跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/22 13:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳軍邑
研究生(外文):Chen Chun-Yi
論文名稱:低分子量幾丁聚醣/牛至精油/PLA複合薄膜物理特性及抗菌包裝應用
論文名稱(外文):Physical properties of low molecular weight chitosan /Oregano essential oil/PLA composite film and its antimicrobial packaging application
指導教授:陳政雄陳政雄引用關係
指導教授(外文):Shuan Chen
口試委員:蔣丙煌馮臨惠劉佳玲
口試日期:2017-10-15
學位類別:碩士
校院名稱:輔仁大學
系所名稱:食品科學系碩士班
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:124
中文關鍵詞:抗菌包裝幾丁聚醣聚乳酸酯纖維素酶牛至精油
外文關鍵詞:antimicrobial packagingchitosanPLAcellulaseoregano essential oil
相關次數:
  • 被引用被引用:1
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
輔仁大學一百零四學年度第二學期碩士論文
系 (所) 別: 食品科學系
論文名稱: 低分子量幾丁聚醣/牛至精油/PLA複合薄膜物理特性及抗菌包裝應用
指導教授: 陳政雄 博士
摘要
幾丁聚醣(chitosan)為幾丁質經去乙醯化(deacetylation)後的生物聚合物,廣泛應用於抗菌包裝材料。本研究探討生物具生物降解性聚乳酸酯(PLA)作為基底,配合幾丁聚醣及牛至精油製成生物性抗菌薄膜,並探討幾丁聚醣分子量及牛至精油共同添加至複合膜之物理及抗菌能力影響。研究利用纖維素酶進行對市售幾丁聚醣降解,再以流變儀測定其黏度,並經由黏度法計算其平均分子量。水解之幾丁聚醣會與牛至精油共同添加至PLA中製備複合膜。後續測試複合膜通透性、機械強度、穩定性等理化特性,並探討抗菌物質釋放程度及對常見食品腐敗菌之抑制性,以評估複合膜於生鮮肉品包裝應用性。實驗結果顯示,以纖維素酶水解幾丁聚醣能使分子量有效降低,以1 g/mL (≥ 0.3 units/mg solid)纖維素酶水解30分鐘能使分子量降至10 kDa以下,而以0.1及0.01 g/100 mL (≥ 0.3 units/mg solid) 纖維素酶水解幾丁聚醣,分子量分別降至15 ± 5,30 ± 7 kDa及低於 10 kDa。而復合膜機械特性則會受幾丁聚醣添加量及分子量影響,添加分子量大小30 ± 7 kDa之幾丁聚醣 1%及3%至複合膜中,能使薄膜維持較好之延展性,分別為174.28 ± 27.67及66.41 ± 16.16%。水氣滲透率測試以含3%分子量30 kDa幾丁聚醣之複合膜具有最好之阻隔性,相較於純聚乳酸酯薄膜,水氣滲透可由6.78±0.39下降至2±0.37 g/m2/day。在抗菌活性測定中,以5% 之分子量為30 kDa之幾丁聚醣及1%牛至精油添加至複合膜中具有最好之抗菌活性,對沙門氏菌及李斯特菌皆有抑制環產生。將複合膜應用於雞胸肉之包裝中,測試複合模對於肉品冷藏期間內李斯特菌之抑制性,結果顯示於24小時內添加5%之幾丁聚醣及1%牛至精油+9% PEG之複合膜可使菌數降至0.01±0.01 log CFU/g,並於72小時內總菌數仍可保持0.5log值以下。本研究中之抗菌複合膜能維持包材之機械強度,且提供天然抗菌包裝選擇。

關鍵字: 抗菌包裝、幾丁聚醣、聚乳酸酯、纖維素酶、牛至精油

Abstract

Antimicrobial packaging is a packaging material that incorporates with antimicrobial agents by blending, and further releases antimicrobial compounds onto food surface. The objectives of this study were to investigate the effect of physical properties and antimicrobial activity of chitosan/oregano essential oil/PLA composite film composing of low molecular weights of chitosan and oregano essential oil. Cellulase was used to depolymerize chitosan, then, the hydrolyzed compounds were subjected to rheometer for determination of molecular weight. Those chitosan substances were blended with PLA and oregano essential oil to fabricate packaging film. The physicoehmcial properites of active film, including stability, permeability, mechanical properties were determined, and further subjected to evaluate antimicrobial activity for food package application. The results showed that use of 0.01, 0.1 and 1g /mL(≥ 0.3 units/mg solid) cellulase to hydrolyze commercial chitosan led to decrease molecular weight to 15 ± 5, 30 ± 7 kDa and less than 10KDa, respectively. With 1% and 3% 30 kDa chitosan added into composite film, elongation was determined as 174.28 ± 27.67 and 66.41 ± 16.16%, respectively, what did not cuase any changes in elongation. The composite film with 3% 30 kDa chitosan resulted a reduction in water vapor permeability from 6.78 ± 0.39 to 2 ± 0.37 g/m2/day. Compared to PLA alone, the composite films containing 5% 30 kDa chitosan and 1% oregano oil associated with 9% PEG showed the greater antimicrobial activity on Salmonella and Listeria monocytogenes, based on inhibitory zone assay. The composite films was subscequently applied to fresh chicken breast packaging and analyzed the inhibition of Listeria monocytogenes during storage. Results showed that 1% OEO/9% PEG/5%CH/PLA film decreased Listeria monocytogenes to 0.01±0.01 log CFU/g, and maintained cells less than 0.5 log after 72 hr. The composite film developed in the present study is beneficial to an application of antimicrobial packaging with mechanical strength and biodegradable properties.

Keyword: antimicrobial packaging, chitosan, PLA, cellulase, oregano essential oil


目錄
一.前言 1
二.文獻回顧 4
一. 活性包裝 4
二. 幾丁聚糖 8
(一) 來源及特性 8
(二) 幾丁聚醣水解 11
(三) 抗菌活性 13
(四) 幾丁聚醣成模特性 18
三. 牛至精油 23
四. 聚乳酸酯 28
三.材料與方法 38
一、 儀器與材料 38
(一) 化學藥品 38
(二) 儀器設備 38
二、實驗架構 40
三、試驗方法 41
四.結果與討論 50
一.水解幾丁聚醣分子量測定 50
二.複合膜抑菌能力測試 54
三.複合膜機械性質 60
四.複合膜穩定性分析 70
(一) 吸水性 70
(二) 降解性 72
五.複合膜通透性分析 74
(一)水蒸氣滲透率(Water vapor permeation; WVP) 74
(二) 氧氣穿透率(OTR; Oxygen transmition rate) 76
六.包材轉移性 78
(一) 幾丁聚醣釋放程度 78
(二) 牛至精油釋放程度 93
七.食品包裝應用 98
五.結論 106
六.參考文獻 108


林宜美。2002。幾丁質摻合聚乳酸酯微粒於藥物釋放系統之研究。國立中央大學化學工程與材料工程研究所 碩士論文。桃園縣。
林怡君。2007。以酵素法產製之幾丁聚醣水解物特性及其抗菌活性之研究。國立宜蘭大學食品科學系 碩士論文。宜蘭縣。
范宜婷。2015。幾丁聚醣/牛至精油之生物降解性薄膜物理及抗菌性質之探討。天主教輔仁大學食品科學系 碩士論文。新北市。
宮紹凱。2008。不同品系金黃色葡萄球菌與大腸桿菌對低分子量幾丁聚醣敏感差異性及抗菌機制初步研究。國立宜蘭大學食品科學系 碩士論文。宜蘭縣。
Aljawish A, Muniglia A, Klouj A, Jasniewski A, Scher J, Desobry S. 2016. Characterization of films based on enzymatically modified chitosan derivatives with phenol compounds. Food Hydrocolloids 60: 551-8.
Aranaza I, Harrisa R, Navarro-Garcíab F, Herasa A, Acostaa N. 2016. Chitosan based films as supports for dual antimicrobial release. Carbohydr Polym 146: 402-10.
Bastarrachea L, Dhawan S, Sablani S. 2011. Engineering properties of polymeric-based antimicrobial films for food packaging. Food Eng Rev 3: 79-93.
Bedane A, Eic M, Farahani M, Xiao H. 2015. Water vapor transport properties of regenerated cellulose and nano fibrillated cellulose films. J Membr Sci 493: 46-57.
Bonilla J, Fortunati E, Vargas M, Chiralt A, Kenny J.M. 2013. Effects of chitosan on the physicochemical and antimicrobial properties of PLA films. J Food Eng 119: 236-43.
Bonilla J, Sobral P. 2016. Investigation of the physicochemical, antimicrobial and antioxidant properties of gelatin-chitosan edible film mixed with plant ethanolic extracts. Food Biosci 16: 17-25.
Boyaci D, Korel F, Yemenicioglu A. 2016. Development of activate-at-home-type edible antimicrobial films: An example pH-triggering mechanism formed for smoked salmon slices using lysozyme in whey protein films. Food Hydrocolloid 60: 170-8.
Broek L, Knoop R, Kappen F, Boeriu C. 2015. Chitosan films and blends for packaging material. Carbohydr Polym 116: 237-42.
Carbone M, Donia DT, Sabbatella G, Antiochia R. 2016. Silver nanoparticles in polymeric matrices for fresh food packaging. J King Saud Univ Sci 28: 273-9.
Castro L, Mengibar M, Sanchez A, Arroyo L, Villaran C, Apodaca E, Heras A. 2016. Films of chitosan and chitosan-oligosaccharide neutralized and thermally treated: Effects on its antibacterial and other activities Food Sci Technol 73: 368-74.
Catiker E, Gumusderelioglu MF, Guner N. 2000. Degradation of PLA, PLGA homo- and copolymers in the presence of serum albumin: a spectroscopic investigation. Polym Int 49: 728-34.
Celikel N and Kavas G. 2008. Antimicrobial properties of some essential oils against some pathogenic microorganisms. Czech J Food Sci 26: 174-81.
Chang SH, Lin HT, Wu GJ, Tsai GJ. 2015. pH Effects on solubility, zeta potential, and correlation between antibacterial activity and molecular weight of chitosan. Carbohydr Polym 134: 74-81.
Chen Y, Li J, Li Q, Shen Y, Ge Z, Zhang W, Chen S. 2016. Enhanced water-solubility, antibacterial activity and biocompatibility upon introducing sulfobetaine and quaternary ammonium to chitosan. Carbohydr Polym 143: 246-53.
Cheng C, Chang KC. 2013. Development of immobilized cellulase through functionalized gold nano-particles for glucose production by continuous hydrolysis of waste bamboo chopsticks. Enz Microbiol Technol 53: 444-51.
Chien RC, Yen MT, Mau JL. 2016. Antimicrobial and antitumor activities of chitosan from shrimp compared to commercial chitosan from crab shells. Carbohydr Polym 138: 259-64
Conn RE, Kolstad JJ, Borzelleca JF, Dixler DS, Filer LJ, LaDu BN. 1995. Safety assessment of polylactide (PLA) for use as a food-contact polymer. Food Chem Toxicol 33: 273-83
Crizel TM, Costa TMH, Rios AO, Flores SH. 2016. Valorization of food-grade industrial waste in the obtaining active biodegradable films for packaging. Ind Crop Prod 87: 218-28.
Croce M, Conti S, Maake C, Patzke GR. 2016. Synthesis and screening of N-acyl thiolated chitosans for antibacterial applications. Carbohydr Polym 151: 1184-92.
Czechowska-Biskup R, Jarosińska D, Rokita B, Ulański P, Rosiak JM. 2012. Determination of degree of deacetylation of chitosan -comparison of methods. Progr Chem Appl Chitin Its Deriv 17: 5-20.
Dainelli D, Gontard N, Spyropoulos D, Beuken EZ, Tobback P. 2008. Active and intelligent food packaging: legal aspects and safety concerns. Food Sci Technol 19: 103-12.
Debevere J, Boskou G. 1996. Effect of modified atmosphere packaging on the TVB/TMA-producing microflora of cod fillets. Food Microbiol 31: 221-9.
Delgado A, Evora C, Llabres M. 1996. Optimization of 7-day release (in vitro) from DL-PLA methadone microspheres. Int J Pharm 134: 203-11.
Drumright RE, Ray E, Gruber PR, Henton DE. 2000. Polylactic acid technology. Adv Mater. 12: 1841-1846.
Elsabee MZ, Abdou ES. 2013. Chitosan based edible films and coatings: A review. Mater Sci Eng C 33: 1819-41.
Emiroglu ZK, Yemis GP, Coskun BK, Candogan K. 2010. Antimicrobial activity of soy edible films incorporated with thyme and oregano essential oils on fresh ground beef patties. Meat Sci 86: 283-8.
Erdohan ZO, Cam B, Turhan KN. 2013. Characterization of antimicrobial polylactic acid based films. J Food Eng 119: 308-15.
Farah S, Anderson DG, Langer R. 2016. Physical and mechanical properties of PLA, and their functions in widespread applications - A comprehensive review. Adv Drug Delivery Rev 104: 1-26.
Faria RR, Guerra RF, Neto LR, Motta LF, Franca E. 2016. Computational study of polymorphic structures of α- and β- chitin and chitosan in aqueous solution. J Mol Graphics Model 63: 78-84.
Fernandez-Pan I, Mate IJ, Gardrat C, Coma V. 2015. Effect of chitosan molecular weight on the antimicrobial activity and release rate of carvacrol-enriched films. Food Hydrocolloids 51: 60-8.
Fernandez-Saiz P, Lagaron JM, Hernandez-Muñoz P, Ocio MJ. 2008. Characterization of antimicrobial properties on the growth of S. aureus of novel renewable blends of gliadins and chitosan of interest in food packaging and coating applications. Int J Food Microbiol 124: 13-20.
Gamage GR, Park HJ, Kim KM. 2009. Effectiveness of antimicrobial coated oriented polypropylene/polyethylene films in sprout packaging. Food Res Int 42: 832-9.
Gao H, Fang X, Chen H, Qin Y, Xu F, Jin TZ. 2017. Physiochemical properties and food application of antimicrobial PLA film. Food Control 73: 1522-31.
Ghaani M, Cozzolino CA, Castelli G, Farris S. 2016. An overview of the intelligent packaging technologies in the food Sector. Trends Food Sci Technol 51: 1-11.
Gherardi R, Becerril R, Nerin C, Bosetti O. 2016. Development of a multilayer antimicrobial packaging material for tomato puree using an innovative technology. LWT-Food Sci Technol 72: 361-7.
Giannakas A, Vlacha M, Salmas C, Leontiou A, Katapodis P, Stamatis H, Barkoula NM, Ladavos A. 2016. Preparation, characterization, mechanical, barrier and antimicrobial properties of chitosan/PVOH/clay nanocomposites. Carbohydr Polym 140: 408-15.
Goy RC, Britto D, Assis OBG. 2009. A Review of the antimicrobial activity of chitosan. Polym Sci Technol 19: 241-7.
Goy RC, Morais STB, Assis OBG. 2016. Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Brazil J Farmacogn 26: 122-7.
Guo M, Jin TZ, Wang L, Scullen OJ, Sommers CH. 2014. Antimicrobial films and coatings for inactivation of Listeria innocua on ready-to-eat deli turkey meat. Food Control 40: 64-70.
Hafsa J, Smach MA, Khedher MRB, Charfeddine B, Limem K, Majdoub H, Rouatbi S. 2016. Physical, antioxidant and antimicrobial properties of chitosan films containing Eucalyptus globulus essential oil. LWT-Food Sci Technol 68: 356-64.
Helander IM, Nurmiaho-Lassila EL, Ahvenainen R, Rhoades J, Roller. 2001. Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria Int J Food Microbiol 71: 235-44.
Hosseinnejad M, Jafari SM. 2016. Evaluation of different factors affecting antimicrobial properties of chitosan. Int J Biol Macromol 85: 467-75.
Hui G, Liu W, Feng H, Li J, Gao Y. 2016. Effects of chitosan combined with nisin treatment on storage quality of large yellow croaker (Pseudosciaena crocea). Food Chem 203: 276-82.
Isabelle P, Nicolas M, Yves G. 2006. Thermo-mechanical characterization of plasticized PLA. Polym 47: 4676-82.
Janjarasskul T, Tananuwong K, Kongpensook V, Tantratian S, Kokpol S. 2016. Shelf life extension of sponge cake by active packaging as an alternative to direct addition of chemical preservatives. LWT-Food Sci Technol 72: 166-74.
Javidi Z, Hosseini SF, Rezaei M. 2016. Development of flexible bactericidal films based on poly(lactic acid) and essential oil and its effectiveness to reduce microbial growth of refrigerated rainbow trout. LWT-Food Sci Technol 72: 251-60.
Jongsri P, Wangsomboondee T, Rojsitthisak P, Seraypheap K. 2016. Effect of molecular weights of chitosan coating on postharvest quality and physicochemical characteristics of mango fruit. LWT-Food Sci Technol 73: 28-36.
Jung J. 2013. New Development of β-Chitosan from Jumbo Squid Pens (Dosidicus gigas) and its Structural, Physicochemical, and Biological Properties. Oregon State University, Food Science and Technology, Doctor of Philosophy. Oregon, U.S.A.
Jovanovic GD, Klaus AS, Niksic MP. 2016. Antimicrobial activity of chitosan coatings and films against Listeria monocytogenes on black radish. Rev Argent Microbiol 48: 128-36.
Karamanlioglu M, Robson GD. 2013. The influence of biotic and abiotic factors on the rate of degradation of poly(lactic) acid (PLA) coupons buried in compost and soil. Polym Degrad Stabil 98: 2063-71.
Khalifa I, Barakat H, El-Mansy H, Soliman S. 2016. Enhancing the keeping quality of fresh strawberry using chitosan-incorporated olive processing wastes. Food Biosci 13: 69-75.
Khamsarn T, Supthanyakul R, Matsumoto M, Chirachanchai S. 2017. PLA with high elongation induced by multi-branched poly(ethyleneimine) (mPEI) containing polylactic acid (PLLA) terminals. Polym 112: 87-91.
Kirtil E, Oztop MH. 2016. Controlled and Modified Atmosphere Packaging. Mid East Tech U. Ankara, Turkey.
Klangmuang P, Sothornvit R. 2016. Barrier properties, mechanical properties and antimicrobial activity of hydroxypropyl methylcellulose-based nanocomposite films incorporated with Thai essential oils. Food Hydrocolloid 61: 609-16.
Koide SS. 1998. Chitin-chitosan: properties, benefits and risks. Center for Biomedical Research, Population Council, New York.
Kong M, Chen XG, Xing K, Park HJ. 2010. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int J Food Microbiol 144: 51-63.
Kumari S, Rath PK. 2014. Extraction and characterization of chitin and chitosan from (Labeo rohit) fish scales. Procedia Mater Sci 6: 482-9.
Lavoine N, Guillard V, Desloges I, Gontard N, Bras J. 2016. Active bio-based food-packaging: diffusion and release of active substances through and from cellulose nanofiber coating toward food-packaging design. Carbohydr Polym 149: 40-50.
Leceta I, Guerrero P, Caba K. 2013. Functional properties of chitosan-based films. Carbohydr Polym 93: 339-46.
Lee SJ, Rahman M. 2014. Intelligent Packaging for Food Products. Department of Food Science and Biotechnology, Dongguk University. Seoul, Korea.
Lei J, Yang L, Zhan Y, Wang Y, Ye T, Li Y, Deng H, Li B. 2014. Plasma treated polyethylene terephthalate/polypropylene films assembled with chitosan and various preservatives for antimicrobial food packaging. Colloid Surface B 114: 60-6.
Li XF, Feng XQ, Yang S, Fu GQ, Wang TP, Su ZX. 2010. Chitosan kills Escherichia coli through damage to be of cell membrane mechanism. Carbonhydr Polym 70: 493-499.
Lin SB, Lin YC, Chen HH. 2009. Low molecular weight chitosan prepared with the aid of cellulase, lysozyme and chitinase: characterisation and antibacterial activity. Food Chem 116: 47-53.
Liu N, Chen XG, Park HJ, Liu CG, Liu CS, Meng XH, Yu LJ. 2006. Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohydr Polym 64: 60-5.
Lopez-Rubio A, Gavara R, Lagaron JM. 2006. Bioactive packaging: turning foods into healthier foods through biomaterials. Trends Food Sci Technol 17: 567-75.
Madival S, Auras R, Singh SP, Narayan R. 2009. Assessment of the environmental profile of PLA, PET and PS clamshell containers using LCA methodology. J Clean Prod 17: 1183-94.
Makoto M, Tomoki M, Kenji H, Naruki K, Koji N, Atsushi H. 2017. PEG-based nanocomposite hydrogel: Thermoresponsive sol-gel transition controlled by PLGA-PEG-PLGA molecular weight and solute concentration. Polym 115: 246-254.
Mexis SF, Kontominas MG. 2014. Active Food Packaging. University of Ioannina, Ioannina, Greece.
Mohammadi A, Hashemi M, Hosseini SM. 2016. Effect of chitosan molecular weight as micro and nanoparticles on antibacterial activity against some soft rot pathogenic bacteria. LWT-Food Sci Technol 71: 347-55.
Murariu M, Dubois P. 2016. PLA composites: from production to propertyes. Adv Drug Delivery Rev 107: 17-46.
Nowzari F, Shabanpour B, Ojagh SM. 2013. Comparison of chitosan–gelatin composite and bilayer coating and film effect on the quality of refrigerated rainbow trout. Food Chem 141: 1667-72.
O'Callaghan KAM, Kerry JP. 2016. Preparation of low- and medium-molecular weight chitosan nanoparticles and their antimicrobial evaluation against a panel of microorganisms, including cheese-derived cultures. Food Control 69: 256-61.
Otoni CG, Espitia PJP, Avena-Bustillos RJ, McHugh TH. 2016. Trends in antimicrobial food packaging systems: Emitting sachets and absorbent pads. Food Res Int 83: 60-73.
Ozkoc G, Kemaloglu S. 2009. Morphology, Biodegradability, Mechanical, and Thermal Properties of Nanocomposite Films based on PLA and Plasticized PLA. Department of Chemical Engineering, Kocaeli University, Kocaeli, Turkey.
Peesan M, Supaphol P, Rujiravanit R. 2005. Preparation and characterization of hexanoyl chitosan/polylactide blend films. Carbohydr Polym 60: 343-50.
Perdones A, Chiralt A, Vargas M. 2016. Properties of film-forming dispersions and films based on chitosan containing basil or thyme essential oil. Food Hydrocolloid 57: 271-9.
Perdones A, Escriche I, Chiralt A, Vargas M. 2016. Effect of chitosan–lemon essential oil coatings on volatile profile of strawberries during storage. Food Chem 197: 979-86.
Pereda M, Ponce AG, Marcovich NE, Ruseckaite RA, Martucci F. 2011. Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocolloid 25: 1372-81.
Petchwattana N, Naknaen P. 2015. Utilization of thymol as an antimicrobial agent for biodegradable poly(butylene succinate). Mater Chem Phys 163: 369-75.
Pezo D, Navascues B, Salafranca J, Nerin C. 2012. Analytical procedure for the determination of Ethyl Lauroyl Arginate (LAE) to assess the kinetics and specific migration from a new antimicrobial active food packaging. Anal Chim Acta 745: 92-8.
Prashanth KVH, Tharanathan RN. 2007. Chitin/Chitosan: Modifications and their Unlimited Application Potential an Overview. Department of Biochemistry & Nutrition, Central Food Technological Research Institute, Mysoree, India.
Pretula J, Slomkowski S, Penczek S. 2016. Polylactides - Methods of synthesis and characterization. Adv Drug Delivery Rev 105: 1-14.
Qin Y, Zhuang Y, Wu Y, Li A. 2016. Quality evaluation of hot peppers stored in biodegradable poly(lactic acid)-based active packaging. Sci Hortic-Amsterdam 202: 1-8.
Rapa M, Mitelut AC, Tanase EE, Grosu E, Popescu P, Popa ME, Rosnes JT, Sivertsvik , Darie-Niţa RN, Vasile C. 2016. Influence of Chitosan on Mechanical, Thermal, Barrier and Antimicrobial Properties of PLA Biocomposites for Food Packaging. Nofima AS, Department Of Processing Technology, Stavanger, Norway.
Rege PR, Garmise RJ, Block LB. 2003. Spray-dried chitinosans Part I: preparation and characterization. Int J Pharm 252: 41-51.
Ren D, Yi H, Wang W, Ma X. 2005. The enzymatic degradation and swelling properties of chitosan matrices with different degrees of N-acetylation. Carbohydr Res 340: 2403-10.
Rinaudo M. 2006. Chitin and chitosan: properties and applications. Polym Sci 31: 603-32.
Rubio B, Vieira C, Martinez B. 2016. Effect of post mortem temperatures and modified atmospheres packaging on shelf life of suckling lamb meat. LWT-Food Sci Technol 69: 563-9.
Sanaeifar A, Bakhshipour A, Guardia M. 2015. Prediction of banana quality indices from color features using support vector regression. Talanta 148: 54-61.
Sarhan V, Azzazy HME. 2015. High concentration honey chitosan electrospun nanofibers:Biocompatibility and antibacterial effects. Carbohydr Polym 122: 135-43.
Sebastien F, Stephane G, Copinet A, Coma V. 2006. Novel biodegradable films made from chitosan and poly(lactic acid) with antifungal properties against mycotoxinogen strains. Carbohydr Polym 65: 185-93.
Shahidi F, Arachchi JKV, Jeon YJ. 1999. Food applications of chitin and chitosans. Trends Food Sci Technol 10: 37-51.
Stamford TCM, Stamford-Arnaud TM, Cavalcante HMM, Macedo RO, Campos-Takaki GM. 2012. Microbiological chitosan: potential application as anticarcinogenic agent. Biocybern Biomed Eng 9: 230-44.
Stoleru E, Dumitriua RP, Munteanu BS, Zaharescu T, Tanase EE, Mitelut A, Ailiesei G, Vasile C. 2016. Novel procedure to enhance PLA surface properties by chitosan irreversible immobilization. Appl Surf Sci 367: 407-17.
Sung SY, Sin LT, Tee TT, Bee ST, Rahmat AR, Rahaman WAWA. 2014. Control of bacteria growth on ready-to-eat beef loaves by antimicrobial plastic packaging incorporated with garlic oil. Food Control 39: 214-21.
Suppakul P, Sonneveld K, Bigger S, Miltz J. 2008. Efficacy of polyethylene-based antimicrobial films containing principal constituents of basil. LWT-Food Sci Technol 41: 779-88.
Tanase CE, Spiridon I. 2014. PLA/chitosan/keratin composites for biomedical applications. Mater Sci Eng 40: 242-47.
Tawakkal IS1, Cran MJ, Miltz J, Bigger SW. 2014. A review of poly(lactic acid)-based materials for antimicrobial packaging. J Food Sci 79: 1477-90.
Tishchenko G, Simunek J, Brusa J, Netopilik M, Pekarek M, Walterova Z, Koppova I, Lenfeld J. 2011. Low-molecular-weight chitosans: preparation and characterization. Carbohydr Polym 86: 1077-81.
Tsaih ML, Chen RH. 1997. Effect of molecular weight and urea on the conformation of chitosan molecules in dilute solutions. Int J Biol Macromol 20: 233-40.
Turalija M, Bischof S, Budimir A, Gaan S. 2016. Antimicrobial PLA films from environment friendly additives. Composites B 102: 94-9.
Vanderroost M, Ragaert P, Devlieghere F, Meulenaer B. 2014. Intelligent food packaging: The next generation. Trends Food Sci Technol 39: 47-62.
Visan A, Stan GE, Ristoscu C, Popescu-Pelin G, Sopronyi M, Besleaga C, Luculescu C, Chifiriuc MC, Hussien MD, Marsan O, Kergourlay E, Grossin D, Brouillet F, Mihailescu IN. 2016. Combinatorial MAPLE deposition of antimicrobial orthopedic maps fabricated from chitosan and biomimetic apatite powders. Int J Pharm 511: 505-15.
Wang LF, Rhim JW. 2016. Grapefruit seed extract incorporated antimicrobial LDPE and PLA films: Effect of type of polymer matrix. LWT-Food Sci Technol 74:338-45.
Wasikiewicz JM, Yeates SG. 2013. "Green" molecular weight degradation of chitosan using microwave irradiation. Polym Degrad Stab 98:863-7.
Woraprayote W, Malila Y, Sorapukdee S, Swetwiwathana A, Benjakul S, Visessanguan W. 2016. Bacteriocins from lactic acid bacteria and their applications in meat and meat products. Meat Sci 120: 118-32.
Xia W, Liu P, Liu J. 2008. Advance in chitosan hydrolysis by non-specific cellulases. Biores Technol 99: 6751-62.
Xie Y, Hu J, Wei Y, Hong X. 2009. Preparation of chitooligosaccharides by the enzymatic hydrolysis of chitosan. Polymer Degrad Stab 94: 1895-99.
Younes I, Sellimi S, Rinaudo M, Jellouli K, Nasri M. 2014. Influence of acetylation degree and molecular weight of homogeneous chitosans on antibacterial and antifungal activities. Int J Food Microbiol 185: 57-63.
Yu H, Tran TT, Teo J, Hadinoto K. 2016. Dry powder aerosols of curcumin-chitosan nanoparticle complex prepared by spray freeze drying and their antimicrobial efficacy against common respiratory bacterial pathogens. Colloid Surface A 504: 34-42.
Yuan G, Chen X, Li D. 2016. Chitosan films and coatings containing essential oils: the antioxidant and antimicrobial activity, and application in food systems, a review. Food Res Int 89: 117-128.
Zhang X, Sun G, Xiao X, Liu Y, Zheng X. 2016. Application of microbial TTIs as smart label for food quality: Response mechanism, application and research trends. Trends Food Sci Technol 51: 12-23.
Zou P, Yang X, Wang J, Li Y, Yu H, Zhang Y, Liu G. 2016. Advances in characterisation and biological activities of chitosan and chitosan oligosaccharides. Food Chem 190: 1174-81.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊