跳到主要內容

臺灣博碩士論文加值系統

(44.210.85.190) 您好!臺灣時間:2022/12/10 14:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何俊諭
研究生(外文):HO, CHUN-YU
論文名稱:不確定環境下多目標供應鏈網路規劃決策
論文名稱(外文):Multi-objective supply chain network planning decisions in uncertain environments
指導教授:梁添富梁添富引用關係
指導教授(外文):LIANG, TIAN-FU
口試委員:陳義分黃天受
口試委員(外文):CHEN, YI-FENHUANG, TIAN-SHOU
口試日期:2017-06-08
學位類別:碩士
校院名稱:修平科技大學
系所名稱:精實生產管理碩士班
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:61
中文關鍵詞:供應鏈網路規劃決策混合可能性/模糊目標規劃模糊集三角可能性分配多目標線性規劃
外文關鍵詞:Supply chain network planning decisionsMixed possibilistic/fuzzy goal programmingFuzzy setsTriangular possibility distributionMulti-objective linear programming
相關次數:
  • 被引用被引用:0
  • 點閱點閱:77
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
源於企業決策資訊取得的不完整性與多變性,實務上供應鏈網路規劃決策(SCNPD)問題相關的環境係數與決策參數,一般常含有相當程度的模糊性/不精確性,且須同步追求多元化決策目標,故決策者實際所面對的為一含不精確多目標之SCNPD問題。本研究的目的主要在於發展一互動式混合可能性/模糊目標規劃(MPFGP)技術,用以求解不確定環境下涵蓋多產品、多時期、多階段之不精確多目標SCNPD問題。首先,本研究建構一符合實際情境之多目標SCNPD模式,內容包含同步追求總製造/配送成本、總配送時間二個極小化不精確目標,並將需求量變動、產能與資源供需限制、物料與存量平衡、總財務預算及各項作業成本的貨幣時間價值因素納入考量。其次,本研究應用模糊集、可能性理論與數學規劃技術,發展求解原始不精確多目標SCNPD問題之互動式二階段MPFGP最佳化方法論,用以求得令決策者滿意之有效妥協解,提供符合企業需求的最適SCNPD計畫。接著,建立二階段MPFGP方法之互動式求解程序,提供系統化的模糊決策架構與機制,藉由彈性修正程序與執行步驟,提升模式建構效率及整體決策滿意度。最後,本研究特舉一家企業個案進行模式測試,並將之與現有主要文獻所發展的SCNPD技術進行量化與質化比較,藉以印證MPFGP方法於實際應用之可行性,並彙總所呈現的重要管理意涵和正面特色。綜合而言,本研究所發展的互動式二階段MPFGP方法,除可保證求得不確定環境下多目標SCNPD問題之有效妥協解外,同時涵蓋多元化決策目標、周延決策資訊、彈性修正程序、考量各作業成本的貨幣時間價值,以及具較高的模式建構效率與彈性之正面特色,可以解決傳統SCNPD模式於產業實際應用程度不足之問題。
In real-world supply chain network planning decisions (SCNPD), related environmental coefficients and parameters are frequently fuzzy/imprecise in nature owing to incomplete and unavailable information, and the decision maker (DM) must simultaneously handle conflicting objectives over the intermediate planning horizon. This work develops an interactive mixed possibilistic/fuzzy goal programming (MPFGP) technique to solve multi-product, multi-period and multi-echelon SCNPD problems with multiple imprecise goals in uncertain environments. The original SCNPD model designed here attempts to simultaneously minimize the total manufacture/distribution costs and minimize total delivery time with reference to available machine capacity and labor levels at each manufacturer, as well as demand and available warehouse space at each destination, and considers the constraints on total budget and the time value of money of related operating cost categories. Moreover, an interactive two-phases MPFGP method is developed for solving the original multi-objective SCNPD problems based on the fuzzy sets, possibility theory and mathematical programming techniques. Additionally, a systematic solution procedure is formulated to provide a suitable fuzzy decision-making framework of the decision maker (DM) for solving the SCNPD problems, enabling a DM to interactively modify the imprecise data and parameters until a preferred efficient compromise solution and a suitable SCNPD plan are derived. Finally, an industrial case is utilized to implement the feasibility of applying the proposed interactive two-phases MPFGP method to realistic SCNPD problems and several significant implications regarding the practical application of the proposed method are presented. Overall, the significant characteristics that differentiate the proposed MPFGP method from the existing main SCNPD techniques include multiple objectives, wide-ranging decision information, flexible decision-making processes, and considering the time value of money of related operating cost categories. Computational methodology developed in this work can effectively handle the practical SCNPD problems and can easily be extended to relevant management decisions in uncertain environments.
中文摘要 Ⅰ
英文摘要 Ⅱ
誌謝 Ⅲ
目錄 Ⅳ
表目錄 Ⅵ
圖目錄 Ⅶ
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究方法 4
1.3 進行步驟 5
1.4 研究範圍與限制 5
1.5 研究架構 6
第二章 文獻探討 8
2.1 傳統確定性環境決策方法 8
2.2 風險環境決策方法 9
2.3 模糊數學規劃技術 10
2.4 可能性規劃技術 12
第三章 模式建立與發展 16
3.1 問題陳述、假設條件與符號定義 16
3.2 供應鏈網路規劃決策(SCNPD)模式 19
3.3 求解方法論 21
3.4 互動式求解程序 29
第四章 模式測試 31
4.1 個案介紹 31
4.2 求解程序 33
4.3 結果分析與討論 40
4.4 模式比較 45
第五章 結論與未來研究方向 48
5.1 結論 48
5.2 未來研究方向 49
參考文獻 51
附錄一 模糊集理論 58
附錄二 Bellman and Zadeh 模糊決策 61

1.Abd El-Wahed, W. F and S. M. Lee, “Interactive fuzzy goal programming for multi-objective transportation problems,” Omega, 34, 158-166 (2006).
2.Afrouzy Z. A., S. H. Nasseri and I. Mahdavi, “A fuzzy stochastic multi-objective optimization model to configure a supply chain considering new product development,” Applied Mathematical Modelling, 40, 7545-7570 (2016).
3.Alexandre, D. and P. Croline, “Supply planning under uncertainties in MRP environments: a state of the art,” Annual Review in Control, 31, 269-279 (2007).
4.Aliev, R. A., B. Fazlollahi, B. G. Guirimov, and R. R. Aliev, “Fuzzy-genetic approach to aggregate production-distribution planning in supply chain management,” Information Sciences, 177, 4241-4255 (2007).
5.Amorim, P., H. O. Gunther, and B. Almada-Lobo, “Multi-objective integrated production and distribution planning of perishable products,” International Journal of Production Economics, 138, 89-101 (2012).
6.ÃÃzer, U. and D. AyÅÅe, “Performance evaluation of green supply chain management using integrated fuzzy multi-criteria decision making techniques,” Computers & Industrial Engineering, 102, 502-511 (2016).
7.Azaron, A., K. N. Brown, S. A. Tarim, and M. Modarres, “A multi-objective stochastic programming approach for supply chain design considering risk,” International Journal of Production Economics, 116, 129-138 (2008).
8.Balaram, D., B. Bipradas, S. Bijan, and S. K. Sanyal, “Multi objective performance analysis: A novel multi-criteria decision making approach for a supply chain,” Computers & Industrial Engineering, 94, 105-124 (2016).
9.Bellman, R. E. and L. A. Zadeh, “Decision-making in a fuzzy environment,” Management Science, l7, 141-164 (1970).
10.Bhattacharya, A. and P. Vasant, “Soft-sensing of level of satisfaction in TQC production-mix decision heuristic using robust fuzzy-LP,” European Journal of Operational Research, 177, 55-70 (2007).
11.Buckley, J. J., “Possibilistic linear programming with triangular fuzzy numbers,” Fuzzy Sets and Systems, 26, 135-138 (1988).
12.Buckley, J. J., “Solving possibilistic linear programming problems,” Fuzzy Sets and Systems, 31, 329-341 (1989).
13.Camacho-Vallejo, J. F, R. M. Sánchez and J. L. González-Velarde, “A heuristic algorithm for a supply chain׳s production-distribution planning,” Computers and Operations Research, 61, Pages 110-121(2015).
14.Cheng, C. Y., T. L. Chen, and Y. Y. Chen, “An analysis of the structural complexity of supply chain networks,” Applied Mathematical Modelling, 38, 2328-2314 (2014).
15.Chen T. W., M. Larbani, and C. H. Liu, “Simulation of a supply chain game with multiple fuzzy goals,” Fuzzy Sets and Systems, 161, 1489-1510 (2010).
16.Chen, C. L. and W. C. Lee, “Multi-objective optimization of multi-echelon supply chain networks with uncertain product demands and prices,” Computers and Chemical Engineering, 28, 1131-1144 (2004).
17.Chen, C. T. and S. F. Huang, “Order-fulfillment ability analysis in the supply-chain system with fuzzy operation times,” International Journal of Production Economics, 101, 185-193 (2006).
18.Cheng T. C. E., C. Gao, and H. Shen, “Production planning and inventory allocation of a single-product assemble-to-order system with failure-prone machines,” International Journal of Production Economics, 131, 604-617 (2011).
19.Dubois, D., H. Fargier, and H. Prade,“Refinement of the maximin approach to decision-making in a fuzzy environment,” Fuzzy Sets and Systems, 81, 103-122 (1996).
20.Dubois, D. and P. Fortemps, “Computing improved optimal solutions to max-min flexible constraint satisfaction problems,” European Journal of Operational Research, 118, 95-126 (1999).
21.Dubois, D., H. Fargier, and P. Fortemps, “Fuzzy scheduling: modeling flexible constraints vs. coping with incomplete knowledge,” European Journal of Operational Research, 147, 231-252 (2003).
22.Fahimina, B., R. Z. Farahani, and J. Sarkis, “Integrated aggregate supply chain planning using memetic algorithm – A performance analysis case study,” International Journal of Production Research, 51, 5354-5373 (2013).
23.Farahani, R. Z., S. Rezapour, T. Drezner, and S. Fallah, “Competitive supply chain network design: An overview of classifications, models, solution techniques and applications,” Omega, 45, 92-118 (2014).
24.Garcia, J. M. and S. Lozanoen, “Production and delivery scheduling problem with time windows,” Computers and Industrial Engineering, 48, 733-742 (2005).
25.Gholamina, N., I. Mahdavi, and R. T. Moghaddam, “Comprehensive fuzzy multi-objective multi-product multi-site aggregate production planning decisions in a supply chain under uncertainty,” Applied Soft Computing, 37, 585-607 (2015).
26.Gen, M. and A. Syarif, “Hybrid genetic algorithm for multi-time period production/distribution planning,” Computers and Industrial Engineering, 48, 799-809 (2005).
27.Gun M. and Y. Wu, “Two phase approach for solving the fuzzy linear programming problems,” Fuzzy Sets and Systems, 107, 191-195 (1999).
28.Hannan, E. L., “Linear programming with multiple fuzzy goals,” Fuzzy Sets and Systems, 6, 235-248 (1981).
29.Hsu, H. M. and W. P. Wang, “Possibilistic programming in production planning of assemble-to-order environments,” Fuzzy Sets and Systems, 119, 59-70 (2001).
30.Houssem, F., A. Omar, and M. Faouzi, “Multi-objective stochastic multi-site supply chain planning under demand uncertainty considering downside risk,” Computers & Industrial Engineering, 102, 268-279 (2016).
31.Inuiguchi, M. and M. Sakawa, “Possible and necessary efficiency in possibilistic multiobjective linear programming problems and possible efficiency test,” Fuzzy Sets and Systems, 78, 231-241 (1996).
32.Inuiguchi, M. and J. Ramik, “Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem,” Fuzzy Sets and Systems, 111, 3-28 (2000).
33.Ivanon, D., A. Pavlov, and B. Sokolov, “Optimal distribution (re)planning in a centralized multi-stage supply network under conditions of the ripple effect and structure dynamics,” European Journal of Operational Research, 237, 758-770 (2014).
34.Jang, Y. J., S. Y. Jang, B. M. Chang, and J. Park, “A combined model of network design and production/distribution planning for a supply network,” Computers and Industrial Engineering, 43, 263-281 (2002).
35.Kabak, O. and F. Ulegin, “Possibilistic linear programming approach for supply chain networking decisions,” European Journal of Operational Research, 209, 253-264 (2011).
36.Karimi-Nasab, M., D. Shishebori, and S. G. R. Jalali-Naini, “Multi-objective optimization for pricing and distribution in a supply chain with stochastic demand,” International Journal of Industrial and Systems Engineering, 13, 56-72 (2013).
37.Ko, M., A. Tiwari, and J. Mehnen, “A review of soft computing applications in supply chain management,” Applied Soft Computing, 10, 661-674 (2010).
38.Lai, Y. J. and C. L. Hwang, “Interactive fuzzy linear programming,” Fuzzy Sets and Systems, 45, 169-183 (1992).
39.Lai, Y. J. and C. L. Hwang, “A new approach to some possibilistic linear programming problems,” Fuzzy Sets and Systems, 49, 121-133 (1992b).
40.Lai, Y. J. and C. L. Hwang, “Fuzzy Multiple Objective Decision Making, ” Heidelberg: Springer-Verlag (1996).
41.Lakhal, S. Y., A. Martel, O. Kettani, M. Oral, “On the optimization of supply networking decisions,” European Journal of Operational Research, 129, 259-270 (2001).
42.Leberling, H., “On finding compromise solutions in multicriteria problems using the fuzzy min-operator,” Fuzzy Sets and Systems, 6, 105-118 (1981).
43.Lee, Y. H. and S. H. Kim, “Production-distribution planning in supply chain considering capacity constraints,” Computers and Industrial Engineering, 43, 169-190 (2002).
44.Lee S. D. and S. C. Lan, “Production lot sizing with a secondary outsourcing facility,” International Journal of Production Economics, 141, 414-424 (2013).
45.Leung, S. C. H., S. O. S. Tsang, W. L. Ng, and Y. Wu, “A robust optimization model for multi-site production planning problem in an uncertain environment,” European Journal of Operational Research, 181, 224-238 (2006).
46.Li, L. and K. K. Lai, “A fuzzy approach to the multi-objective transportation problem,” Computers and Operations Research, 27, 43-57 (2000).
47.Li, X. Q., B. Zhang, and H. Li, “Computing efficient solutions to fuzzy multiple objective linear programming problems,” Fuzzy Sets and Systems, 157, 1328-1332 (2006).
48.Liang, T. F., “Distribution planning decisions using interactive fuzzy multi-objective linear programming,” Fuzzy Sets and Systems, 157, 1303–1316 (2006).
49.Liang, T. F., “Applying fuzzy goal programming to production/transportation planning decisions in a supply chain,” International Journal of Systems Science, 38, 293-304 (2007).
50.Liang, T. F., “Integrating production-transportation planning decision with fuzzy multiple goals in supply chains,” International Journal of Production Research, 46, 1477-1494 (2008).
51.Liang, T. F., “Application of fuzzy sets to manufacturing/distribution planning decisions in supply chains,” Information Sciences, 181, 842- 854 (2011).
52.Liang, T. F., “Integrated manufacturing/distribution planning decisions with multiple imprecise goals in an uncertain environment,” Quality and Quantity, 46, 137-153 (2012).
53.Liu, S. and L. G. Papageorgiou, “Multiobjective optimization of production, distribution and capacity planning of global supply chains in the process industry,” Omega, 41, 369-382 (2013).
54.Luhandjula, M. K., “Compensatory operators in fuzzy programming with multiple objectives,” Fuzzy Sets and Systems, 8, 245-252 (1982).
55.Min, H. and G. Zhou, “Supply chain modeling: past, present and future,” Computers and Industrial Engineering, 43, 231-249 (2002).
56.Moghaddam, K. S., “Fuzzy multi-objective model for supplier selection and order allocation in reverse logistics systems under supply and demand uncertainty,” Expert Systems with Applications, 42, 6237-6254 (2015).
57.Mohammed A. and Qian.W. “The fuzzy multi-objective distribution planner for a green meat supply chain,” International Journal of Production Economics, 184,47-58 (2017).
58.Nagar, L., P. Dutta, and K. Jain, “An integrated supply chain model for new products with imprecise production and supply under scenario dependent fuzzy random demand,” International Journal of Systems Science, 45, 873-887 (2014).
59.Nia, A. R, M. H. Far, and S. T. A. Niaki, “A fuzzy vendor managed inventory of multi-item economic order quantity model under shortage: An ant colony optimization algorithm,” International Journal of Production Economics, 155, 259-271 (2014).
60.Ozdamar, L. and T. Yazgac, “A hierarchical planning approach for a production- distribution system,” International Journal of Production Research, 37, 3759-3772 (1999).
61.Ozceylan, E. and T. Paksoy, “Fuzzy multi-objective linear programming approach for optimizing a closed-loop supply chain network,” International Journal of Production Research, 51, 2443-2461 (2013).
62.Özgen, D., S. Önut, B. Gülsün, U. R. Tuzkaya, and G.. Tuzkaya, “A two-phase methodology for multi-objective supplier evaluation and order allocation problems,” Information Sciences, 178, 485-500 (2008).
63.Parra, M. A., A. B. Terol, and M. R. Uria, “Solving the multi-objective possibilistic linear programming problem,” European Journal of Operational Research, 117, 175-182 (1999).
64.Park, Y. B., “An integrated approach for production and distribution planning in supply chain management,” International Journal of Production Research, 43, 1205-1224 (2005).
65.Peidro, D., J. Mula, M. Jimenez, and M. M. Botella, “A fuzzy linear programming based approach for tactical supply chain planning in an uncertainty environment,” European Journal of Operational Research, 205, 65-80 (2010).
66.Petrovic, D., “Simulation of supply chain behavior and performance in an uncertain environment,” International Journal of Production Economics, 71, 429-438 (2001).
67.Petrovic, D., R. Roy, and R. Petrovic, “Modelling and simulation of a supply chain in an uncertain environment,” European Journal of Operational Research, 109, 299-309 (1998).
68.Petrovic, D., R. Roy, and R. Petrovic, “Supply chain modeling using fuzzy sets,” International Journal of Production Economics, 59, 443-453 (1999).
69.Ramik, J. and J. Rimanek, “Inequality relation between fuzzy numbers and its use in fuzzy optimization,” Fuzzy Sets and Systems, 16, 123-138 (1985).
70.Ray, S., “An integrated operations-marketing model for innovative products and service,” International Journal of Production Economics, 95, 327-345 (2005).
71.Rizk, N., A. Martel, and Amours, S. D., “Multi-item dynamic production-distribution planning in process industries with divergent finishing stages,” Computers and Operations Research, 33, 3600-3623 (2005).
72.Rommelfanger, H., “Fuzzy linear programming and application,” European Journal of Operational Research, 92, 512-527 (1996).
73.Roni, M. S., S. D. Eksioglu, E. Searcy, and K. Jha, “A supply chain network design model for biomass co-firing in coal-fired power plants,” Transportation Research Part E: Logistics and Transportation Review, 61, 115-134 (2014).
74.Sakawa, M., “An interactive fuzzy satisficing method for multiobjective linear fractional programming problems,” Fuzzy Sets and Systems, 28, 129-144 (1988).
75.Su, T. S. and Y. F. Lin , “Fuzzy multi-objective procurement/production planning decision problems for recoverable manufacturing systems,” Journal of Manufacturing Systems, 37, 396-408(2015).
76.Tanaka, H., H. Ichihashi, and K. Asai, “A formulation of fuzzy linear programming problem based on comparison of fuzzy numbers,” Control and Cybernetics, 13, 185-194 (1984).
77.Tanaka, H., P. Guo, and B. Turksen, “Portfolio selection based on fuzzy probabilities and possibility distributions,” Fuzzy Sets and Systems, 111, 387-397 (2000).
78.Tang, J., D. Wang, and R. Y. K. Fung, “Formulation of general possibilistic linear programming problems for complex systems,” Fuzzy Sets and Systems, 119, 41-48 (2001).
79.Torabi, S. A. and E. Hassini, “An interactive possibilistic programming approach for multiple objective supply chain master planning,” Fuzzy Sets and Systems, 159, 193-214 (2008).
80.Vargas, V. and R. Metters, “A master production scheduling procedure for stochastic demand and rolling planning horizons,” International Journal of Production Economics, 132, 296-302 (2011).
81.Vasant, P. M., R. Nagarajan, and S. Yaacob, “Decision making using modified S-curve membership function in fuzzy linear programming problem,” Journal of Information and Communication Technology, 2, 1-16 (2002).
82.Wang, F, X. Lai, and N. Shi, “A multi-objective optimization for green supply chain network design,” Decision Support Systems, 51, 262-269 (2011).
83.Wang, R. C. and H. H. Fang, “Aggregate production planning with multiple objectives in a fuzzy environment,” European Journal of Operational Research, 133, 521-536 (2001).
84.Wang, R. C. and T. F. Liang, “Application of fuzzy multi-objective linear programming to aggregate production planning,” Computers and Industrial Engineering, 46, 17-41 (2004).
85.Wang, R. C. and T. F. Liang, “Applying possibilistic linear programming to aggregate production planning,” International Journal of Production Economics, 98, 328-341 (2005).
86.Wang, J. and Y. F. Shu, “Fuzzy decision modeling for supply chain management,” Fuzzy Sets and Systems, 150, 107-127 (2005).
87.Wang, J. and Y. F. Shu, “A possibilistic decision model for new product supply chain design,” European Journal of Operational Research, 177, 1044-1061 (2007).
88.Xu, J. and P. Wei, “Production-distribution planning of construction supply chain under a fuzzy random environment for large-scale construction projects,” Journal of Industrial and Management Optimization, 9, 31-56 (2013).
89.Yazenin, A.V., “Fuzzy and stochastic programming,” Fuzzy Sets and Systems, 22, 171-180 (1987).
90.Zadeh, L.A., “Fuzzy sets,” Information and Control, 8, 338–353 (1965).
91.Zadeh, L. A., “Fuzzy sets as a basis for a theory of possibility,” Fuzzy Sets and Systems, 1, 3-28 (1978).
92.Zimmermann, H.-J., “Description and optimization of fuzzy systems,” International Journal of General Systems, 2, 209-215 (1976).
93.Zimmermann, H.-J., “Fuzzy programming and linear programming with several objective functions,” Fuzzy Sets and Systems, 1, 45-56 (1978).
94.Zimmermann, H.-J., Fuzzy Set Theory and Its Application, Boston: Kluwer (1996).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top