跳到主要內容

臺灣博碩士論文加值系統

(44.210.77.106) 您好!臺灣時間:2022/12/06 11:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾宣瑜
研究生(外文):TSENG, HSUAN-YU
論文名稱:建構物聯網數據收集器與其效能驗證之研究
論文名稱(外文):Construct the IoT Data Collector and Its Efficiency Validation
指導教授:蔡明志蔡明志引用關係
指導教授(外文):TSAI, MING-JYH
口試委員:盧浩鈞、洪茂盛
口試委員(外文):LU, HAO-CHUN; HUNG, MAO-SHENG
口試日期:2017-05-31
學位類別:碩士
校院名稱:輔仁大學
系所名稱:資訊管理學系碩士在職專班
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:78
中文關鍵詞:物聯網大數據資料串流資訊正規化霧端運算
外文關鍵詞:IoTBig-dataData streamData normalizaionFog computing
相關次數:
  • 被引用被引用:3
  • 點閱點閱:2509
  • 評分評分:
  • 下載下載:143
  • 收藏至我的研究室書目清單書目收藏:2
近年來,資訊科技不論是在硬體效能、軟體工程等都有著明顯而快速的進展。因為人們對於資訊科技的高度依賴,而需要更高規格的資訊處理能力,促使資訊科技相關技術不斷有著新的進展。而隨著資訊科技技術的進展,對於資料的處理量也隨之更為龐大,在資訊技術越來越有能力處理更多元、更龐大的資料時,於是人們期望從資料中能夠挖掘出更多的資訊,為滿足這無止盡的期望,在更多資源投入在資訊技術的研發,形成了一種需求促進資訊科技的進步,且資訊科技的進步衍生更多需求的巧妙循環。
各式各樣的資料,不論是從系統運作面、從設備訊息面、從操作過程面等各處形成,越來越多的資料量使得傳統的資料處理方法面臨挑戰,越來越多的資料類型使得傳統的分析模式也面臨著挑戰。
物聯網是典型的大數據的應用,因為有著各式各樣的設備資料流的傳遞,當多樣且巨量的設備產生了極為龐大的設備訊息資料後,怎樣對這些資料進行有效收集,成了一項不可忽視的課題。本論文提供一資料收集與處理之解決方案。藉由資料標準化、格式一致化的預處理雲霧分工架構,作為改善數據資料的有效性及可用性,以協助雲端分析平台達到簡化與重用(Reuse)的可能。
In recent years, information technology, whether in the hardware performance, software engineering and so have a clear and rapid progress. Because of the high degree of reliance on information technology and the need for higher-level information processing capacity, there has been new progress in information technology-related technologies. With the progress of information technology (IT) technology, the amount of data processing is also increasing. When information technology is more and more capable of handling more and more information, it is expected that it will be possible to dig out more More information to meet this endless expectation, in more resources invested in the development of information technology, the formation of a demand for the promotion of information technology progress, and the progress of information technology to derive more needs of the ingenious cycle.
A wide variety of information, from the operation of the system, from the device information, from the operation process and other parts of the formation, more and more data volume makes the traditional data processing methods face challenges, more and more information Type makes the traditional analysis model also faces challenges.
Internet of Things is a typical application of large data, because it has a wide range of equipment and data flow, when a variety of large and powerful equipment has a very large equipment information. This paper studies the bottleneck of the cloud architecture of the existing multi-thing networking system, and explores the improvement mode of the current bottle item, and finally provides a solution for data collection and processing. It can improve the effectiveness of the overall networking system to improve the feasibility of simplifying and reusing the cloud analysis platform by improving the effectiveness and availability of data by standardizing and formatting the pre-processing procedures.
第壹章 緒論 1
第一節 研究背景 1
第二節 研究動機及目的 3
第三節 研究範圍與流程 6
第貳章 文獻探討 7
第一節 物聯網 7
第二節 大數據與物聯網 8
第三節 物聯網架構 10
第四節 物聯網協定 11
第五節 資料串流的即時分析 14
一、 分析技術 14
二、 偵測的定義 14
三、 分析方法 15
四、 資料串流的即時解析 15
五、 語義分析 16
第六節 大數據的應用 17
第參章 研究方法 19
第一節 整體規劃 19
第二節 規劃構想 22
一、 可線上更新的解析模組。 22
二、 設備的增加與調整的操作介面。 22
三、 設備狀態與資料流狀態的監控畫面。 22
四、 高可用性機制與監控畫面。 22
五、 資料流的擷取、解析、轉換、過濾。 22
六、 控制流的擷取與設備的控制。 23
第三節 架構與功能模組 24
一、 架構說明 24
二、 支援線上更新的解析模組 28
三、 設備資料流 28
四、 設備的控制 33
五、 再談資料串流的處理 35
六、 特定語義分析模型 37
七、 語義暫存器 38
第四節 效能驗證方法 41
第五節 研究限制 42
第肆章 模型建構 43
第一節 架構主軸 43
一、 硬體環境需求 43
二、 軟體環境需求 44
第二節 整合服務層 46
一、 設備資訊與參數 46
二、 設備資料擷取模組 47
三、 執行緒狀態備詢模組 47
四、 訊息處理器 49
五、 訊息發佈器 49
六、 設備訊息備詢模組 50
第三節 程序流程 51
第四節 模擬資料生成器的建置 59
第伍章 效益評估與改善措施 60
第一節 設備模擬 60
第二節 開放資料模擬 61
第三節 效能與改善措施 62
第陸章 結論與建議 64
第一節 整體效益比較 64
第二節 數據收集器的應用 71
一、 健康照護領域 71
二、 車聯網領域 72
三、 居家保全領域 72
第三節 後續研究建議 73
參考文獻 74
1.A. Jovic, K. Brkic and N. Bogunovic, An overview of free software tools for general data mining, MIPRO, May 2014.
2.Aditya Bhardwaj, Vineet Kumar Singh, Vanraj, Yogendra Narayan, Analyzing BigData with Hadoop Cluster in HDInsight Azure Cloud, IEEE, 2015.
3.Ahmed Fuad Mohamme, Vikas T. Humbe, Santosh S. Chowhan, A Review of Big Data Environment and Its Related Technologies, International Conference on Information Communication and Embedded Systems(ICICES), 2016.
4.Aicha Ben Salem, Faouzi Boufares, Sebastiao Correia, Semantic Recognition of a Data Structure in Big-Data, Journal of Computer and Communications, February 2014, pp.93-102.
5.Akyildiz, I.F., Weilian, S.,Sankarasubramaniam, Y. and Cayirci, E., ASurvey on Sensor Networks, IEEE Communications Magazine, Vol.40, No.8, 2002, pp.102-114.
6.Ala Al-Fuqaha, Mehdi Mohammadi, Mohammed Aledhari, and Moussa Ayyash, Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications, IEEE Communication Surveys & Tutorials, Vol.17, No.4, 2015.
7.Andre Ribeiro, Afonso Silva, Alberto Rodrigues da Silva, Data Modeling and Data Analytics: A Survey from a Big Data Perspective, Journal of Software Engineering and Applications, August 2015, pp.617-634.
8.Atsushi Shimoda, Taro Yabuki, Success Factors in Global Niche Top Companies: Analysis of Free Description Data using Text Mining, 5th IIAI International Congress on Advanced Applied Informatics, 2016.
9.Cheng Xie, Guoping Zou, Huifang Wang, and Yongtao Jin, A new condition assessment method for distribution transformers based on operation data and record text mining technique, China International Conference on Electricity Distribution(CICED), August 2016.
10.Danie Davidson .J, I.Jeena Jacob, Dr.K.G.srinivasagam, Information Extraction based on Probing algorithm with Bayesian approach, International Conference on Information Communication and Embedded Systems(ICICES), 2010.
11.Deepali Arora, Piyush Malik, Analytics: Key to go from generating big data to deriving business value, IEEE First International Conference on Big Data Computing Service and Applications, 2015.
12.Fatemeh Jalali, Kerry Hinton, Robert Ayre, Tansu Alpcan, and Rodney S. Tucker, Fog Computing May Help to Save Energy in Cloud Computing, IEEE Journal on Selected Areas in Communications, Vol.34, No.5, May 2016.
13.Guangyan Huang, Jing He, Chi-Hung Chi, A Data As A Product Model for Future Consumption of Big Stream Data in Clouds, IEEE International Conference on Services Computing, 2015.
14.Jacques Bughin, Big data, Big bang. Springer Journal of Big Data, 2016, pp.2-3.
15.Jian LIU, Hongli CHENG, Xiaojun SHI, Jingqiu XU, A Tabu Search Algorithm for Fast Restoration of Large Area Breakdown in Distribution Systems, Scientific Research, Energy and Power Engineering, 2010, pp.1-5.
16.Junbo Wang, Yilang Wu, Zixue Cheng, A Concept Model of Two-Ties-Aware and Design of a Discovery Engine based on User Experienced Bigdata, University-Business Innovation Centre, The University of Aizu Aizuwakamatsu, Fukushima, Japan, 2014.
17.Kubilay Atasu, Leftmost Longest Regular Expression Matching in Reconfigurable Logic, IBM Research - Zurich, 2015.
18.Kuldeep Singh Jadon, Robin Singh Bhadoria, Geetam Singh Tomar, A Review on Costing Issues in Big Data Analytics, International Conference on Computational Intelligence and Communication Networks, International Conference on Computational Intelligence and Communication Networks, 2015.
19.Lobna Yehia, Ayman Khedr, Ashraf Darwish, Hybrid Security Techniques for Internet of Things Healthcare Applications, Scientific Research, Advances in Internet of Things, May 2015, pp.21-25.
20.Mario Divan, Luis Olsina, Silvia Gordillo, Strategy for Data Stream Processing Based on Measurement Metadata: An Outpatient Monitoring Scenario, Scientific Research, Journal of Software Engineering and Applications, April 2011, pp.653-665.
21.Nathan Aston, Timothy Munson, Jacob Liddle, Garrett Hartshaw, Dane Livingston and Wei Hu, Sentiment Analysis on the Social Networks Using Stream Algorithms, Journal of Data Analysis and Information Processing, February 2014, pp.60-66.
22.Nga Lam Or, Xing Wang, and Derek Pao, MEMORY-Based Hardware Architectures to Detect ClamAV Virus Signatures with Restricted Regular Expression Features, IEEE Transactions on Computers, Vol.65, No.4, April 2016, pp.1225-1238.
23.Noel Yuhanna, Market Overview: Big Data Integration, Forrester Report, December 2014.
24.The Organisation for Economic Co-operation and Development (OECD), New Sources of Growth: Knowledge-Based Capital – Key Analyses and Policy Conclusions, Synthesis Report, 2013.
25.Otto K. M. Cheng, Raymond Lau, Big Data Stream Analytics for Near Real-Time Sentiment Analysis, Scientific Research, Journal of Computer and Communications, March 2015, pp.189-195.
26.Priyanka B Dastanwala, Vibha Patel, A Review on Social Audience Identification on Twitter using Text mining methods, IEEE WiSPNET Conference, 2016.
27.Salvatore Gaglio, Giuseppe Lo Re, and Marco Morana, Real-Time Detection of Twitter Social Events from the User’s Perspective, IEEE International Conference on Communications, 2015.
28.Sapna Tyagi, Ashraf Darwish, Mohammad Yahiya Khan, Managing Computing Infrastructure for IoT Data. Scientific Research, Advances in Internet of Things, April 2014, pp.29-35.
29.Sen Qian, What Is Detection, Scientific Research, Detection, February 2014, pp.7-9.
30.Somayya Madakam, R. Ramaswamy, Siddharth Tripathi, Internet of Things (IoT): A Literature Review, Scientific Research, Journal of Computer and Communications, March 2015, pp.164-173.
31.Sushovan De, Yuheng Hu, Yi Chen, Subbarao Kambhampati, BayesWipe: A Multimodal System for Data Cleaning and Consistent Query Answering on Structured BigData, IEEE International Conference on Big Data, 2014.
32.Syed Muqsit Shaheed, Jalil Abbas, Asif Shabbir, Fayyaz Khalid, Solving the Challenges of Pervasive Computing, Scientific Research, Journal of Computer and Communications, March 2015, pp.41-50.
33.Tetsuya Nakatoh, Satoru Uchida, Emi Ishita and Toru Oga, Automated Generation of Coding Rules: Text-Mining Approach to ISO 26000, 5th IIAI International Congress on Advanced Applied Informatics, 2016.
34.Thomas Gonnot, Won-Jae Yi, Ehsan Monsef and Jafar Saniie, Home Automation Device Protocol (HADP): A Protocol Standard for Unified Device Interactions, Scientific Research, Advances in Internet of Things, May 2015, pp.27-38.
35.Walisa Romsaiyud, Automatic Extraction of Topics on Big Data Streams Through Scalable Advanced Analysis, International Computer Science and Engineering Conference (ICSEC), 2014.
36.Yu, C., Research and Design of Logistics Management System based on Internet of Things, Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC), 2011, pp.6314-6317.
37.Yunkon Kim, Yong-Hyun Kim, Ga-Won Lee, Eui-Nam Huh, Survey of Big Data-as-a-Service Type, IEEE 17th International Conference on High Performance Computing and Communications (HPCC), 2015.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊