跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2025/01/21 17:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:藍文妤
研究生(外文):LAN, WEN-YU
論文名稱:不良葉酸營養微細環境調轉生物能量代謝誘導 結腸癌幹細胞惡性特質之蛋白質體指標檢定
論文名稱(外文):Proteomic Signatures of Low Folate Metabolic Stress-induced Metastasis Potentials in Human Colonic Adenocarcinoma Cells: Reprogramming Bioenergetics and Cancer Stem Cell Features
指導教授:許瑞芬許瑞芬引用關係
指導教授(外文):HUANG, RWEI-FEN SYU
口試委員:魏耀揮黃志揚蘇純立辜韋智
口試委員(外文):WEI, YAU-HUEIHUANG, CHIH-YANGSU, CHUN-LIKU, WEI-CHI
口試日期:2017-07-26
學位類別:碩士
校院名稱:輔仁大學
系所名稱:營養科學系碩士班
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:127
中文關鍵詞:低葉酸營養不良結腸癌細胞能量代謝機轉蛋白質體Warburg effect
外文關鍵詞:low folate malnutritioncolon cancer cellenergy metabolismproteomicsWarburg effect
相關次數:
  • 被引用被引用:1
  • 點閱點閱:209
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
結腸癌病人常伴有葉酸營養不良狀態,此不良葉酸營養微細環境是否調轉Warburg能量代謝誘導結腸癌幹細胞之惡性發展及其分子作用機轉,尚不清楚,故本研究探討不良葉酸營養微細環境調轉生物能量代謝誘導結腸癌幹細胞惡性特質之蛋白質體指標檢定。以人類結腸腺癌細胞株SW480,模擬腸癌病人低葉酸血清濃度 (3-6 ng/ml) 培養4天,以LC-MS/MS與MaxQuant進行定量性蛋白質體及磷酸化蛋白質體表現,以gene ontology生物資訊軟體及STRING功能關聯網絡,分析低葉酸微細環境所調控能量代謝與癌幹細胞惡性發展的總體生物代謝路徑、訊息網絡與標的指印分子。結果指出低葉酸微細環境顯著影響83個蛋白分子表現,包括細胞外基質組織、細胞內胞器、黏附因子和分子伴侶蛋白中與細胞結構及細胞骨架相關之DYNLL1、AKAP12、PPIF、HSP90β蛋白表現顯著上調,CD9、STMN2、AKAP8L蛋白表現顯著下調,以及能量代謝調轉因子相關之EBP、UQCRQ、PIH1D1、PDP1、mTOR蛋白表現顯著上調,PFDN1、LCLAT1、SLC16A1蛋白表現顯著下調。磷酸化蛋白質體分析結果中,同樣發現顯著上調與細胞結構及細胞骨架相關之磷酸化蛋白質DYNLL1、AKAP12、PKA、PKC、HSPβ1表現,以及能量代謝調轉因子相關之磷酸化蛋白質Akt、p70S6K、PDK、MAPK1表現。以Western blot驗證與細胞結構及細胞骨架相關蛋白質體特徵表現,並分析Warburg能量代謝相關的蛋白質表現,發現在低葉酸組中pAkt、mTOR、HIF-1α蛋白顯著表現,PDH蛋白表現量有增加的趨勢;下調Akt、FoxO3a、CK1-α、ACLY、LDH蛋白表現。於低葉酸微環境 (10 nM) 中培養結腸癌細胞SW480誘發低葉酸代謝壓力,進行無貼附性腫瘤球形成實驗 (anchorage-independent oncospheroid formation),觀察癌細胞自我更新之幹性表現 (self-renewal),發現低葉酸組形成的腫瘤球數量顯著高於對照組。分析乳酸堆積量,發現低葉酸組培養液乳酸堆積濃度顯著低於正常葉酸組。檢測細胞內NADP+及NADPH濃度,結果顯示NADP+/NADPH ratio在低葉酸營養狀態下有較高的趨勢。mTOR抑制劑rapamycin (5 μM) 處理後能夠反轉低葉酸誘發能量代謝壓力訊息傳遞與癌幹細胞特性的表現。本研究檢定不良葉酸營養微細環境調轉生物能量代謝誘導結腸癌幹細胞惡性特質之蛋白質體標的指印,提供降低結腸癌惡性轉移的營養介入防治策略之檢測蛋白分子參考效標。
Colon cancer patients are often accompanied with folate malnutrition. Folate malnutrition microenvironment may alter Warburg energy metabolism to induce malignant development, but the mechanisms are unknown. Therefore, the aims of the study were to investigate that proteomic signatures of low folate metabolic stress-induced metastasis potentials in human colonic adenocarcinoma cells: reprogramming bioenergetics and cancer stem cell features. SW480 cells were cultured in medium containing 2.2 μM folate (control (C) group) and 10 nM folate (low folate (LF) group) for 4 days, which is simulated colorectal cancer patients with low folic acid serum concentration (3-6 ng/ml). Quantitative proteomics and phosphorylated proteomics expression was conducted by LC-MS/MS and MaxQuant. The overall biological metabolic pathways, signaling networks and target fingerprints of low folate microenvironment regulated energy metabolism and malignant development of cancer stem cells were analyzed by gene ontology bioinformatics software and STRING functional association network. The data indicate that low folate microenvironment significantly affected the expression of 83 protein molecules including extracellular matrix origanization, intracellular organelles, cell adhesions, chaperones and energy metabolism regulatory factors. The expression of cell structure and cytoskeleton related proteins DYNLL1, AKAP12, PPIF and HSP90β were significantly up-regulated, and CD9, STMN2 and AKAP8L were significantly down-regulated. The expression of energy metabolism regulatory factors related proteins EBP, UQCRQ, PIH1D1, PDP1, mTOR were significantly up-regulated, and PFDN1, LCLAT1, SLC16A1 were significantly down-regulated. The results of phosphorylated proteomics were also found up-regulated cell structure and cytoskeleton related proteins, DYNLL1, AKAP12, PKA, PKC, HSPβ1, and energy metabolic regulatory factors related proteins, Akt, p70S6K, PDK, MAPK1. Western blot was used to verify the proteomic signiatures of cell structure and cytoskeleton and analyze the energy-metabolism related proteins. The data showed that mTOR, HIF-1α protein were significantly up-regulation and Akt, FoxO3a, ACLY, LDH protein were down-regulation in LF-group. SW480 cells were cultured low folate microenvironment (10 nM) to induce low folate metabolic stress. Cells were conducted anchorage-independent oncospheroid formation to observe stemness expression of self-renewal and found that the number of onco-speroids in LF-group were significant higher than the other groups. The concentration of lactic acid was significant lower in LF-group medium. The NADP+/NADPH ratio was higher in LF-group. mTOR inhibitor, rapamycin (5 μM) treatment could reverse the expression of low folate induced energy metabolism stress signaling pathways and the expression of cancer stem cell characteristics. In this study, proteomics fingerprints of folate malnutrition microenvironment altered bio-energy metabolism to induce malignant characteristics in colon cancer stem cells, to reduce the colon cancer malignant metastasis of the nutritional intervention strategy for the detection of protein molecules reference effect.
摘要 I
Abstract IV
致謝 VII
目錄 IX
圖目錄 XIV
表目錄 XVI
縮寫表 (Abbreviations) XVII
第一章 前言 1
第二章 文獻回顧 3
一、 結腸惡性腫瘤進展的相關因子 3
二、 結腸惡性腫瘤進展與細胞結構骨架相關蛋白之相關性 3
三、 癌幹細胞與結腸惡性腫瘤進展之相關性 4
四、 結腸惡性腫瘤能量代謝相關分子機轉 7
(一) 腫瘤細胞能量代謝機轉 7
(二) PI3K/AKT/mTOR訊息傳遞分子機制 10
五、 葉酸營養狀態與結腸癌幹細胞轉移之關係 12
(一) 葉酸營養代謝與罹患結腸癌之風險性 12
(二) 先前葉酸營養狀態不良調控結腸癌研究之發現 13
六、 蛋白質體學分析重要意義 15
七、 研究假說與目的 16
第三章 實驗材料與方法 17
一、 實驗設計 17
二、 實驗材料 19
(一) 細胞株 19
(二) 實驗用試藥 19
(三) 培養基 20
(四) 儀器設備 21
三、 實驗方法 21
(一) 細胞培養 21
(二) 藥劑配置 22
(三) 腫瘤球培養 22
(四) 乳酸濃度分析 22
(五) 氧化還原電位分析 23
(六) 蛋白質體與磷酸化蛋白質體定量分析 23
(七) 西方點墨法 24
四、 統計分析 27
第四章 結果 28
一、 低葉酸微細環境下SW480結腸癌細胞的定量蛋白質體學分析 28
二、 低葉酸微細環境下SW480結腸癌細胞的磷酸化蛋白質體分析 30
三、 低葉酸營養狀態調控結腸癌細胞能量代謝訊息傳遞機轉 33
(一) 低葉酸微細環境下對結腸癌細胞SW480代謝及癌化相關訊息路徑蛋白之影響 33
(二) 低葉酸微細環境下對結腸癌細胞SW480能量代謝相關蛋白之影響 35
(三) 低葉酸微細環境下對結腸癌細胞SW480細胞結構及骨架相關蛋白之影響 36
四、 低葉酸營養狀態誘導結腸癌細胞SW480自我更新之幹性表現 37
五、 結腸癌細胞SW480於低葉酸營養狀態下能量代謝調轉之功能性指標 38
(一) 低葉酸微細環境下結腸癌細胞SW480的腫瘤球細胞培養液乳酸堆積情形 38
(二) 低葉酸微細環境下結腸癌細胞SW480培養液乳酸堆積情形 39
(三) 低葉酸微細環境下結腸癌細胞SW480細胞內氧化還原電位 40
第五章 討論 42
一、 低葉酸微細環境下對結腸癌細胞能量代謝及癌化相關指標之機制探討 42
(一) 低葉酸微細環境下對結腸癌細胞粒線體呼吸能量代謝訊息之影響 42
(二) 低葉酸微細環境下對結腸癌細胞能量代謝訊息傳遞路徑之影響 43
(三) 低葉酸微細環境下對結腸癌細胞代謝與及癌化相關訊息PI3K/Akt/mTOR訊息傳遞路徑之影響 47
(四) 低葉酸微細環境下對結腸癌細胞代謝與及癌化相關訊息Akt/FoxO3a、mTOR/HIF-1α及CK1-α訊息傳遞路徑之影響 49
二、 低葉酸微細環境下對結腸癌細胞SW480細胞骨架及結構相關蛋白之影響 51
三、 低葉酸微細環境下結腸癌細胞SW480受MTOR調控細胞能量代謝訊息傳遞路徑與細胞骨架結構蛋白之影響 54
四、 低葉酸微細環境下結腸癌細胞SW480受MTOR調控細胞能量代謝調轉之功能性指標探討 55
第六章 總結 59
第七章 結論 60
第八章 參考文獻 88
行政院衛生福利部統計處 104年死因統計。民國105年8月5日,取自http://www.mohw.gov.tw/news/572256044
王姿萍 (2010) 葉酸不足與拮抗劑methotrexate處理活化轉錄因子NF-κB調控Hedgehog訊息傳遞促進人類結腸癌細胞表現體外轉移性。私立輔仁大學營養科學系碩士論文。
林耑妤 (2011) 葉酸缺乏調節後基因甲基化作用啟動Hedgehog傳訊機制促進結腸癌細胞侵犯性。私立輔仁大學營養科學系碩士論文。
許舒涵 (2012) 葉酸營養調節人類結腸癌細胞Nuclear factor-κB與Hedgehog訊息傳遞路徑。私立輔仁大學營養科學系碩士論文。
馮馨醇 (2013) 腫瘤葉酸濃度和單碳代謝酵素基因多型性對Sonic Hedgehog路徑之傳訊分子與人類大腸直腸癌的關聯性。私立輔仁大學營養科學系碩士論文。
潘富子 (2016) 葉酸及膽鹼營養狀態對發炎與致癌物誘發肺組織前癌病變之影響。私立輔仁大學營養科學系碩士論文。
藍文妤,林立倫,尉遲浤圳,許瑞芬 (2015) 補充葉酸調節慢性腸炎誘導惡性結腸腫瘤發展及其作用機轉。第41屆台灣營養年會暨學術研討會。
Chen WJ, Huang RFS. Microenvironment folate stress promotes Warburg-metabolic switched-cancer stem cell signaling network and stemness features to mediated invasion and metastasis of lung cancers. Experimental Biology 2016 in San Diego, USA. 147.7, p15 of conference program.
Accili D, Arden KC. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell. 2014;117:421-6.
Agudo J, Brown BD. Silence of the ROS. Immunity. 2016;44:520-2.
Akakura S, Gelman IH. Pivotal role of AKAP12 in the regulation of cellular adhesion dynamics: control of cytoskeletal architecture, cell migration, and mitogenic signaling. J Signal Transduct. 2012;2012:529179.
Akhavan D, Cloughesy TF, Mischel PS. mTOR signaling in glioblastoma: lessons learned from bench to bedside. Neuro Oncol. 2010;12:882-9.
Al-Hajj M, Clarke MF. Self-renewal and solid tumor stem cells. Oncogene. 2004;23:7274-82.
Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, et al. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 2003;17:126-40.
Baker N, Ridgway RA, vas Es H, et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature. 2009;457:608-11.
Basu-Roy U, Seo E, Ramanathapuram L, Rapp TB, Perry JA, et al. Sox2 maintains self renewal of tumor-initiating cells in osteosarcomas. Oncogene. 2011;31:2270-82.
Beauchamp EM, Platanias LC. The evolution of the TOR pathway and its role in cancer. Oncogene. 2013;32:3923-32.
Bhalla S, Evens AM, Prachand S, Schumacker PT, Gordon LI. Paradoxical regulation of hypoxia inducible factor-1alpha (HIF-1alpha) by histone deacetylase inhibitor in diffuse large B-cell lymphoma. PLoS ONE. 2013;8:e81333.
Bonuccelli G, Tsirigos A, Whitaker-Menezes D, Pavlides S, Pestell RG, Chiavarina B, et al. Ketones and lactate “fuel” tumor growth and metastasis: Evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle. 2010;9:3506-14.
Boyer LA, Lee TI, Cole MF, Johnstone, SE, Levine SS, Zucker JP, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122:947-56.
Brahimi-Horn MC, Chiche J, Pouyssegur J. Hypoxia and cancer. J Mol Med Germany. 2007;85:1301-7.
Brucker DP, Maurer GD, Harter PN, Rieger J, Steinbach JP. FOXO3a orchestrates glioma cell responses to starvation conditions and promotes hypoxia-induced cell death. Int J Oncol. 2016;49:2399-410.
Brzozowa M, Michalski M, Wyrobiec G, Piecuch A, Dittfeld A, Harabin-Słowińska M, et al. The role of Snail1 transcription factor in colorectal cancer progression and metastasis. Contemp Oncol (Pozn). 2015;19:265-70.
Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11:85-95.
Cerletti M, Jang YC, Finley LW, Haigis MC, Wagers AJ. Short-term calorie restriction enhances skeletal muscle stem cell function. Cell Stem Cell. 2012;10:515-9.
Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell. 2003;113:643-55.
Chen H, Ma Z, Vanderwaal RP, Feng Z, Gonzalez-Suarez I, Wang S, et al. The mTOR inhibitor rapamycin suppresses DNA double-strand break repair. Radiat Res. 2011;175:214-24.
Cheng L, Sung MT, Cossu-Rocca P, Jones TD, MacLennan GT, De Jong J, et al. OCT4: biological functions and clinical applications as a marker of germ cell neoplasia. J Pathol. 2007;211:1-9.
Clarke MF, Fuller M. Stem cells and cancer: two faces of eve. Cell. 2006;124:1111-5.
Colakoglu T, Yildirim S, Kayaselcuk F, Nursal TZ, Ezer A, Noyan T, et al. Clinicopathological significance of PTEN loss and the phosphoinositide 3-kinase/Akt pathway in sporadic colorectal neoplasms: is PTEN loss predictor of local recurrence? Am J Surg. 2008;195:719-25.
Cravo ML, Mason JB, Dayal Y, Hutchinson M, Smith D, Selhub J, et al. Folate deficiency enhances the development of colonic neoplasia in dimethylhydrazine-treat rats. Cancer Res. 1992;52:5002-6.
Dalerba P, Dylla SJ, Park IK, et al. Phenotypic characterization of human colorectal cancer stem cells. P Natl Acad Scis USA. 2007;104:10158-63.
Dang CV. The interplay between MYC and HIF in the Warburg effect. Ernst Schering Found. 2007;35-53.
Denko NC. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer. 2008;8:705-13.
Do JT., and Schöler HR. Cell-cell fusion as a means to establish pluripotency. E Schering Res Fdn W. 2006;60:35-45.
Doerr A. Targeted proteomics. Nature Methods. 2011;8:43.
Du L, Wang H, He L, et al. CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res. 2008;14:6751-60.
Duthie SJ. Folate and cancer: how DNA damage, repair and methylation impact on colon carcinogenesis. J Inherit Metab Dis. 2011;34:101-9.
Eadens MJ, Grothey A. Curable metastatic colorectal cancer. Curr Oncol Rep. 2011;13:168-76.
Easton JB, Houghton PJ. mTOR and cancer therapy. Oncogene. 2006;25:6436-46.
Feng HC, Lin JY, Hsu SH, Kuo CS, Tian YF, Sun DP, et al. Low folate metabolic stress reprograms DNA methlation-activated sonic hedgehog signaling to mediate cancer stem cell-like signatures and invasive tumour stage-specific malignancy of human colorectal cancers. Int J Cancer. 2017; in press.
Ferber EC, Peck B, Delpuech O, Bell GP, East P, Schulze A. FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression. Cell Death Differ. 2012;19:968-79.
Firth JD, Ebert BL, Ratcliffe PJ. Hypoxic regulation of lactate dehydrogenase A. interaction between hypoxiainducible factor 1 and cAMP response elements. J Biol Chem. 1995;270:21021-7.
Fogg VC, Lanning NJ, Mackeigan JP. Mitochondria in cancer: at the crossroads of life and death. Chin J Cancer. 2011;30:526-39.
Folmes CD, Dzeja PP, Nelson TJ, Terzic A. Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell. 2012;11:596-606.
Fong GH, Takeda K. Role and regulation of prolyl hydroxylase domain proteins. Cell Death Differ. 2008;15:635-41.
Foretz M, Carling D, Guichard C, Ferré P, Foufelle F. AMP-activated protein kinase inhibits the glucose-activated expression of fatty acid synthase gene in rat hepatocytes. J Biol Chem. 1998;273:14767-71.
Francí C, Gallén M, Alameda F, Baró T, Iglesias M, Virtanen I, García de Herreros A. Snail1 protein in the stroma as a new putative prognosis marker for colon tumours. PLoS One. 2009;4:e5595.
Fuchs CS, Willett WC, Colditz GA, Hunter DJ, Stampfer MJ, Speizer FE, et al. The influence of folate and multivitamin use on the familial risk of colon cancer in women. Cancer Epidem Biomar. 2002;11:227-34.
Gafni O, Weinberger L, Mansour AA, Manor YS, Chomsky E, Ben-Yosef D, et al. Derivation of novel human ground state naive pluripotent stem cells. Nature. 2013;504:282-6.
Gelman IH. Emerging Roles for SSeCKS/Gravin/AKAP12 in the Control of Cell Proliferation, Cancer Malignancy, and Barriergenesis. Genes Cancer. 2010;1:1147-56.
Greer EL, Brunet A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene. 2005;24:7410-25.
Gulhati P, Bowen KA, Liu J, Stevens PD, Rychahou PG, Chen M, et al. mTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. Cancer Res. 2011;71:3246-56.
Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30:214-26.
Han X, Fang X, Lou X, Hua D, Ding W and Foltz G, et al. Silencing SOX2 induced mesenchymal-epithelial transition and its expression predicts liver and lymph node metastasis of CRC patients. PLoS ONE. 2012;7:e41135.
Hansson MJ, Morota S, Chen L, Matsuyama N, Suzuki Y, Nakajima S, et al. Cyclophilin D-sensitive mitochondrial permeability transition in adult human brain and liver mitochondria. J Neurotrauma. 2011;28:143-53.
Hardie DG. AMP-activated protein kinase: An energy sensor that regulates all aspects of cell function. Genes Dev. 2011;25:1895-1908.
He J, Yang J, Chen W, Wu H, Yuan Z, Wang K, et al. Molecular features of triple negative breast cancer: microarray evidence and further integrated analysis. PLoS ONE. 2015;10:e0129842.
Huang TH, Wu SY, Huang YJ, Wei PL, Wu AT, Chao TY. The identification and validation of Trichosstatin A as a potential inhibitor of colon tumorigenesis and colon cancer stem-like cells. Am J Cancer Res. 2017;7:1227-37.
Huang XF, Chen JZ. Obesity, the PI3K/Akt signal pathway and colon cancer. Obes Rev. 2009;10:610-6.
Human EH, Hynes MJ, Zhang T, et al. Aldehyde dehydrogenease 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res. 2009;69:3382-9.
Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115:577-90.
Isaacs JS, JungYJ, Mimnaugh EG, Martinez A, Cuttitta F, Neckers LM. Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1 alpha-degradative pathway. J Biol Chem. 2002;277:pp.29936-29944.
Jang T, Calaoagan JM, Kwon E, Samuelsson S, Recht L, Laderoute KR. 50-AMP-activated protein kinase activity is elevated early during primary brain tumor development in the rat. Int J Cancer. 2011;128:2230-9.
Jastrzebski K, Kannan KM, Tchoubrieva EB, Hannan RD, Pearson RB. Coordinate regulation of ribosome biogenesis and function by the ribosomal protein S6 kinase, a key mediator of mTOR function. Growth Factor. 2007;25:209-26.
Jia Y, Ma Z, Liu X, Zhou W, He S, Xu X, et al. Metformin prevents DMH-induced colorectal cancer in diabetic rats by reversing the warburg effect. Cancer Med. 2015;4:1730-41.
Jiang L, Shestov AA, Swain P, Swain P, Yang C, Parker SJ, et al. Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature. 2016;532:255-8.
Jones NP, Schulze A. Targeting cancer metabolism--aiming at a tumour's sweet-spot. Drug Discov Today. 2012;17:232-41.
Joti P, Ghosh-Roy A, Krishanu Raya K. Dynein light chain 1 functions in somatic cyst cells regulate spermatogonial divisions in Drosophila. Sci Rep. 2011;1:173.
Kaelin WG Jr. The von Hippel-Lindau tumor suppressor gene and kidney cancer. Clin Cancer Res. 2004;10:6290S-5S.
Kalousi A, Mylonis I, Politou AS, Chachami G, Paraskeva E, Simos G. Casein kinase 1 regulates human hypoxia-inducible factor HIF-1. J Cell Sci. 2010;123:2976-86.
Kamano Y, Saeki M, Egusa H, Kakihara Y, Houry WA, Yatani H,et al. PIH1D1 interacts with mTOR complex 1 and enhances ribosome RNA transcription. FEBS Lett. 2013;587:3303-8.
Kamarajugadda S, Stemboroski L, Cai Q, Simpson NE, Nayak S, Tan M, et al. Glucose oxidation modulates anoikis and tumor metastasis. Mol Cell Biol. 2012;32:1893-1907.
Kang Y, Pantel K. Tumor cell dissemination: emerging biological insights from animal models and cancer patients. Cancer Cell. 2013;13:573-81.
Kashyap V, Rezende NC, Scotland KB, Shaffer SM, Persson JL, Gudas LJ, et al. Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs. Stem Cells Dev. 2009;18:1093-108.
Kasuya K, Tsuchida A, Nagakawa Y, et al. Hypoxia-inducible factor-1 alpha expression and gemcitabine chemotherapy for pancreatic cancer. Oncol Rep. 2011;26:1399-406.
Kato I, Dnistrian AM, Schwartz M, Toniolo P, Koenig K, Shore RE, et al. Serum folate, homocysteine and colorectal cancer risk in women: a nested case-control study. Br J Cancer. 1999;79:1917-22.
Kewley RJ, Whitelaw ML, Chapman-Smith A. The mammalian basic helix-loophelix/PAS family of transcriptional regulators. Int J Biochem Cell Biol. 2004;36:189-204.
Kim JH, Jenrow KA, Brown SL. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials. Rad Onc J. 2014;32:103-15.
Kim YI. Role of folate in colon cancer development and progression. J Nutr. 2003;133:3731S-9S.
Kim YI, Salomon RN, Graeme-Cook F, Choi SW, Smith DH, Dallal GE, et al. Dietary folate protects against the development of macroscopic colonic neoplasia in a dose-responsive manner in rats. Gut. 1996;39:732-40.
Kim YJ, Gallien S., van Oostrum J, Domon B. Targeted proteomics strategy applied to biomarker evaluation. Proteomics Clin Appl. 2013;7:739-47.
Koppenol WH, Bounds PL, Dang CV. Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11:325-37.
Kuo CS, Lin CY, Wu MY, Lu CL and Huang RF. Relationship between folate status and tumour progression in patients with hepatocellular carcinoma. Brit J Nutr. 2008;100:596-602.
Kuppusamy P, Yusoff MM, Maniam GP, Ichwan SJ, Soundharrajan I, Govindan N. Nutraceuticals as potential therapeutic agents for colon cancer: a review. Acta Pharm Sin B. 2014;4:173-81.
Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149:274-93.
Lee DA, Bedont JL, Pak T, Wang H, Song J, Miranda-Angulo A, et al. Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nat Neurosci. 2012;15:700-2.
Lee M, Yoon JH. Metabolic interplay between glycolysis and mitochondrial oxidation: The reverse Warburg effect and its therapeutic implication. World J Biol Chem. 2015;6:148-61.
Lee WJ, Kim SC, Yoon JH, Yoon SJ, Lim J, Kim YS, et al. Meta-analysis of tumor stem-like breast cancer cells using gene set and network analysis. PLoS One. 2016;11:e0148818.
Lei L, Chen C, Zhao J, Wang H, Guo M, Zhou Y, et al. Targeted expression of miR-7 operated by TTF-1 promoter inhibited the growth of human lung cancer through the NDUFA4 pathway. Mol Ther Nucleic Acids. 2017;6:183-97.
Leis O, Eguiara A, Lopez-Arribillaga E, Alberdi MJ, Hernandez-Garcia S, et al. Sox2 expression in breast tumours and activation in breast cancer stem cells. Oncogene. 2011;31:1354-65.
Lemos C, Kathmann I, Giovannetti E, Calhau C, Jansen G, Peters GJ. Impact of cellular folate status and epidermal growth factor receptor expression on BCRP/ABCG2-mediated resistance to gefitinib and erlotinib. Br J Cancer. 2009;100:1120-7.
Li N, Jiang P, Du W, Wu Z, Li C, Qiao M, Yang X, Wu M. Siva1 suppresses epithelial-mesenchymal transition and metastasis of tumor cells by inhibiting stathmin and stabilizing microtubules. Proc Natl Acad Sci USA. 2011;108:12851-6.
Li J, Romestaing C, Han X, Li Y, Hao X, Wu Y, et al. Cardiolipin remodeling by ALCAT1 links oxidative stress and mitochondrial dysfunction to obesity. Cell Metab. 2010;12:154-65.
Li J, Tang Y, Cai D. IKKbeta/NF-kappaB disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes. Nat Cell Biol. 2012;14:999-1012.
Liang JW, Shi ZZ, Zhang TT, Hao JJ, Wang Z, Wang XM, et al. Analysis of genomic aberrations associated with the clinicopathological parameters of rectal cancer by array‑based comparative genomic hybridization. Oncol Rep. 2013;29:1827-34.
Liu X, Chhipa RR, Pooya S, Wortman M, Yachyshin S, Chow LM, et al. Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK. Proc Natl Acad Sci USA. 2014;111:E435-44.
Loo LWM, Cheng I, Tiirikainen M, Lum-Jones A, Seifried A, Dunklee LM, et al. cis-expression QTL analysis of established colorectal cancer risk variants in colon tumors and adjacent normal tissue. PLoS ONE. 2012;7:e30477.
Lu CL, Qin L, Liu HC, Candas D, Fan M, Li JJ. Tumor cells switch to mitochondrial oxidative phosphorylation under radiation via mTOR-mediated hexokinase II inhibition - a Warburg-reversing effect. PLoS ONE. 2015;10:e01201046.
Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol. 2009;10:307-18.
MacDonald MJ, Longacre MJ, Stoker SW, et al. Differences between human and rodent pancreatic islets: low pyruvate carboxylase, ATP citrate lyase, and pyruvate carboxylation and high glucose-stimulated acetoacetate in human pancreatic islets. J. Biol. 2011;286:18383-96.
Maenhaut C, Dumont JE, Roger PP, and van Staveren WCG. Cancer stem cells: a reality, a myth, a fuzzy concept or a misnomer? An analysis. Carcinogenesis. 2010;31:149-58.
Magnus EM. Folate activity in serum and red cells of patients with cancer. Cancer Res. 1967;27:490-7.
Maher JC, Wangpaichitr M, Savaraj N, Kurtoglu M, Lampidis TJ. Hypoxia-inducible factor-1 confers resistance to the glycolytic inhibitor 2-deoxy-D-glucose. Mol Cancer Ther. 2007;6:732-41.
Mani SA, Guo W, Liao MJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704-15.
Martínez ME, Henning SM, Alberts DS. Folate and colorectal neoplasia: relation between plasma and dietary markers of folate and adenoma recurrence. Am J Clin Nutr. 2004;79:691-7.
Mathias RA, Gopal SK, Simpson RJ. Contribution of cells undergoing epithelial-mesenchymal transition to the tumor microenvironment. J Proteomics. 2013;78:545-57.
Migita T, Narita T, Nomura K, Miyagi E, Inazuka F, Matsuura M, et al. ATP citrate lyase: activation and therapeutic implications in non–small cell lung cancer. Cancer Res. 2008;68:8547-54.
Milosevic M, Warde P, Menard C, et al. Tumor hypoxia predicts biochemical failure following radiotherapy for clinically localized prostate cancer. Clin Cancer Res. 2012;18:2108-14.
Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell. 2003;113,631-42.
Miyoshi N, Ishii H, Mimori K, Nishida N, Tokuoka M, Akita H,et al. Abnormal expression of PFDN4 in colorectal cancer: a novel marker for prognosis. Ann Surg Oncol. 2010;17:3030-6.
Mizrachy-Schwartz S, Cohen N, Klein S, Kravchenko-Balasha N, Levitzki A. Upregulation of AMP-activated protein kinase in cancer cell lines is mediated through c-Src activation. J Biol Chem. 2011;286:15268-77.
Moench R, Grimmig T, Kannen V, Tripathi S, Faber M, Moll EM, et al. Exclusive inhibition of PI3K/Akt/mTOR signaling is not sufficient to prevent PDGF-mediated effects on glycosis and proliferation in colorectal cancer. Oncotarget. 2016. doi: 10.18632.
Morita M, Gravel SP, Chenard V, Sikstrom K, Zheng L, Alain T, et al. mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation. Cell Met. 2013;18:698-711.
Müller FE, Braun M, Syring I, Klümper N, Schmidt D, Perner S, et al. NDUFA4 expression in clear cell renal cell carcinoma is predictive for cancer-specific survival. Am J Cancer Res. 2015;5:2816-22.
Myatt SS, Brosens JJ, Lam EW. Sense and sensitivity: FOXO and ROS in cancer development and treatment. Antioxid Redox Sign. 2011;14:675-87.
Ochocki JD, Simon MC. Nutrient-sensing pathways and metabolic regulation in stem cells. J Cell Biol. 2013;203:23-33.
Park SB, Seo KW, So AY, Seo MS, Yu KR, et al. SOX2 has a crucial role in the lineage determination and proliferation of mesenchymal stem cells through Dickkopf-1 and c-MYC. Cell Death Differ. 2012;19:534-45.
Partch CL, Gardner KH. Coactivator recruitment: a new role for PAS domains in transcriptional regulation by the bHLH-PAS family. J Cell Physiol. 2010;223:553-7.
Paspatis GA, Kalafatis E, Oros L, Xourgias V, Koutsioumpa P, Karamanolis DG. Folate status and adenomatous colonic polyps. A colonoscopically controlled study. Dis Colon Rectum. 1995;38:64-7.
Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, et al. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle. 2009;8:3984-4001.
Picanco-Castro V, Russo-Carbolante E, Reis LC, Fraga AM, de Magalhaes DA, et al. Pluripotent reprogramming of fibroblasts by lentiviral mediated insertion of SOX2, C-MYC, and TCL-1A. Stem Cells Dev. 2010;20:169-80.
Polyak K and Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9:265-73.
Porporato PE, Payen VL, Perez-Escuredo J, De Saedeleer CJ, Danhier P, Copetti T, et al. A mitochondrial switch promotes tumor metastasis. Cell Rep. 2014;8:754-66.
Prabhu A, Sarcar B, Miller CR, Kim SH, Nakano I, Forsyth P, et al. Ras-mediated modulation of pyruvate dehydrogenase activity regulates mitochondrial reserve capacity and contributes to glioblastoma tumorigenesis. Neuro Oncol. 2015;17:1220-30.
Protiva P, Mason JB, Liu Z, Hopkins ME, Nelson C, Marshall JR, et al. Altered folate availability modifies the molecular environment of the human colorectum: implications for colorectal carcinogenesis. Cancer Prev Res. 2011;4:530-43.
Puglisi MA, Barba M, Corbi W, et al. Identification and expression-1 and NR4A2 as CD133-regulated genes in colon cancer cells. J Pathol. 2011;225:305-14.
Puglisi MA, Sgambato A, Saulnier N, et al. Isolation and characterization of CD133+ cell population within human primary and metastasis colon cancer. Eur Rev Med Pharmaco. 2009;13:55-62.
Rafalski VA, Ho PP, Brett JO, Ucar D, Dugas JC, Pollina EA, et al. Expansion of oligodendrocyte progenitor cells following SIRT1 inactivation in the adult brain. Nat Cell Biol. 2013;15:614-24.
Ramanathan A, Schreiber SL. Direct control of mitochondrial function by mTOR. Proc Nat Acad Sci USA. 2009;106:22229-32.
Ríos M, Foretz M, Viollet B, Prieto A, Fraga M, Costoya JA, et al.. AMPK activation by oncogenesis is required to maintain cancer cell proliferation in astrocytic tumors. Cancer Res. 2013;73:2628-38
Rodda DJ, Chew JL, Lim LH, Loh YH, Wang B, Ng HH, et al. Transcriptional regulation of Nanog by OCT4 and SOX2. J Biol Chem. 2005;280,24731-7.
Ronnebaum SM, Patterson C. The FoxO family in cardiac function and dysfunction. Annu Rev Physiol. 2010;72:81-94.
Rosario FJ, Nathanielsz P, Powell TL, Jansson T. Maternal folate deficiency causes inhibition of mTOR signaling, down-regulation of placental amino acid transporters and fetal growth restriction. Sci Rep. In press.
Rothbart SB, Racanelli AC, Moran RG. Pemetrexed indirectly activates the metabolic kinase AMPK in human carcinomas. Cancer Res. 2010;70)10299-309.
Sabatini DM. mTOR and cancer: Insights into a complex relationship. Nat Rev Cancer. 2006;6:729-34.
Samarin J, Wessel J, Cicha I, Kroening S, Warnecke C, et al. FoxO proteins mediate hypoxic induction of connective tissue growth factor in endothelial cells. J Biol Chem. 2010;285:4328-36.
Sarma NJ, Yaseen NR. Dynein light chain 1 (DYNLT1) interacts with normal and oncogenic nucleoporins. PLoS ONE. 2013;8:e67032.
Schieke SM, Phillips D, McCoy JP Jr, Aponte AM, Shen RF, Balaban RS, et al. The mammalian target of rapamycin [mTOR] pathway regulates mitochondrial oxygen consumption and oxidative capacity. J Biol Chem. 2006;281:27643-52.
Sengupta S, Peterson TR, Sabatini DM. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell. 2010;40:310-22.
Shyh-Chang N, Daley GQ, Cantley LC. Stem cell metabolism in tissue development and aging. Development. 2013;140:2535-47.
Slattery ML, Lundgreen A, Wolff RK. Dietary influence on MAPK-signaling pathways and risk of colon and rectal cancer. Nutr Cancer. 2013;65:729-38.
Sperber H, Mathieu J, Wang Y, Ferreccio A, Hesson J, Xu Z, et al. The metabolome regulates the epigenetic landscape during naïve to primed human embryonic stem cell transition. Nat Cell Biol. 2015;17:1523-35.
Sprowl-Tanio S, Habowski AN, Pate KT, McQuade MM, Wang K, Edwards RA, et al. Lactate/pyruvate transporter MCT-1 is a direct Wnt target that confers sensitivity to 3-bromopyruvate in colon cancer. Cancer Metab. 2016;4:20.
Sun Q, Chen X, Ma J, Peng H, Wang F, Zha X, et al. Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Proc Nat Acad Sci USA. 2011;108:4129-34.
Tan AS, Baty JW, Dong LF, Bezawork-Geleta A, Endaya B, Goodwin J, et al. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Met. 2015;21:81-94.
Tang YC, Williams BR, Siegel JJ, Amon A. Identification of aneuploidy-selective antiproliferation compounds. Cell. 2011;144:499-512.
Tenesa A, Dunlop MG. New insights into the aetiology of colorectal cancer from genome-wide association studies. Nat Rev Genet. 2009;10:353-8.
Thiery JP, Acloqie H, Huang RYJ, and Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871-90.
Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Bio. 2006;7:131-42.
Tsai RY, McKay RD. A nucleolar mechanism controlling cell proliferation in stem cells and cancer cells. Genes Dev. 2002;16:2991-3003.
Tsukamoto F, Shiba E, Taguchi T, Sugimoto T, Watanabe T, Kim SJ, et al. Immunohistochemical detection of P-glycoprotein in breast cancer and its significance as a prognostic factor. Breast Cancer. 1997;4:259-263.
Tucker TG, Milne AM, Fournel-Gigleux S, Fenner KS, Coughtrie MW. Absolute immunoquantification of the expression of ABC transporters P-glycoprotein, breast cancer resistance protein and multidrug resistance-associated protein 2 in human liver and duodenum. Biochem Pharmacol. 2012;83:279-85.
Ul Islam S, Shehzad A, Sonn JK, Lee YS. PRPF overexpression induces drug resistance through actin cytoskeleton rearrangement and epithelial-mesenchymal transition. Oncotarget. 2017; E17855.
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029-33.
Varnat F, Duquet A, Malerba M, Zbinden M, Mas C, Gervaz P et al. Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signaling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion. EMBO Mol Med. 2009;1:338-51.
Vermeulen L, de Sousa E Melo F, van der Heijden M, et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol. 2010;12:468-76.
Viollet B, Horman S, Leclerc J, Lantier L, Foretz M, Billaud M, et al. AMPK inhibition in health and disease. Crit Rev Biochem Mol Biol. 2010;45:276-95.
Wang P, Zhao J, Yang X, Guan S, Feng H, Han D, et al. PFDN1, an indicator for colorectal cancer prognosis, enhances tumor cell proliferation and motility through cytoskeletal reorganization. Med Oncol. 2015;32:264.
Wang TP, Hsu SH, Feng HC, Huang RF. Folate deprivation enhances invasiveness of human colon cancer cells mediated by activation of sonic hedgehog signaling through promoter hypomethylation and cross action with transcription nuclear factor-kappa B pathway. Carcinogenesis. 2012;33:1158-68.
Warburg O. On the origin of cancer cells. Science. 1956;123:309-70.
Ware CB, Nelson AM, Mecham B, Hesson J, Zhou W, Jonlin EC, et al. Derivation of naive human embryonic stem cells. Proc Natl Acad Sci USA. 2014;111:4484-9.
Wiesener MS, Jurgensen JS, Rosenberger C, et al. Widespread hypoxia-inducible expression of HIF-2 alpha in distinct cell populations of different organs. FASEB J. 2003;17:271-3.
Wittwer JA, Robbins D, Wang F, Codarin S, Shen X, Kevil CG, et al. Enhancing mitochondrial respiration suppresses tumor promoter TPA-induced PKM2 expression and cell transformation in skin epidermal JB6 cells. Cancer Prev Res. 2011;4:1476-84.
Wu XY, Fu ZX, Wang XH. Effect of hypoxia-inducible factor 1-alpha on Survivin in colorectal cancer. Mol Med Rep. 2010;3:409-15.
Yang T, Xu F, Fang D, Chen Y. Targeted proteomics enables simultaneous quantification of folate receptor isoforms and potential isoform-based diagnosis in breast cancer. Sci Rep. 2015;5:16733.
Yang Z, Vadlamudi RK, Kumar R. Dynein light chain 1 phosphorylation controls micropinocytosis. J Biol Chem. 2005;280:654-9.
Ye X, Tam WL, Shibue T, Kaygusuz Y, Reinhardt F, Ng Eaton E and Weinberg RA. Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature. 2015;525:256-60.
Yip CK, Murata K, Walz T, Sabatini DM, Kang SA. Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol Cell. 2010;38:768-74.
Zambell KL, Fitch MD and Fleming SE. Acetate and butyrate are the major substrates for de novo lipogenesis in rat colonic epithelial cells. J Nutr. 2003;13:3509-15.
Zhang S, Zhao Y, Xu M, Yu L, Zhao Y, Chen J, et al. FoxO3a modulates hypoxia stress induced oxidative stress and apoptosis in cardiac microvascular endothelial cells. PLoS ONE. 2013;8:e80342.
Zhang Y, Liu X, Zhang J, Li L, Liu C. The expression and clinical significance of PI3K, pAkt and VEGF in colon cancer. Oncol Lett. 2012;4:763-6.
Zhou W, Choi M, Margineantu D, Margaretha L, Hesson J, Cavanaugh C, et al. HIF1alpha induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition. EMBO J. 2012;31:2103-16.
Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12:21-35.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊