines. Journal of Air Transport Management, 15(5), 249-255.
Boyer, K. D. (1981). Equalizing discrimination and cartel pricing in transport rate regulation. Journal of Political Economy, 89(2), 270-286.
Brey, R., & Walker, J. L. (2011). Latent temporal preferences: An application to airline travel. Transportation Research Part A: Policy and Practice, 45(9), 880-895.
Carlos Martín, J., Román, C., & Espino, R. (2008). Willingness to pay for airline service quality. Transport Reviews, 28(2), 199-217.
Coldren, G. M., Koppelman, F. S., Kasturirangan, K., & Mukherjee, A. (2003). Modeling aggregate air-travel itinerary shares: logit model development at a major US airline. Journal of Air Transport Management, 9(6), 361-369.
Coldren, G., & Koppelman, F. (2005). Modeling the proximate covariance property of air travel itineraries along the time-of-day dimension. Transportation Research Record: Journal of the Transportation Research Board, (1915), 112-123.
Deng, L., Zhang, Z., Liu, K., Zhou, W., & Ma, J. (2014). Fare optimality analysis of urban rail transit under various objective functions. Discrete Dynamics in Nature and Society, 2014.
Domínguez-Menchero, J. S., Rivera, J., & Torres-Manzanera, E. (2014). Optimal purchase timing in the airline market. Journal of Air Transport Management, 40, 137-143.
Fiebig, D. G., Keane, M. P., Louviere, J., & Wasi, N. (2010). The generalized multinomial logit model: accounting for scale and coefficient heterogeneity. Marketing Science, 29(3), 393-421.
Fu, X., Lijesen, M., & Oum, T. H. (2006). An analysis of airport pricing and regulation in the presence of competition between full service airlines and low cost carriers. Journal of Transport Economics and Policy (JTEP), 40(3), 425-447.
Gallego, G., & Van Ryzin, G. (1994). Optimal dynamic pricing of inventories with stochastic demand over finite horizons. Management science, 40(8), 999-1020.
Garrow, L. A. (2016). Discrete choice modelling and air travel demand: theory and applications. Routledge.
Gönsch, J., & Steinhardt, C. (2015). On the incorporation of upgrades into airline network revenue management. Review of Managerial Science, 9(4), 635-660.
Graham, R. J., Garrow, L. A., & Leonard, J. D. (2010). Business travelers’ ticketing, refund, and exchange behavior. Journal of Air Transport Management, 16(4), 196-201.
Hetrakul, P., & Cirillo, C. (2013). Accommodating taste heterogeneity in railway passenger choice models based on internet booking data. Journal of choice modelling, 6, 1-16.
Hetrakul, P., & Cirillo, C. (2014). A latent class choice based model system for railway optimal pricing and seat allocation. Transportation Research Part E: Logistics and Transportation Review, 61, 68-83.
Hsu, C. I., & Wen, Y. H. (2003). Determining flight frequencies on an airline network with demand–supply interactions. Transportation Research Part E: Logistics and Transportation Review, 39(6), 417-441.
Jones, P. (2002). Introduction to hospitality operations: An indispensable guide to the industry. Cengage Learning EMEA.
Kalanidhi, S. (2001). Value Creation in a Network: The Role of Pricing and Revenue Optimization and Enterprise Profit OptimizationTM. Information Systems Frontiers, 3(4), 465-470.
Lee, T. C., & Hersh, M. (1993). A model for dynamic airline seat inventory control with multiple seat bookings. Transportation science, 27(3), 252-265.
Link, H. (2004). PEP–a yield-management scheme for rail passenger fares in Germany. Japan Railway & Transport Review, 38(3), 50-55.
Malighetti, P., Paleari, S., & Redondi, R. (2009). Pricing strategies of low-cost airlines: The Ryanair case study. Journal of Air Transport Management, 15(4), 195-203.
Mantin, B., & Koo, B. (2009). Dynamic price dispersion in airline markets. Transportation Research Part E: Logistics and Transportation Review, 45(6), 1020-1029.
Manual, L. U. (2010). Lindo System Inc., Chicago, IL.
Martinez-Garcia, E., & Raya, J. M. (2008). Length of stay for low-cost tourism. Tourism Management, 29(6), 1064-1075.
Mason, K. J. (2001). Marketing low-cost airline services to business travellers. Journal of Air Transport Management, 7(2), 103-109.
McAfee, R. P., & Te Velde, V. (2006). Dynamic pricing in the airline industry. forthcoming in Handbook on Economics and Information Systems, Ed: TJ Hendershott, Elsevier.
McGill, J. I., & Van Ryzin, G. J. (1999). Revenue management: Research overview and prospects. Transportation science, 33(2), 233-256.
Moreno-Izquierdo, L., Ramón-Rodríguez, A., & Ribes, J. P. (2015). The impact of the internet on the pricing strategies of the European low cost airlines. European Journal of Operational Research, 246(2), 651-660.
Mumbower, S., Garrow, L. A., & Higgins, M. J. (2014). Estimating flight-level price elasticities using online airline data: A first step toward integrating pricing, demand, and revenue optimization. Transportation Research Part A: Policy and Practice, 66, 196-212.
Mumbower, S., Garrow, L. A., & Higgins, M. J. (2014). Estimating flight-level price elasticities using online airline data: A first step toward integrating pricing, demand, and revenue optimization. Transportation Research Part A: Policy and Practice, 66, 196-212.
O’Connell, J. F., & Williams, G. (2005). Passengers’ perceptions of low cost airlines and full service carriers: A case study involving Ryanair, Aer Lingus, Air Asia and Malaysia Airlines. Journal of Air Transport Management, 11(4), 259-272.
Oliveira, A. V., & Huse, C. (2009). Localized competitive advantage and price reactions to entry: Full-service vs. low-cost airlines in recently liberalized emerging markets. Transportation Research Part E: Logistics and Transportation Review, 45(2), 307-320.
Ong, W. L., & Tan, A. K. (2010). A note on the determinants of airline choice: The case of Air Asia and Malaysia Airlines. Journal of Air Transport Management, 16(4), 209-212.
Oppewal, H., Tojib, D. R., & Louvieris, P. (2013). Experimental analysis of consumer channel-mix use. Journal of Business Research, 66(11), 2226-2233.
Otero, D. F., & Akhavan-Tabatabaei, R. (2015). A stochastic dynamic pricing model for the multiclass problems in the airline industry. European Journal of Operational Research, 242(1), 188-200.
Park, C., & Seo, J. (2011). Seat inventory control for sequential multiple flights with customer choice behavior. Computers & Industrial Engineering, 61(4), 1189-1199.
Paulley, N., Balcombe, R., Mackett, R., Titheridge, H., Preston, J., Wardman, M., ... & White, P. (2006). The demand for public transport: The effects of fares, quality of service, income and car ownership. Transport Policy, 13(4), 295-306.
Peng, H., Xu, X., & Chen, W. (2013). Tourist behaviors in online booking: A new research agenda. Communications in Information Science and Management Engineering, 3(6), 280.
Petrick, A., Gönsch, J., Steinhardt, C., & Klein, R. (2010). Dynamic control mechanisms for revenue management with flexible products. Computers & Operations Research, 37(11), 2027-2039.
Puller, S. L., & Taylor, L. M. (2012). Price discrimination by day-of-week of purchase: Evidence from the US airline industry. Journal of Economic Behavior & Organization, 84(3), 801-812.
Ratliff, R., & Vinod, B. (2005). Airline pricing and revenue management: A future outlook. Journal of Revenue and Pricing Management, 4(3), 302.
Rubin, E., & Mantin, B. (2012). Tabulated decision aids and airfare pricing. Electronic Commerce Research and Applications, 11(2), 159-170.
Rusmevichientong, P., Shmoys, D., Tong, C., & Topaloglu, H. (2014). Assortment optimization under the multinomial logit model with random choice parameters. Production and Operations Management, 23(11), 2023-2039.
Sauter-Servaes, T., & Nash, A. (2007). Applying low-cost airline pricing strategies to European railroads. Transportation Research Record: Journal of the Transportation Research Board, (1995), 1-8.
Soon, W. (2011). A review of multi-product pricing models. Applied mathematics and computation, 217(21), 8149-8165.
Sun, X., Jiao, Y., & Tian, P. (2011). Marketing research and revenue optimization for the cruise industry: A concise review. International Journal of Hospitality Management, 30(3), 746-755.
Talluri, K. T., & Van Ryzin, G. J. (2006). The theory and practice of revenue management (Vol. 68). Springer Science & Business Media.
Tse, T. S., & Tung Poon, Y. (2012). Revenue management: resolving a revenue optimization paradox. International Journal of Contemporary Hospitality Management, 24(4), 507-521.
Vinod, B. (2010). The complexities and challenges of the airline fare management process and alignment with revenue management. Journal of Revenue and Pricing Management, 9(1-2), 137-151.
Vulcano, G., Van Ryzin, G., & Chaar, W. (2010). Om practice—choice-based revenue management: An empirical study of estimation and optimization. Manufacturing & Service Operations Management, 12(3), 371-392.
Walker, J. L. (2001). Extended discrete choice models: integrated framework, flexible error structures, and latent variables (Doctoral dissertation, Massachusetts Institute of Technology).
Wang, E., Little, B. B., & DelHomme-Little, B. A. (2012). Factors contributing to tourists' length of stay in Dalian northeastern China—A survival model analysis. Tourism Management Perspectives, 4, 67-72.
Wang, S., Wang, H., & Meng, Q. (2015). Itinerary provision and pricing in container liner shipping revenue management. Transportation Research Part E: Logistics and Transportation Review, 77, 135-146.
Wen C.H. and Huang C.J. (2016). Incorporating continuous representation of preferences for flight departure times into stated airline choice modelling, The World Conference on Transport Research Society.
Wen C.H. and Lai S.C. (2010). Latent class models of international air carrier choice, Transportation Research, 46, 211-221.
Westermann, D. (2012). The impact of low cost carrier on the future of pricing and revenue management. Journal of Revenue and Pricing Management, 11(4), 481-484.
You, P. S. (2008). An efficient computational approach for railway booking problems. European Journal of Operational Research, 185(2), 811-824.
Zhao, L., Tian, P., & Li, X. (2012). Dynamic pricing in the presence of consumer inertia. Omega, 40(2), 137-148.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔