跳到主要內容

臺灣博碩士論文加值系統

(44.220.255.141) 您好!臺灣時間:2024/11/13 08:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱惟靖
研究生(外文):CHIU, WEI-JING
論文名稱:懸臂樑尺寸對於暴衝電壓之影響
論文名稱(外文):Effect of Cantilever Beam Sizes on Pull-In Voltage
指導教授:林孟儒林孟儒引用關係
指導教授(外文):Lin, Meng-Ju
口試委員:林孟儒黃宗立羅致卿
口試委員(外文):Lin, Meng-JuHwan, Chung-LiLo, Chih-Ching
口試日期:2017-07-19
學位類別:碩士
校院名稱:逢甲大學
系所名稱:機械與電腦輔助工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:23
中文關鍵詞:暴衝現象靜電驅動多重耦合有限元素分析
外文關鍵詞:pull-in phenomenonelectrostatically actuatedCOMSOL Multiphysics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:252
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
對靜電驅動的微機電系統而言,暴衝現象將會明顯影響元件的性能與良率。本論文針對懸臂樑結構之暴衝現象作探討。懸臂樑結構的尺寸對暴衝電壓的影響在本論文中有完整分析。本文的分析方法是採用有限元素法之軟體COMSOL Multiphysics做數值模擬。由結果顯示,暴衝電壓將隨著懸臂樑和接地電極的間距、懸臂樑厚度、以及懸臂樑寬度的增加而近似直線式的增加。其中,懸臂樑寬度的影響最不明顯。而懸臂樑和接地電極的間距以及懸臂樑厚度對暴衝電壓的影響則差異不大。懸臂樑長度對暴衝電壓的影響則是非線性的影響。暴衝電壓會隨著懸臂樑長度的增加而非線性變小。當懸臂樑長度暴衝電壓夠長,則暴衝電壓會趨近一個固定值。
For electrostatically actuated MEMS, pull-in phenomena will significantly affect the performance and yielding ratio of device. Pull-in phenomena of electrostatically actuated cantilever beam are investigated in this work. Effects of cantilever beam sizes on pull-in voltages are analyzed. Numerical simulation by using finite element software COMSOL Multiphysics is provided to analyze the pull-in phenomena. The results show that pull-in voltages will increase linearly like as gap between cantilever beam and ground electrode, beam thickness, and beam width increasing. The beam width has the tiniest effect on pull-in voltage comparing with the other parameters. Gap and beam thickness have almost the same effect on pull-in voltage. However, pull-in voltage decreases nonlinearly as beam length increasing. For the longer beam length, the pull-in voltage will reaches a limit values.
誌  謝 i
摘  要 ii
Abstract iii
Catalog iv
List of Figures vi
List of Tables vii
Chapter I Introduction 1
1.1 Introduction 1
1.2 Research Purpose 2
1.3 Literature Review 2
Chapter II Theoretical basis 5
2.1 Introduction to MEMS 5
2.2 Electrostatic driving 6
2.3 Pull-in phenomenon 8
Chapter III Numerical model 10
3.1 Basic Assumptions of the model 10
3.2 COMSOL Multiphysics Analysis Process 11
3.3 Theoretical model 13
Chapter IV Results and Discussions 16
4.1 Deformation relationship 16
Chapter V Conclusion 19
5.1 Conclusion 19
5.2 Future Perspectives 19
References 20
References
[1] H.R. Shea, Reliability of MEMS for space applications, in: Proceedings of Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS V, vol. 6111, 2006, pp. 6110A-1.
[2] Y. Wada, NEMS/MEMS tools for nanoelectronics development Curr. Appl. Phys., 2 (4) (2002), pp. 331–334.
[3] J. Seok, H.A. Scarton, Dynamic characteristics of a beam angular-rate sensor, Int. J. Mech. Sci., 48 (1) (2006), pp. 11–20.
[4] M. Keivani, et al., On the dynamic instability of nanowire-fabricated electromechanical actuators in the Casimir regime: coupled effects of surface energy and size dependency, Phys. E Low-Dimens. Syst. Nanostruct., 76 (2016), pp. 60–69.
[5] S. Muratet, et al., Reliability modelling and analysis of thermal MEMS, J. Phys. Conf. Ser. (2006).
[6] S. Azizi, et al., Stability analysis of a parametrically excited functionally graded piezoelectric, MEM system, Curr. Appl. Phys., 12 (2) (2012), pp. 456–466.
[7] M. Younis, E.M., Abdel-Rahman, A. Nayfeh, A reduced-order model for electrically actuated microbeam-based MEMS, J. Micromech. Syst., 12 (5) (2003), pp. 672–680.
[8] G. Rezazadeh, A. Tahmasebi, M. Zubstov, Application of piezoelectric layers in electrostatic MEM actuators: controlling of pull-in voltage, Microsyst. Technol., 12 (12) (2006), pp. 1163–1170.
[9] S.W. Lee, E.E. Campbell, Nanoelectromechanical devices with carbon nanotubes, Curr. Appl. Phys., 13 (8) (2013), pp. 1844–1859.
[10] E.M. Miandoab, et al., Chaos prediction in MEMS-NEMS resonators Int. J. Eng. Sci., 82 (2014), pp. 74–83.
[11] H. Dai, L. Wang, Surface effect on the pull-in instability of cantilevered nano-switches based on a full nonlinear model, Phys. E Low-Dimens. Syst. Nanostruct. (2015).
[13] E. Yazdanpanahi, A. Noghrehabadi, M. Ghalambaz, Balance dielectric layer for micro electrostatic switches in the presence of capillary effect, Int. J. Mech. Sci., 74 (2013), pp. 83–90.
[14] X. Guo, Y.-B. Yi, S. Pourkamali, A finite element analysis of thermoelastic damping in vented MEMS beam resonators, Int. J. Mech. Sci., 74 (2013), pp. 73–82.
[15] Ehsan Maani Miandoab, Hossein Nejat Pishkenari, Ali Meghdari, Mohammad Fathi, A general closed-form solution for the static pull-in voltages of electrostatically actuated MEMS/NEMS, Physica E: Low-dimensional Systems and Nanostructures, Volume 90, June 2017, Pages 7–12.
[16] Lior Medina, Rivka Gilat, Bojan Ilic and Slava Krylov(2014), Experimental investigation of the snap-through buckling of electrostatically actuated initially curved pre-stressed micro beams, Sensors and Actuators A: Physical, Volume 220, 1 December 2014, Pages 323-332
[17] Deepak G.Khushalani, Vaibhav R.Dubey, Jayu P.Kalambe(2015), Rajesh S.Pande and Rajendra M.Patrikar, Design optimization & fabrication of micro cantilever for switching application, Sensors and Actuators A: Physical, Volume 225, 15 April 2015, Pages 1-7
[18] Yue Xiao, Binglei Wang and Shenjie Zhou(2015), Pull-in voltage analysis of electrostatically actuated MEMS with piezoelectric layers: A size-dependent model, Mechanics Research Communications, Volume 66, June 2015, Pages 7-14
[19] H.L.Dai and L.Wang(2017), Size-dependent pull-in voltage and nonlinear dynamics of electrically actuated microcantilever-based MEMS: A full nonlinear analysis, Communications in Nonlinear Science and Numerical Simulation, Volume 46, May 2017, Pages 116-125
[20] taifer(2003). Taifer. Retrieved March 2003. from http://www.taifer.com.tw/taifer/tf/044003/45.htm
[21] S. Fatikow and U. Rembold (1997). Microsystem Technology and Microrobotics. Springer.
[22] 林靜、黃元慶(2005) 。MEMS光開關的靜電驅動技術。中國儀器儀表2005年第6期。廈門大學機電工程系。
[23] 趙主立(2004)。微波元件可變電容梳狀懸浮結構製作。未出版之碩士論文。中華大學機械與航太工程研究所。
[24] 郭雨甡(2007)。承受靜電力之微曲樑的吸附電壓解析解及其應用於反算薄膜之楊氏模數與應力梯度。未出版之碩士論文。國立台灣科技大學機械工程系。
[25] 周芸如(2008)。微懸板尺寸與溫度對變形量的影響。未出版之碩士論文。逢甲大學機械與電腦輔助工程系機械工程。
[26] Senturia, Stephen D(2001). Microsystem Design. Boston / Dordrecht / London: Kluwer Academic Pub. Pages 137
[27] E.S. Hung and S.D. Senturia (1999) . Extending the travel range of analogtuned electrostatic actuators. J.Microelectromechanical Systems,vol.8, pp. 497-505.
[28] 程海東(2004)。”從材料科技談中部科學園區的發展”。2005中小企業展望暨創新育成中心中科廠商產學合作研討會。東海大學管理學院中區研訓中心。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top