中文文獻
王進祥(2012)。實價登錄與稅制改革。土地問題研究季刊,11(3),98-108。江穎慧(2009)。不動產自動估價與估價師個別估價之比較-以比較法之案例選取、權重調整與估值三階段差異分析。住宅學報,18(1),39-62。李永展、何紀方(1995)。台北地方生活圈都市服務設施之鄰避效果。都市與計畫,23(1),95-116。
奉國和。(2011)。SVM 分類核函數及參數選擇比較。電腦工程與應用,47(3),123-124。
林祖嘉、馬毓駿(2007)。特徵價格法大量估價法在台灣不動產市場之應用。住宅學報,16(2),1-22。
邱司杰(2014)。基於實價登錄的房價模型研究。國立交通大學資訊科學與工程研究所碩士論文,新竹市。邱美甄、鄧家駒、張光昭、邱俊誠(2013)。台灣地區各城市房屋住宅消費力探討。數據分析,8(6),41-72。
柯柏戎(2012)。都會區購屋者對自用住宅環境設施需求之研究。國立中央大學營建管理研究所碩士論文,桃園市。陳時仲(2015)。隨機森林模型效力評估。國立交通大學統計學研究所碩士論文,新竹市。陳樹衡、郭子文、棗厥庸(2007)。以決策樹之迴歸樹建構住宅價格模型-臺灣地區之實證分析。住宅學報,16(1),1-20。楊宗憲、蘇倖慧(2011)。迎毗設施與鄰避設施對住宅價格影響之研究。住宅學報,20(2),61-80。趙志勇、王峰、李元香(2014)。基於深度學習的股票市場預測。中國科技論文線上。
賴碧瑩(2007)。應用類神經網路於電腦輔助大量估價之研究。住宅學報,16(2),43-65。簡淑芬(2012)。不動產估價模型之研究-以臺中市為例。逢甲大學財稅學系碩士在職專班碩士論文,台中市。蘇高玄(2011)。特徵選起方法於房價預測分析的應用,計量管理期刊,8(2),35-42。
英文文獻
Basak, D., Pal, S., & Patranabis, D. C. (2007). Support vector regression.Neural Information Processing-Letters and Reviews, 11(10), 203-224.
Berry, M. J. & G. Linoff (1997). New York: John Wiley & Sons, Inc.. Data Mining Techniques: For Marketing, Sales, and Customer Support.
Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
Breiman, L.(2002). Manual On Setting Up, Using, And Understanding Random Forests V3.1.
Chih-Wei Hsu, Chih-Chung Chang & Chih-Jen Lin (2016). A Practical Guide to Support Vector Classification.
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.
Garson, D. G. (1991). Interpreting neural network connection weights.
Gedeon, T. D. (1997). Data mining of inputs: analysing magnitude and functional measures. International Journal of Neural Systems, 8(02), 209-218.
Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. science, 313(5786), 504-507.
Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural computation, 18(7), 1527-1554.
Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural networks, 2(5), 359-366.
LeCun, Y. A., Bottou, L., Orr, G. B., & Müller, K. R. (2012). Efficient backprop. In Neural networks: Tricks of the trade (pp. 9-48). Springer Berlin Heidelberg.
McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4), 115-133.
Rivas-Perea, P., Cota-Ruiz, J., Chaparro, D. G., Venzor, J. A. P., Carreón, A. Q., & Rosiles, J. G. (2012). Support vector machines for regression: a succinct review of large-scale and linear programming formulations.
Rumelhart,Hinton,Williams.(1986).Learning representations by back-propagation. Nature 323,533-536
Wong, K. C., So, A. T., & Hung, Y. C. (2002). Neural network vs. hedonic price model: appraisal of high-density condominiums. In Real Estate Valuation Theory (pp. 181-198). Springer US.
網路資料
https://cran.r-project.org/web/packages/available_packages_by_name.html
http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_2015_2/Lecture/DNN%20(v4).pdf
https://h2o-release.s3.amazonaws.com/h2o/rel-slater/9/docs-website/h2o-docs/booklets/DeepLearning_Vignette.pdf
https://www.yungching.com.tw/
http://www.nra.com.tw/
http://www.sinyi.com.tw/?gclid=CL2Mk7qOtdQCFUsEKgod5mQCug&gclsrc=aw.ds