跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/01/15 02:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林俊諺
研究生(外文):LIN,CHUN-YEN
論文名稱:氣氛控制對Nd摻雜BiFeO3陶瓷之合成與特性
論文名稱(外文):Synthesis and Characterization of Atmosphere-Controlling Nd-doped BiFeO3 Ceramics
指導教授:杜繼舜
指導教授(外文):TU,CHI-SHUN
口試委員:陳正邵陳炳宜
口試委員(外文):CHEN,CHENG-SAOCHEN,PIN-YI
口試日期:2017-06-23
學位類別:碩士
校院名稱:輔仁大學
系所名稱:物理學系碩士班
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:229
中文關鍵詞:光伏效應p-n junction氣氛燒結同步輻射吸收光譜拉曼光譜
外文關鍵詞:photovoltaic effectp-n junctionsintering under varied atmospheresynchrotron X-ray absorption spectralRaman spectroscopy
相關次數:
  • 被引用被引用:10
  • 點閱點閱:213
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本論文使用固態反應法分別製作改變稀土元素釹(neodymium ; Nd)取代比例與取代比例為7%Nd鐵酸鉍(Bi0.93Nd0.07FeO3)在不同氮氣與氧氣混合比例下燒結的陶瓷樣品。從SEM與EDS則可以發現當Nd取代比例增加或N2氣氛混合比例增加,陶瓷粒徑變小與氧空缺變少。磁滯迴線則是使用VSM在常溫下進行量測並發現當Nd取代比例增加與N2氣氛比例增加時,鐵酸鉍會有微量的剩餘磁極化產生。吸收光譜是在新竹國家同步輻射研究中心(NSRRC)進行量測,根據吸收光譜可以得知隨著Nd取代比例或N2氣氛比例改變時,鐵價數與配位原子間的鍵結距離發生改變,與拉曼光譜的峰值位置改變趨勢有相對應的變化。光伏量測皆以厚度為0.15 mm的陶瓷樣品進行量測,激發源則是使用波長為405 nm的雷射光做為光源,並在樣品兩端分別鍍上金薄膜與ITO薄膜當做為電極並量測開路電壓與短路電流。理論分析則是使用p-n junction 理論與實驗室所發展的光伏理論進行分析與實驗數據擬合。
The ceramic samples were prepared by changing ratios of rare earth element neodymium (Nd) and controlling atmosphere ratios of nitrogen and oxygen in (Bi0.93Nd0.07)FeO3 (BFO7Nd) by solid state reaction method. SEM and EDS results revealed that grain size becomes smaller and the oxygen vacancies decrease by increasing ratios of Nd substitution or N2 atmosphere concentration. Magnetic hysteresis loops were measured by using VSM at room temperature and indicate that the ceramic samples have the remanent magnetizations with increasing ratios of Nd substitution or N2 atmosphere concentration. X-ray absorption spectra were obtained in National Synchrotron Radiation Research Center (NSRRC). X-ray absorption spectroscopy can obtain valence of iron and bond length of coordination atoms, which change with increasing ratios of Nd substitution or N2 atmosphere concentration. The Raman spectra are consistent with X-ray absorption results. The thickness of ceramic samples for photovoltaic effects is 0.15 mm. The excitation source is a diode laser light with wavelength 405 nm. Gold thin film and an ITO thin film were deposited on both surfaces of the sample. The open-circuit voltage and short-circuit current were measured under irradiation. The theoretical analysis based on p-n junction theory was used to explain photovoltaic effects.
中文摘要......................................................................................................................i
Abstract........................................................................................................................ii
致謝.............................................................................................................................iii
目錄.............................................................................................................................iv
圖目錄......................................................................................................................viii
表目錄......................................................................................................................xiv
第一章 緒論…………………………………………...………………………….1
1.1 研究動機………………………………………………………………...1
1.2 複鐵性材料……………………………………………………………..2
1.3 鐵酸鉍…………………………………………………………………...4
1.4 文獻回顧………………………………………………………………...8
第二章 實驗理論……………………………………………………………….....9
2.1介電常數理論………………………………………………………..........9
2.2菱方結構晶格參數計算…………………………………………….....13
2.3拉曼光譜……………………………………………………………….....15
2.4同步X光吸收光譜原理…………………………………………........22
2.5磁性原理與磁滯曲線………………………………………….............35
2.6能隙……………………………………………………………..................40
2.7吸收係數……………………………………………...………..................42
2.8光伏效應理論……………………………………...………....................44
第三章 樣品製備與實驗方法…………………………...………...................68
3.1 樣品製備……………………………………………...………................69
3.1-1 Nd-doped BiFeO3 (BFO) 配粉與球磨…………………….69
3.1-2 鍛燒…………………………………………...………................71
3.1-3高能球磨…………………………………...………....................75
3.1-4成型…………………………………...……….............................76
3.1-5燒結…………………………………...……….............................76
3.1-6高溫爐簡介………………………...………...............................78
3.2 SEM與EDS量測………………...………............................................80
3.2-1 SEM………………………...……….............................................80

3.2-2 EDS………………………...………..............................................82
3.3 介電常數量測…………………...………...............................................83
3.4拉曼光譜量測…………………...………................................................84
3.5 X光吸收光譜量測……………...………...............................................86
3.5-1樣品製備……………...………....................................................87
3.5-2 軟吸收光譜量測…...……….....................................................87
3.5-3硬吸收光譜量測…...………......................................................91
3.6磁性量測…………………...……….........................................................93
3.7光伏量測…………………...……….........................................................95
3.7-1樣品製備………...………............................................................95
3.7-2開路電壓與短路電流量測......................................................99
3.7-3 Power Conversion Efficiency曲線量測設置.....................99
第四章 實驗結果與討論……...………...........................................................101
Part I 改變Nd取代比例………....................................................................101
4.1 SEM與EDS……...………....................................................................101
4.2 XRD分析……...……….........................................................................102
4.3拉曼光譜……...………...........................................................................111
4.4 硬X光吸收光譜……...………...........................................................116
4.5 軟X光吸收光譜……...………...........................................................121
4.6 磁滯曲線……...………..........................................................................129
4.7穿透光譜與光學能隙...........................................................................131
4.8 I-V特性曲線...........................................................................................136
4.9光伏效應..................................................................................................137
4.9-1開路電壓與短路電流密度......................................................137
4.9-2 p-n junction 模型擬合..............................................................140
4.9-3轉換效率與外部量子轉換效率.............................................146
Part II 改變製程環境氣氛比例……...………...............................................151
4.10 SEM與EDS……...………..................................................................151
4.11 XRD分析……...……….......................................................................152
4.12拉曼光譜……...……….........................................................................162
4.13 硬X光吸收光譜……...……….........................................................166
4.14 軟X光吸收光譜……...…….............................................................171
4.15 磁滯曲線……...………........................................................................177
4.16穿透光譜與光學能隙.........................................................................179
4.17 I-V特性曲線........................................................................................185
4.18光伏效應................................................................................................186
4.18-1開路電壓與短路電流密度....................................................186
4.18-2 p-n junction 模型擬合............................................................188
4.18-3轉換效率與外部量子轉換效率...........................................195
第五章 結論.........................................................................................................201
(a).Nd取代濃度控制.........................................................................................201
(b).氣氛比例控制................................................................................................203
參考資料................................................................................................................206

[1]N. A. Spaldin, M. Fiebig, “The Renaissance of Magnetoelectric Multiferroics”, Science 309, 391-392 (2005).
[2]王子翔, “(Ba,Ti)取代之BiFeO3複鐵性陶瓷的製程與分析”, 天主教輔仁大學應用科學與工程研究所博士論文 (2011).
[3]J. R. Teague, R. Gerson, W. J. James, “Dielectric hysteresis in single crystal BiFeO3”, Solid State Commun. 8, 1073-1074 (1970).
[4]G. A. Smolenskiĭ, I. E. Chupis, “Ferroelectromagnets”, Sov. Phys. Usp. 25, 475-493 (1982).
[5]R. Mazumder, S. Ghosh, P. Mondal, D. Bhattacharya, S. Dasgupta, N. Das, A. Sen, A. K. Tyagi, M. Sivakumar, T. Takami, H. Ikuta,“Particle size dependence of magnetization and phase transition near TN in multiferroic BiFeO3”, J. Appl. Phys. 100, 033908 (2006).
[6]M. Mahesh Kumar, V. R. Palkar, K. Srinivas, S. V. Suryanarayana, “Ferroelectricity in a pure BiFeO3 ceramic”, Appl. Phys. Lett. 76, 2764 (2000).
[7]J.-C. Chen, J.-M. Wu, “Dielectric properties and ac conductivitiesof dense single-phased BiFeO3 ceramics”, Appl. Phys. Lett. 91, 182903 (2007).
[8]B. Ramachandran, M. S. Ramachandra Rao, “Low temperature magnetocaloric effect in polycrystalline BiFeO3 ceramics”, Appl. Phys. Lett. 95, 142505 (2009).
[9]J. M. Moreau, C. Michel, R. Gerson, W. J. James, “Ferroelectric BiFeO3 X-ray and neutron diffraction study”, J. Phys. Chem. Solids 32, 1315-1320 (1971).
[10]R. T. Smith, G. D. Achenbach, R. Gerson, W. J. James, “Dielectric Properties of Solid Solutions of BiFeO3 with Pb(Ti, Zr)O3 at High Temperature and High Frequency”, J. Appl. Phys. 39, 70 (1968).
[11]Wikipedia , “Electronegativity”, Wikipedia <https://en.wikipedia.org/wiki/Electronegativity>
[12]C. Ederer, N. A.Spaldin,“Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite”, Phys. Rev. B 71, 060401(R) (2005).
[13]F. Keffer, “ Moriya Interaction and the Problem of the Spin Arrangements in βMns”, Phys. Rev. 126, 896-900 (1962).
[14]S.-W. Cheong, M. Mostovoy, “Multiferroics: a magnetic twist for ferroelectricity”, Nature Materials 6, 13 (2007).
[15]University of Oslo Theoretical Activity in Solid state Chemistry and Material Science,Activities, “Types of spin ordering in perovskite oxides”, University of Oslo Theoretical Activity in Solid state Chemistry and Material Science, Activities <https://folk.uio.no/ravi/activity/ordering/spinfig.html>
[16]Wikipedia, “Antisymmetric exchange”, Wikipedia <https://en.wikipedia.org/wiki/Antisymmetric_exchange>
[17]T. Choi, S. Lee, Y. J. Choi, V. Kiryukhin, S.-W. Cheong, “Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3”, Science 324, 63 (2009).
[18]W. Ji, K. Yao, Y. C. Liang, “Bulk Photovoltaic Effect at Visible Wavelength in Epitaxial Ferroelectric BiFeO3 Thin Films”, Adv. Mater. 22, 1763 (2010).
[19]S. Y. Yang, L. W. Martin, S. J. Byrnes, T. E. Conry, S. R. Basu, D. Paran, L. Reichertz, J. Ihlefeld, C. Adamo, A. Melville, Y.-H. Chu, C.-H. Yang, J. L. Musfeldt, D. G. Schlom, J. W. Ager III, R. Ramesh,“Photovoltaic effects in BiFeO3”, Appl. Phys. Lett. 92, 222901 (2008).
[20]C. Wang, K.-J. Jin, Z.-T. Xu, L. Wang, C. Ge, H.-B. Lu, H.-Z. Guo, M. He, G. zhen Yang, “Switchable diode effect and ferroelectric resistive switching in epitaxial BiFeO3 thin films”, Appl. Phys. Lett. 98, 192901 (2011).
[21]H. T. Yi, T. Choi, S. G. Choi, Y. S. Oh, S.-W. Cheong, “Mechanism of the Switchable Photovoltaic Effect in Ferroelectric BiFeO3”, Adv. Mater. 23, 3403-3407 (2011).
[22]C.-S. Tu, C.-M. Hung, V. H. Schmidt, R. R. Chien, M.-D. Jiangand, J. Anthoninappen,“The origin of photovoltaic responses in BiFeO3 multiferroic ceramics”, J. Phys. Condens Matter 24, 495902 (2012).
[23]顏維德, “摻雜奈米鈷之複鐵性BiFeO3陶瓷之光伏效應與結構研究”, 天主教輔仁大學物理系碩士論文 (2014).
[24]C. S. Tu, C.-M. Hung, Z.-R. Xu, V. H. Schmidt, Y. Ting, R. R. Chien, Y.-T. Peng, J. Anthoninappen, “Calcium-doping effects on photovoltaic response and structure in multiferroic BiFeO3 ceramics”, J. Appl. Phys. 114, 124105 (2013).
[25]C.-S. Tu, Z.-R. Xu, V. H. Schmidt, T.-S. Chan, R. R. Chien, Hyungbin Son, “A-site strontium doping effects on structure, magnetic, and photovoltaic properties of(Bi1-xSrx)FeO3-δ multiferroic ceramics”, Ceram. Int. 41, 8417–8424 (2015).
[26]C.-M. Hung, C. S. Tu, Z.-R. Xu, L.-Y. Chang, V. H. Schmidt, R. R. Chien, W. C. Chang, “Effect of diamagnetic barium substitution on magnetic and photovoltaic properties in multiferroic BiFeO3”, J. Appl. Phys. 115, 17D901 (2014).
[27]C.‐S. Tu, C.‐S. Chen, P.‐Y. Chen, Z.‐R. Xu, Y. U. Idzerda, V. H. Schmidt, M.‐Q. Lyu, T.‐S. Chan, C.‐Y. Lin, “Raman Vibrations, Domain Structures, and Photovoltaic Effects in A‐Site La‐Modified BiFeO3 Multiferroic Ceramics”, J. Am. Ceram. Soc. 99, 674–681 (2016).
[28]C.-S. Tu, C.-S. Chen, P.-Y. Chen, H.-H. Wei, V. H. Schmidt, C.-Y. Lin, J. Anthoniappen, J.-M. Lee, “Enhanced photovoltaic effects in A-site samarium doped BiFeO3 ceramics: The roles of domain structure and electronic state”, J. Eur. Ceram. Soc. 36, 1149-1157 (2016).
[29]L.-Y. Chang, C.-S. Tu, P.-Y. Chen, C.-S. Chen, V. H. Schmidt, H.-H. Wei, D.-J. Huang, T.-S. Chan, “Raman vibrations and photovoltaic conversion in rare earth doped (Bi0.93RE0.07)FeO3 (RE=Dy, Gd, Eu, Sm) ceramics”, Ceram. Int. 42, 834-842 (2016).
[30]D. J. Griffiths, “Introduction to Electrodynamics”, 3rd edition (2008).
[31]V. S. Filip’ev, I. P. Smol’yaninov, E. G. Fesenko, I. I. Belyaev, Kristallografiya 5, 958 (1960).
[32]F. Kubel, H. Schmid, “Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3”, Acta Cryst. B 46, 698-702 (1990).
[33]J. D. Bucci, B. K. Robertson,W. J. James, “The precision determination of the lattice parameters and the coefficients of thermal expansion of BiFeO3” J. Appl. Cryst. 5, 187-191 (1972).
[34]崔洪亮, 于淼, 常天英, 陳建冬, 趙恩才, 鄭妍, 劉野, 周天水, “應用於海洋環境和海洋工程的光纖傳感技術 ”,吉林大學學報(地球科學版), 47(1): 279-293 (2017).
[35]新竹國家同步輻射研究中心, “同步加速器光源簡介”, 新竹國家同步輻射研究中心 <https://www.nsrrc.org.tw/chinese/lightsource.aspx>
[36]詹丁山, “X光吸收光譜原理簡介 ”, 新竹國家同步輻射研究中心X光吸收光譜數據分析研習營 (2010).
[37]李志甫, “X光吸收光譜 ”, 國家實驗研究院儀器科技研究中心, 儀器總覽 (1998).
[38]黃偉豪, “不同磁場條件下成長摻鋁氧化鋅透明導電膜電子與原子結構研究 ”, 國立高雄大學應用物理學系碩士班碩士論文(2011).
[39]李志甫, “Structures of Hard Matters(Introduction to X-ray Absorption Spectroscopy)”, 新竹國家同步輻射研究中心先進光源暑期科學實習 (2014).
[40]陳棟樑, “XANES譜及分析基礎”, 北京同步輻射裝置X射線吸收譜學實驗和數據處理講習班 (2014).
[41]詹丁山, “Atoms 及 Feff 程式教學 ”, 新竹國家同步輻射研究中心2017年X光吸收光譜暑期訓練營 (2017).
[42]孫治湖, “EXAFS數據擬合程序Artemis”, 中國科技大學國家同步輻射實驗室(2011).
[43]詹丁山, “數據分析步驟簡介”, 新竹國家同步輻射研究中心 2017年X光吸收光譜暑期訓練營 (2017).
[44]詹丁山, “X光吸收光譜應用範例 ”, 新竹國家同步輻射研究中心X光吸收光譜數據分析研習營 (2010).
[45]李志甫, “X光吸收光譜數據分析步驟 ”, 新竹國家同步輻射研究中心X光吸收光譜數據分析研習營 (2010).
[46]E. A. Stern, D. E. Sayers, F. W. Lytle, “Extended x-ray-absorption fine-structure technique. III. Determination of physical parameters”, Phys. Rev. B 11, 4836-4846 (1975).
[47]陳政龍, “Artemis程式教學 ”, 新竹國家同步輻射研究中心2017年X光吸收光譜暑期訓練營 (2017).
[48]林灯祺, “複鐵性BiFeO3陶瓷之結構相變與摻BaTiO3效應”, 天主教輔仁大學物理學系碩士論文 (2011).
[49]李永強,“含鐵之磁性奈米粒在細胞標示上的研究 ”, 國立中正大學物理研究所碩士論文 (2004).
[50]國立彰化師範大學物理所陳建淼研究生,國立彰化師範大學物理學系洪連輝教授, “磁性物質 (Magnetic Materials)”, 科學online-高瞻自然科學教學資源平台.
[51]SIMOTEC, “Magnetic Domain”, SIMOTEC <http://www.simotecthailand.co.th/en/knowledge11.html>
[52]S. O. Kasap, “Principles of Electronic Materials and Device”, 3rd edition (2007).
[53]維基百科, “價帶”, 維基百科 <https://zh.wikipedia.org/wiki/價帶>
[54]Charles Kittel, “Introduction to Solid State Physics”, 8th edition (2005).
[55]R. Bhatt, I. Bhaumik, S. Ganesamoorthy, A. K. Karnal, M. K. Swami, H. S. Patel, P. K. Gup, “Urbach tail and bandgap analysis in near stoichiometric LiNbO3 crystals”, Physics Status Solidi A 209, 176-180 (2012).
[56]M. Elahi, D. Souri, “Study of optical absorption and optical band gap determination of thin amorphous TeO2-V2O5-MoO3 blown films”, Indian Journal of Pure & Applied Physics 44, 468-472 (2006).
[57]蔡進譯, “超高效率太陽電池⎯從愛因斯坦的光電效應談起”, 物理雙月刊廿七卷五期, 701-719 (2005).
[58]維基百科, “太阳光” , 維基百科 <https://zh.wikipedia.org/wiki/太阳光>
[59]Wikipedia, “p-n junction”, Wikipedia <https://en.wikipedia.org/wiki/P–n_junction>
[60]孫允武, “半導體物理與元件第三章-二極體原理及電路模型”,中興大學物理系.
[61]Wikimedia Commons, “Band Diagram Solar Cell”, Wikimedia Commons <https://commons.wikimedia.org/wiki/File:BandDiagramSolarCell-en.png>
[62]W. S. Chang, C.-S. Tu, P.-Y. Chen, C.-S. Chen, C.-Y. Lin, K.-C. Feng, Y. L. Hsieh, Y. H. Huang, “Effects of Fe 3d–O 2p and Bi 6sp–O 2p orbital hybridizations in Nd doped BiFeO3 ceramics”, J. Alloy. Compds. 710, 670-679 (2017).
[63]Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Chen, J.-M. Liu, Z. G. Liu, “Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering”, Appl. Phys. Lett. 84, 1731 (2004).
[64]Z. M. Tian, S. L. Yuan, X. L. Wang, X. F. Zheng, S. Y. Yin, C. H. Wang, L. Liu, “Size effect on magnetic and ferroelectric properties in Bi2Fe4O9 multiferroic ceramics”, J. Appl. Phys. 106, 103912 (2009).
[65]西得科技有限公司, “石英特性數據表”,西得科技有限公司.
[66]Wikipedia , “Scanning electron microscope”, Wikipedia
<https://en.wikipedia.org/wiki/Scanning_electron_microscope>
[67]Semrock, “Filter Types for Raman Spectroscopy Applications”, Semrock <https://www.semrock.com/filter-types-for-raman-spectroscopy-applications.aspx >
[68]新竹國家同步輻射研究中心, “BL20A1 Original Design Information”, 新竹國家同步輻射研究中心
<http://efd.nsrrc.org.tw/manage/fck_fileimage/file/bldoc/20AHSGM.htm>
[69]新竹國家同步輻射研究中心, “BL01C1 Original Design Information”, 新竹國家同步輻射研究中心
<http://efd.nsrrc.org.tw/manage/fck_fileimage/file/bldoc/01CSWLSDCM.htm>
[70]詹丁山, “進行X光吸收光譜實驗之注意事項, X光吸收光譜數據分析概念介紹, BL01C1光束線操作手冊簡介 ”, 新竹國家同步輻射研究中心 (2009).
[71]Wikipedia, “Vibrating-sample magnetometer”, Wikipedia
<https://en.wikipedia.org/wiki/Vibrating-sample_magnetometer >
[72]江明達, “複鐵性BFO陶瓷之光伏效應與分析 ”, 天主教輔仁大學物理系碩士論文 (2013).
[73]P. Patnaik, “Handbook of Inorganic Chemicals”, McGraw-Hill (2003).
[74]T. Noguchi, M. Mizuno, “Freezing points of lanthanides oxides measured with a solar furnace”, Solar Energy 11, 90-94 (1967).
[75]R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides”, Acta Cryst. A 32, 751-767(1976).
[76]D. C. Arnold, K. S. Knight, F. D. Morrison, P. Lightfoot, “Ferroelectric-Paraelectric Transition in BiFeO3: Crystal Structure of the Orthorhombicβ Phase”, Phys. Rev. Lett. 102, 027602 (2009).
[77]S. Karimi, I. M. Reaney, I. Levin, I. Sterianou, “Nd-doped BiFeO3 ceramics with antipolar order”, Appl. Phys. Lett. 94, 112903 (2009).
[78]J.-Y. Xia, M.-T. Tang, C. Chen, S.-M. Jin, Y.-M. Chen, “Preparation of α-Bi2O3 from bismuth powders through low-temperature oxidation” Transactions of Nonferrous Metals Society of China 22, 2289-2294 (2012).
[79]R. M. Tahboub, M. E. Guindy, H. D. Merchant. “Oxidation kinetics of bismuth and its dilute alloys”. Oxidation of Metals 13, 545–556 (1979).
[80]A. M. Kadomtseva, A. K. Zvezdin, Yu. F. Popov, A. P. Pyatakov, G. P. Vorob’ev, “Space–Time Parity Violation and Magnetoelectric Interactions in Antiferromagnets”, JETP LETTERS 79, 571–581 (2004).
[81]P. Hermet, M. Goffinet, J. Kreisel, Ph. Ghosez , “Raman and infrared spectra of multiferroic bismuth ferritefrom first principles”, Phys. Rev. B 75, 220102(R) (2007).
[82]J. Hlinka, J. Pokorny, S. Karimi, I. M. Reaney, “Angular dispersion of oblique phonon modes in BiFeO3 from micro-Raman scattering”, Phys. Rev. B 83, 020101R (2011).
[83]J. Bielecki, P. Svedlindh, D. T. Tibebu, S. Cai, S.-G. Eriksson, L. Börjesson, C. S. Knee, “Structural and magnetic properties of isovalently substituted multiferroic BiFeO3: insights from Raman spectroscopy”, Phys. Rev. B 86, 184422 (2012).
[84]K. Sinha, A. Mascarenhas, G. S. Horner, K. A. Bertness, S. R. Kurtz, J. M. Olson, “ Raman line-shape analysis of random and spontaneously ordered GaInP2 alloy”, Phys. Rev. B 50, 7509-7513 (1994).
[85]J.-H. Lee, H. J. Choi, D. Lee, M. G. Kim, C. W. Bark, S. Ryu, M.-A. Oak, H. M. Jang, “Variations of ferroelectric off-centering distortion and 3d-4p orbital mixing in La-doped BiFeO3 multiferroics”, Phys. Rev. B 82, 045113 (2010).
[86]L. A. Grunes, “Study of the K edges of 3d transition metals in pure and oxide form by x-ray-absorption spectroscopy”, Phys. Rev. B 27, 2111-2131 (1983).
[87]T. E. Westre, P. Kennepohl, J. G. DeWitt, B. Hedman, K. O. Hodgson, E. I. Solomon, “A multiplet analysis of Fe K-Edge 1s→3d pre-edge features of iron complexes”, J. Am. Chem. Soc. 119, 6297-6314 (1997).
[88]J.-B. Li, G. H. Rao, Y. Xiao, J. K. Liang, J. Luo, G. Y. Liu, J. R. Chen, “Structural evolution and physical properties of Bi1-xGdxFeO3 ceramics”, Acta Mater. 58, 3701-3708 (2010).
[89]T. Higuchi, W. Sakamoto, N. Itoh, T. Shimura, T. Hattori, T. Yogo, “Valence state of Mn-doped BiFeO3-BaTiO3 ceramics probed by soft X-ray absorption spectroscopy”, Appl. Phys. Express 1, 011502 (2008).
[90]N. Panwar, I. Coondoo, V. Sen, S. K. Agarwal, “Advances in Ceramics-electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment”, Chapter 13,(Structural, Morphological, Magneto-transport and Thermal Properties of Antimony Substituted (La,Pr)2/3Ba1/3Mn1-xSbxO3 Perovskite Manganites), InTech Press, pp. 307-328(2011).
[91]T. Higuchi, Y.-S. Liu, P. Yao, P.-A. Glans, J. Guo, C. Chang, Z. Wu, W. Sakamoto, N. Itoh, T. Shimura, T. Yogo, T. Hattori, “Electronic structure of multiferroic BiFeO3 by resonant soft x-ray emission spectroscopy”, Phys. Rev. B 78, 085106 (2008).
[92]J. R. Hayes, A. P. Grosvenor, “An x-ray absorption spectroscopic study of the electronic structure and bonding of rare-earth orthoferrites”, J. Phys. Condens Matter 23, 465502 (2011).
[93]F. M. F. de Groot, M. Grioni, J. C. Fuggle, J. Ghijsen, G. A. Sawatzky, H. Petersen,“Oxygen 1s x-ray-absorption edges of transition-metal oxides”, Phys. Rev. B 40, 5715-5723 (1989).
[94]Z. Y. Wu, S. Gota, F. Jollet, M. Pollak, M. Gautier-Soyer, C. R. Natoli, “Characterization of iron oxides by x-ray absorption at the oxygen K edge using a full multiple-scattering approach”, Phys. Rev. B 55, 2570-2577 (1997).
[95]Y. Ma, P. D. Johnson, N. Wassdahl, J. Guo, P. Skytt, J. Nordgren, S. D. Kevan, J. Rubensson, T. Böske, W. Eberhardt, “Electronic structures of α-Fe2O3 and Fe3O4 from O K-edge absorption and emission spectroscopy”, Phys. Rev. B Condens Matter. 48, 2109-2111 (1993).
[96]C. J. Ballhausen, “Introduction to Ligand-field Theory”, McGraw-Hill(1962).
[97]M. Abbate, F. M. F. de Groot, J. C. Fuggle, A. Fujimori, O. Strebel, F. Lopez, M. Domke, G. Kaindl, G. A. Sawatzky, M. Takano, Y. Takeda, H. Eisaki, S. Uchida, “Controlled-valence properties of La1-xSrxFeO3 and La1-xSrxMnO3 studied by soft-x-ray absorption spectroscopy”, Phys. Rev. B 46, 4511-4519 (1992).
[98]國立臺灣大學化學系學士生張育唐/國立臺灣大學化學系陳藹然博士, “遞建原理(Aufbau Principle)”,科學online-高瞻自然科學教學資源平台.
[99]K.-T. Ko, M. H. Jung, Q. He, J. H. Lee, C. S. Woo, K. Chu, J. Seidel, B.-G. Jeon, Y. S. Oh, K. H. Kim, W.-I. Liang, H.-J. Chen, Y.-H. Chu, Y. H. Jeong, R. Ramesh, J.-H. Park, C.-H. Yang, “Concurrent transition of ferroelectric and magnetic ordering near room temperature”, Nature Communications 2, 567 (2011).
[100]A. Ablat, M. Mamat, R. Wu,Y. Ghupur,T. Gholam, E. Muhemmed, J. Wang, H. Qian, R. Wu, K. Ibrahim, “An in situ resonant photoemission and x-ray absorption study of the BiFeO3 thin film”, Ceram. Int. 42, 10624-10630 (2016).
[101]A. Y. Borisevich, E. A. Eliseev, A. N. Morozovska, C.-J. Cheng, J.-Y. Lin, Y. H. Chu, D. Kan, I. Takeuchi, V. Nagarajan ,S.V. Kalinin, “Atomic-scale evolution of modulated phases at the ferroelectric-antiferroelectric morphotropic phase boundary controlled by flexoelectric interaction”, Nat. Commun. 3, 775 (2012).
[102]T. R. Paudel, S. S. Jaswal, E. Y. Tsymbal, “Intrinsic defects in multiferroic BiFeO3 and their effect on magnetism”, Phys. Rev. B 85, 104409 (2012).
[103]J. B. Goodenough, “Magnetism and the Chemical Bond”, Wiley, New York, 1963, pp. 174-178.
[104]S. J. Clark, J. Robertson. “Energy levels of oxygen vacancies in BiFeO3 by screened exchange”, Appl. Phys. Lett. 94, 022902 (2009).
[105]R. Bhatt, I. Bhaumik, S. Ganesamoorthy, A. K. Karnal, M. K. Swami, H. S. Patel, P. K. Gupta, “Urbach tail and bandgap analysis in near stoichiometric LiNbO3 crystals”, Physics Status Solidi A. 209, 176-180 (2012).
[106]W. Shockley, H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells”, J. Appl. Phys. 32, 510–519 (1961).
[107]H. Kim and C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, D. B. Chrisey, “ Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices”, J. Appl. Phys. 86, 6451-6461 (1999).
[108]G. Giusti, J. Bowen, Q. Ramasse, G. Rey, E. Blackburn, L. Tian, I. P. Jones, J. S. Abell,“Dielectric properties of pulsed-laser deposited indium tin oxide thin films”, Thin Solid Films 524, 249-256 (2012).
[109]F. Zhang, W. Ma, H. Guo, Y. Zhao, X. Shan, K. Jin, H. Tian, Q. Zhao, D. Yu, X. Lu, G. Lu, S. Meng, “Interfacial oxygen vacancies as a potential cause of hysteresis in perovskite solar cells”, Chem. Mater. 28, 802-812 (2016).
[110]李雲凱,周張健, “陶瓷及其複合材料(Ceramics and Composites of Ceramic Materials)”, 北京理工大學出版社 (2007).
[111]J. A. McLeod, Z. V. Pchelkina, L. D. Finkelstein, E. Z. Kurmaev, R. G. Wilks, A. Moewes, I. V. Solovyev, A. A. Belik, E. Takayama-Muromachi,“ Electronic structure of BiMO3 multiferroics and related oxides”, Phys. Rev. B 81, 144103 (2010).
[112]S. Ju, T. Y. Cai,“ First-principles studies of the effect of oxygen vacancies on the electronic structure and linear optical response of multiferroic BiFeO3”, Appl. Phys. Lett. 95, 231906 (2009).
[113]F. Zhang, W. Ma, H. Guo, Y. Zhao, X. Shan, K. Jin, H. Tian, Q. Zhao, D. Yu, X. Lu, G. Lu, S. Meng,“Interfacial oxygen vacancies as a potential cause of hysteresis in perovskite solar cells”, Chem. Mater. 28, 802-812 (2016).
[114]I. Visoly-Fisher, S. R. Cohen, K. Gartsman, A. R. D. Cahen, “Understanding the Beneficial Role of Grain Boundaries in Polycrystalline Solar Cells from Single-Grain- Boundary Scanning Probe Microscopy”, Adv. Funct. Mater. 16, 649-660 (2006).
[115]J. Y. W. Seto, “The electric properties of polycrystalline silicon films”, J. Appl. Phys. 46, 5247 (1975).
[116]孫允武, “半導體概論-半導體物理簡介”,中興大學物理系.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊