跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/13 08:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃柏嘉
研究生(外文):HUANG, PO-CHIA
論文名稱:同時量測彎曲與溫度之錐形光纖光柵感測器
論文名稱(外文):The Simultaneous Bending Curvature and Temperature Sensor Based on Tapered Fiber Grating
指導教授:劉文豐劉文豐引用關係
指導教授(外文):LIU, WEN-FUNG
口試委員:賴暎杰張正陽張宏鈞
口試委員(外文):LAI, YIN-CHIEHCHANG, JENQ-YANGCHANG, HUNG-CHUN
口試日期:2017-06-28
學位類別:碩士
校院名稱:逢甲大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:56
中文關鍵詞:斜角光纖光柵感測器錐形光纖氫氟酸空孔光纖
外文關鍵詞:Tilted fiber Bragg gratingTapered fiberHydrofluoric acidHollow core fiber
相關次數:
  • 被引用被引用:0
  • 點閱點閱:120
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本文提出以斜角光纖光柵(Tilted fiber Bragg grating, TFBG)與超結構式光纖光柵(Superstructure fiber grating, SFG)為基礎的彎曲率與溫度感測器之研究。將光纖光柵先以氫氟酸(Hydrofluoric acid, HF)蝕刻成雙錐狀,再封入空孔光纖中(Hollow core fiber, HCF)。感測原理為感測頭藉由彎曲或受溫度改變時,由於特殊的封裝架構,光纖軸向應力釋放或增加感測器上的軸向應力,造成SFG之纖核模態與TFBG之纖殼模態變化,並藉由波長變化量測影響程度,綜合實驗結果靈敏度值轉換,以轉換矩陣解調出當時環境下的彎曲率與溫度,TFBG與SFG感測器不同的地方在於,前者監控的頻譜資訊為穿透光,後者監控的頻譜為反射光,可以因應不同需求而使用在不同的場所。另外也特別探討光柵角度與蝕刻粗細對於感測靈敏度之影響,以期未來能夠最大限度的改善感測的靈敏度。期許未來此感測器可以應用於橋樑、鐵軌等公共建設,達到即時監控之目的。
We proposed a fiber sensor to simultaneously measure the bending rate and temperature sensor based on a tilted fiber Bragg grating (TFBG) and a superstructure fiber grating (SFG). The fiber grating sensor was firstly etched to be tapered by hydrofluoric acid (HF) solution and then be fixed into hollow core fiber (HCF). The sensing principle is the fiber bending to cause the axial stress which is released or increase by the special package structure. The temperature and bending curvature will cause the wavelength variation of the code mode and cladding mode respectively. From the above experiment results, we can obtain the sensitivity of sensing head for the bending curvature and temperature to compose a matrix to determine the texting bending cruvature and temperature. Due to the different characristics below to TFBG and SFG sensor, the TFBG is monitored the transmission spectral for sensing and the SFG is monitored the spectrum of reflected light, for the requirement of different applications. The future of this sensor can be applied in bridges, railways and other public constructions, for achieving the purpose of real-time monitoring.
摘  要 i
Abstract ii
目  錄 iii
圖目錄 v
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 1
1.3 研究方法 2
第二章 光纖之光學特性 3
2.1 光纖簡介 3
2.2 光纖光柵簡介 4
2.2.1 布拉格光纖光柵 4
2.2.2 布拉格光纖光柵理論分析 5
2.2.3 斜角光纖光柵原理 9
2.2.4 超結構光纖光柵原理 10
第三章 光纖光柵感測器 14
3.1 前言 14
3.2 光纖光柵錐狀蝕刻與封裝 14
3.3 溫度實驗架構 17
3.4 彎曲實驗架構 17
第四章 錐形斜角光纖光柵感測器 19
4.1 前言 19
4.2 不同角度比較 19
4.2.1 1度斜角光纖光柵 19
4.2.2 3度斜角光纖光柵 23
4.2.3 5度斜角光纖光柵 25
4.2.4 小結 28
4.3 不同蝕刻厚度比較 29
4.3.1 1度斜角光纖光柵 29
4.3.2 3度斜角光纖光柵 32
4.3.3 5度斜角光纖光柵 35
4.3.4 小結 38
第五章 錐形超結構光纖光柵感測器 39
5.1 前言 39
5.2 不同角度之比較 39
5.2.1 1度超結構光纖光柵 39
5.2.2 3度超結構光纖光柵 42
5.2.3 小結 45
5.3 不同蝕刻厚度之比較 45
5.3.1 1度超結構光纖光柵 45
5.3.2 3度超結構光纖光柵 48
5.3.3 小結 51
第六章 結論與未來展望 53
6.1 分析與討論 53
6.2 未來展望 54
參考文獻 55


[1]B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H. L. Tsai, “Ultra-Abrupt Tapered Fiber Mach-Zehnder Interferometer Sensors,” Sensors, Vol. 11, Issue 6, pp. 5729-5739, 2011.
[2]H. Y. Lin, C. H. Huang, G. L. Cheng, N. K. Chen, and H. C. Chui, “Tapered optical fiber sensor based on localized surface plasmon resonance,” OPTICS EXPRESS, Vol. 20, NO. 20, pp. 21693-21701, 2012.
[3]R. Yang, Y. S. Yu, Y. Xue, C. Chen, Q. D. Chen, and H. B. Sun, “Single S-tapered fiber Mach–Zehnder interferometers,” OPTICS LETTERS, Vol. 36, NO. 23, pp. 4482–4484, 2011.
[4]C. Baria´in, I. R. Matías, F. J. Arregui, and M. L. Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sensors and Actuators B: Chemical, Vol. 69, Issues 1–2, pp. 127–131, 2000.
[5]C. L. Lee, Y. N. Tsai, G. H. Chen, Y. J. Xiao, J. M. Hsu, and J. S. Horng, “Refined Bridging of Microfiber Plugs in Hollow Core Fiber for Sensing Acoustic Vibrations,” IEEE PHOTONICS TECHNOLOGY LETTERS, Vol. 27, NO. 22, pp. 2403–2406, 2015.
[6]J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. He, “Fiber-Taper Seeded Long-Period Grating Pair as a Highly Sensitive Refractive-Index Sensor,” IEEE PHOTONICS TECHNOLOGY LETTERS, Vol. 17 ,No. 6 , pp. 1247–1249, 2005.
[7]W. C. Du, X. M. Tao, and H. Y. Tam, “Fiber Bragg Grating Cavity Sensor for Simultaneous of Strain and Temperature,” IEEE PHOTONICS TECHNOLOGY LETTERS, Vol. 11, NO. 1, pp. 105–107, 1999.
[8]K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” Journal of lightwave technology, Vol. 15, NO. 8, pp. 1263–1275, 1997.
[9]Z. Zhuo, and B. S. Ham, “A temperature-insensitive strain sensor using a fiber Bragg grating,” Optical Fiber Technology, Vol. 15, Issues: 5–6, pp. 442–444, 2009.
[10]L. Yan, Z. Zhang, P. Wang, W. Pan, L. Guo, B. Luo, K. Wen, S. Wang, and G. Zhao, “Fiber sensors for strain measurements and axle-counting in high-speed railway applications,” IEEE SENSORS JOURNAL, Vol. 11, NO. 7, pp.1587-1594, 2011.
[11]X. Dong, H. Zhang, B. Liu, and Y. Miao, “Tilted Fiber Bragg Gratings: Principle and Sensing Applications,” Photonic Sensors, Vol. 1, NO. 1, pp. 6-30, 2011.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top