跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/27 03:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:侯佑昌
研究生(外文):HOU,YOU-CHANG
論文名稱:應用於5.8GHz微波動作感測器之天線研究
論文名稱(外文):Study of 5.8GHz Antennas for Microwave Motion Sensor Applications
指導教授:陳家豪陳家豪引用關係
指導教授(外文):CHEN,JA-HAO
口試委員:陳家豪邱瑞杰許正興
口試委員(外文):CHEN,JA-HAOCIOU,RUEI-JIESYU,JHENG-SING
口試日期:2017-06-23
學位類別:碩士
校院名稱:逢甲大學
系所名稱:通訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:61
中文關鍵詞:指叉彎折陣列天線背板挖槽平板天線
外文關鍵詞:Digifinger Meander-line Array AntennaBackside Slot Patch Antenna
相關次數:
  • 被引用被引用:0
  • 點閱點閱:214
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究是應用於5.8GHz的微波動作感測器之天線設計。針對於微波動作感測器設置的場地的大小與布局不同,設計不同的天線設計。針對長廊型的場域,設計具指向性輻射場型之指叉彎折陣列天線。針對寬敞型的場域,設計具高增益非指向性輻射場型之背板挖槽平板天線,來增加微波動作感測器感測範圍,進而減少安裝數目減少成本,提升感測器實用性。天線是以FR4基板設計製作,經量測得到指叉彎折陣列天線實際操作在5.8 GHz,最大增益為3.2 dBi。背板挖槽平板天線實際操作在5.8 GHz,最大增益為4.5 dBi。進一步將天線與感測模組整合,量測訊號的空間分佈,並與天現輻射場型進行比較。
In this study, antennas for 5.8 GHz microwave motion sensor applications are investigated. The antennas are designed with considering the size and layout of the implementation area. For a long implementation area, such as a long corridor, a digifinger meander-line array antenna is designed with high gain and directional radiation pattern. For spacious implementation area, a backside slot patch antenna is designed with high gain and omni-directional radiation pattern. The proposed antennas improve the sensitivity of microwave motion sensors, which reduces the installation cost and enhances the practicability of the sensors. The proposed antennas implemented on FR4 substrate. The digifinger meander-line array antenna is designed at 5.8 GHz with 3.2 dBi maximum gain. The backside slot patch antenna is designed at 5.8 GHz with 4.5 dBi maximum gain. The proposed antennas are integrated with motion sensor to measure the microwave signal distribution in the implementation space. Finally, the distributions are compared with the radiation patterns of the proposed antenna.
致謝………………………………………………………………………i
摘要 ……………………………………………………………………ii
Abstract……………………………………………………………… iv
目錄 …………………………………………………………………… v
圖目錄…………………………………………………………………vii
表目錄………………………………………………………………… xi
第一章 研究動機 ………………………………………………………1
1.1 微波動作感測器介紹……………………………………………1
1.2 應用於微波動作感測器之天線介紹……………………………3
1.3本論文流程圖 …………………………………………5
第二章 天線與微波動作感測器應用場域之關係 ……………………8
2.1天線基本原理介紹………………………………………………8
2.1.1天線原理 ………………………………………………….8
2.1.2天線參數 ……………………………………………………9
2.2 指向性天線介紹 ………………………………………………14
2.2.1指向性天線原理 …………………………………………14
2.2.2指性向天線種類介紹 ……………………………………15
2.3 非指向天線介紹 ……………………………………………21
2.3.1非指向性天線種類介紹…………………………………22
第三章 應用於動作感測器之天線設計與模擬 ……………………25
3.1 天線設計規劃介紹 ……………………………………………25
3.2 指向性天線設計與模擬 ………………………………………26
3.3 非指向性天線設計與模擬…………………………………… 31
第四章 天線量測結果與比較 ………………………………………38
4.1 量測系統與量測環境介紹 ……………………………………38
4.1.1 天線量測系統介紹 ………………………………………40
4.1.2 天線與動作感測器整合量測介紹 ………………………42
4.2 指向性天線量測 ………………………………………………45
4.2.1 指向性天線量測結果與比較 ……………………………56
4.2.2指向性天線與動作感測器整合量測結果 ………………51
4.3 非指向性天線量測 ……………………………………………52
4.3.1 非指向性天線量測結果與比較 …………………………52
4.3.2非指向性天線與動作感測器整合量測結果 ……………55
第五章 結論 ………………………………………………………… 56
第六章未來研究項目規劃 ……………………………………………57
參考文獻 ………………………………………………………………58

[1] S. B. Belamgi and S. Ray, "A compact suspended planar patch antenna for microwave imaging sensor array," Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT), Hooghly, 2015, pp. 1-4.
[2] T. Fujimoto, T. Tsuruoka, T. Fujishima, Y. Ishizuka, S. Sugimoto and T. Sasamura, "Circularly polarized small microstrip antenna for wireless sensor network," 2015 International Symposium on Antennas and Propagation (ISAP), Hobart, TAS, 2015, pp. 1-2.
[3] 簡胤榕, " 小型化偶極陣列微帶天線研製及雙天線效能提升運用之分析,"
[4]根日屋英之、小川真紀"無線通訊時代的天線設計,"
[5]鄭士康,"電磁波,"
[6] 根日屋英之、小川真紀"無線通訊時代的天線設計,"
[7] S. Handagala, A. Madanayake and N. Udayanga, "Design of a millimeter-wave dish-antenna based 3-D IIR radar digital velocity filter," 2015 IEEE 9th International Workshop on Multidimensional (nD) Systems (nDS), Vila Real, 2015, pp. 1-6.
[8] R. H. Thaher and S. N. Alsaidy, "Design and fabrication of new diamond patch antenna for wireless communications," 2016 Al-Sadeq International Conference on Multidisciplinary in IT and Communication Science and Applications (AIC-MITCSA), Baghdad, 2016, pp. 1-6.
[9] G. B. Hoang, G. N. Van, L. T. Phuong, T. A. Vu and D. B. Gia, "Research, design and fabrication of 2.45 GHz microstrip patch antenna arrays for close-range wireless power transmission systems," 2016 International Conference on Advanced Technologies for Communications (ATC), Hanoi, 2016, pp. 259-263.
[10]黃胤年, "電波傳播與天線"
[11]Allen LU, "雙極(dipole)和單極(monopole)天線簡介"
[12] C. y. Shuai; g. m. Wang, "A Novel Planar Printed Dual-Band Magneto-Electric Dipole Antenna," in IEEE Access , vol.PP, no.99, pp.1-1
[13] Z. L. Ma; C. H. Chan, "Waveguide-Based Differentially-Fed Dual-Polarized Magneto-Electric Dipole Antennas," in IEEE Transactions on Antennas and Propagation , vol.PP, no.99, pp.1-1
[14] T. Baum; R. Ziolkowski; K. Ghorbani; K. Nicholson, "Investigations of a Load-Bearing Composite Electrically Small Egyptian Axe Dipole Antenna," in IEEE Transactions on Antennas and Propagation , vol.PP, no.99, pp.1-1
[15] Allen LU, "雙極(dipole)和單極(monopole)天線簡介"
[16] 根日屋英之、小川真紀"無線通訊時代的天線設計,"
[17] P. Hajizadeh, H. R. Hassani and S. H. Sedighy, "Planar Artificial Transmission Lines Loading for Miniturization of RFID Printed Quasi-Yagi Antenna," in IEEE Antennas and Wireless Propagation Letters, vol. 12, no. , pp. 464-467, 2013.
[18] Jieh-Sen Kuo and Gui-Bin Hsieh, "Gain enhancement of a circularly polarized equilateral-triangular microstrip antenna with a slotted ground plane," in IEEE Transactions on Antennas and Propagation, vol. 51, no. 7, pp. 1652-1656, July 2003.
[19] S. Fang, H. Guo, X. Liu and L. Mao, "A miniaturized dual-frequency Wilkinson power divider using planar artificial transmission lines," 2010 International Conference on Microwave and Millimeter Wave Technology, Chengdu, 2010, pp. 1588-1590.
[20] C. H. Tseng and C. H. Wu, "Design of compact branch-line couplers using π-equivalent artificial transmission lines," in IET Microwaves, Antennas & Propagation, vol. 6, no. 9, pp. 969-974, June 19 2012.
[21] H. Hao and K. Li, "A Novel 5.8GHz Circularly Polarized Rectenna for Microwave Power Transmission," 2006 7th International Symposium on Antennas, Propagation & EM Theory, Guilin, 2006, pp. 1-4.
[22] M. Yahya and Z. Awang, "Cross polarization ratio analysis of circular polarized patch antenna," 2010 International Conference on Electromagnetics in Advanced Applications, Sydney, NSW, 2010, pp. 442-445.


[23] J. W. Sanders, J. Yao and H. Huang, "Microstrip Patch Antenna Temperature Sensor," in IEEE Sensors Journal, vol. 15, no. 9, pp. 5312-5319, Sept. 2015.
[24] S. Dey and N. C. Karmakar, "Chipless RFID strain sensors: A novel feasibility analysis in terms of conventional patch antennas," 2015 IEEE MTT-S International Microwave and RF Conference (IMaRC), Hyderabad, 2015, pp. 72-75.
[25] B. Y. Park, M. H. Jeong and S. O. Park, "A Miniaturized Microstrip-to-Coplanar-Strip Transition Loaded with Artificial Transmission Lines and 2.4-GHz Antenna Application," in IEEE Antennas and Wireless Propagation Letters, vol. 13, no. , pp. 1486-1489, 2014.
[26] Yu Cao, Xiaohong Tang, L. Wang and Tengfei Yan, "A new shunt-stub-based meander artificial transmission line in miniaturized microwave passive components," 2015 IEEE International Wireless Symposium (IWS 2015), Shenzhen, 2015, pp. 1-4.
[27] H. Chu, J. X. Chen and Y. X. Guo, "A compact artificial transmission line structure using LTCC technology and its applications," 2015 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Suzhou, 2015, pp. 1-3.
[28] Y. N. Pchelnikov, "Dispersion characteristics of the tape meander line circuit," 2016 IEEE International Vacuum Electronics Conference (IVEC), Monterey, CA, 2016, pp. 1-2.
[29] Qing Shan, Chunhong Chen and Wen Wu, "Design of an UWB bandpass filter with a notched band using asymmetric loading stubs," 2016 IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT), Beijing, 2016, pp. 410-412.
[30] J. Liu and H. Zhu, "A 5.8GHz Microstrip Antenna Array Using Hemline-Fed Elements," 2010 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM), Chengdu, 2010, pp. 1-4.
[31] H. H. Awadalla, S. I. Shams and A. M. M. A. Allam, "A compact, symmetric branched chain monopole for dual wide band operation," 2010 10th Mediterranean Microwave Symposium, Guzelyurt, 2010, pp. 56-59.
[32] Z. H. Hu, Y. Nechayev and P. Hall, "Measurements and statistical analysis of the transmission channel between two wireless body area networks at 2.45GHz and 5.8GHz," 2010 Conference Proceedings ICECom, 20th International Conference on Applied Electromagnetics and Communications, Dubrovnik, 2010, pp. 1-4.
[33] X. Chen, K. Huang and X. B. Xu, "A Novel Planar Slot Array Antenna With Omnidirectional Pattern," in IEEE Transactions on Antennas and Propagation, vol. 59, no. 12, pp. 4853-4857, Dec. 2011.
[34] M. T. Ali, H. Jaafar, S. Subahir and A. L. Yusof, "Gain enhancement of air substrates at 5.8GHz for microstrip antenna array," 2012 Asia-Pacific Symposium on Electromagnetic Compatibility, Singapore, 2012, pp. 477-480.
[35] I. M. Ibrahim, T. A. Rahman and M. I. Sabran, "Wide band open ended air gap RLSA antenna at 5.8GHz frequency band," 2012 IEEE International Conference on Wireless Information Technology and Systems (ICWITS), Maui, HI, 2012, pp. 1-4.
[36] X. W. Dai, Z. Y. Wang, C. H. Liang, X. Chen and L. T. Wang, "Multiband and Dual-Polarized Omnidirectional Antenna for 2G/3G/LTE Application," in IEEE Antennas and Wireless Propagation Letters, vol. 12, no. , pp. 1492-1495, 2013.
[37] I. M. Ibrahim, T. A. Rahman, M. I. Sabran and M. F. Jamlos, "Comparison of polypropylene and FR4 dielectric cavity for RLSA antenna design at 5.8GHz," 2014 IEEE REGION 10 SYMPOSIUM, Kuala Lumpur, 2014, pp. 232-234.
[38] Jieh-Sen Kuo and Chih-Yu Huang, "Novel design concept of gain enhancement circularly polarized microstrip antennas," IWAT 2005. IEEE International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials, 2005., 2005, pp. 230-233.
[39] S. K. Goudos, A. Tsiflikiotis, D. Babas, K. Siakavara, C. Kalialakis and G. K. Karagiannidis, "Evolutionary design of a dual band E-shaped patch antenna for 5G mobile communications," 2017 6th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 2017, pp. 1-4.
[40] I. Dioum, I. Diop, L. Sane, M. Khouma and K. Diallo, "Dual band printed MIMO antennas for 5G handsets," 2017 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS), Fez, Morocco, 2017, pp. 1-4.
[41] O. M. Haraz, A. Elboushi, S. A. Alshebeili and A. R. Sebak, "Dense Dielectric Patch Array Antenna With Improved Radiation Characteristics Using EBG Ground Structure and Dielectric Superstrate for Future 5G Cellular Networks," in IEEE Access, vol. 2, no. , pp. 909-913, 2014.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top