跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/16 19:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王麗渝
研究生(外文):Wang, LI-YU
論文名稱:以體內外模式探討吳茱萸次鹼誘導人類食道鱗狀癌細胞CE81T/VGH凋亡
論文名稱(外文):Rutaecarpine induces apoptosis of human esophageal squamous cell carcinoma cell line CE81T/VGH in vitro and in vivo
指導教授:陳建志陳建志引用關係莊正宏莊正宏引用關係
指導教授(外文):CHEN, CHIEN-CHIHCHUANG, CHENG-HUNG
口試委員:李宗貴葉姝蘭廖慧芬
口試委員(外文):LII, CHONG-KUEIYEH, SHU-LANLIAO, HUI-FEN
口試日期:2016-12-23
學位類別:碩士
校院名稱:弘光科技大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:65
中文關鍵詞:吳茱萸次鹼
外文關鍵詞:Rutaecarpine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
食道癌(esophageal cancer)在全球癌症死亡人數排名第六,死亡率高達87.8%,目前尚無有效治療方式,主因為食道癌的治療用藥不多和對化療藥劑產生抗藥性及副作用等問題,所以需迫切開發新的治療藥物。吳茱萸次鹼(rutaecarpine, RTP)為一種quinazolinocarboline,是中草藥吳茱萸(Evodia rutaecarpa)主要的生物鹼化合物之一,許多研究發現其它有心血管保護作用、抗發炎(anti-inflammation)及抑制癌細胞增生等作用。然而,RTP是否具有誘發食道癌細胞凋亡的活性,尚未被研究,其相關機制亦不清楚。因此,在本研究中,我們將以細胞及異體移植模式(xenograft model)進行探討。
在細胞模式中,將CE81T/VGH人類食道鱗狀癌細胞與RTP (5、10及20 μM)共同培養,並以常用化療藥物-順鉑(cis-diamminedichloroplatinum (II), CDDP)做為正控制組,進行細胞週(cell cycle)及細胞凋亡(apoptosis)分析,並進一步以西方墨點法分p53、Bax (Bcl-2-associated X)與Bcl-2 (B-cell lymphoma 2)蛋白質表現。在動物模式中,我們將以裸小鼠(BALB/cAnN)進行異體移植試驗,並分別給予低劑量RTP (25 mg/kg body weight /twice weekly/p.o)、高劑量RTP (75 mg/kg body weight/twice weekly/p.o)及CDDP (5 mg/kg body weight/twice weekly/i.p),六週後犧牲動物並進行各項分析。
細胞試驗發現,RTP可以顯著抑制食道鱗狀癌細胞增生及促進其細胞凋亡,並具有劑量及時間關係(P<0.05)。進一步研究發現RTP可以顯著增加p53蛋白質表現,並誘導促凋亡蛋白Bax和抑制抗凋亡蛋白Bcl-2的表現(P<0.05),也可以促進Sub-G1生成。推測RTP可能透過增強p53蛋白質的表現並促進Bax及抑制Bcl-2蛋白表現,進而誘發食道鱗狀癌細胞凋亡。
在動物模式研究結果顯示,與腫瘤組相比,RTP高劑量組與CDDP處理組之腫瘤組織體積及重量均顯著降低(P<0.05)。然而RTP低劑量、高劑量及CDDP處理組在p53蛋白質與Bax蛋白質表現均顯著增加,並抑制Bcl-2蛋
白質表現(P<0.05),其結果與細胞實驗相似。進一步發現RTP低劑量、高劑量及CDDP處理組不但增加caspase-9及caspase-3蛋白質表現(P<0.05),也能顯著抑制腫瘤組織中PCNA (Proliferating cell nuclear antigen)蛋白質表現(P<0.05)。
我們藉由分析血清尿素氮(urea nitrogen, BUN)與肌肝酸(creatinin, Cre)的濃度及血漿紅血球(red blood cell)、血紅素(hemoglobin)、血球容積比(hematocrit)與平均紅血球血紅素濃度(mean corpuscular hemoglobin concentration)等,探討其RTP是否具有腎毒性(nephrotoxicity)及血液毒性(haematological toxicity),結果顯示,與控制組相比,RTP高劑量或低劑處理組均無顯著差異(P>0.05),但CDDP處理組BUN與Cre濃度均顯著上升(P<0.05)。實驗結果說明在不會產生腎毒性及血液毒性的情況下,RTP可以有效抑制食道鱗狀癌細胞生長,且抑制與CDDP相似。
綜合體內外實驗結果發現,RTP可能藉由增加p53蛋白質、促進Bax蛋白質、抑制Bcl-2蛋白質、活化下游caspase-9及caspase-3蛋白質,增進食道鱗狀癌細胞凋亡,進而抑制腫瘤生長,推測其機制可能與RTP增加p53蛋白質表現,經由內在性路徑促進(intrinsic pathway)細胞凋亡有關,但詳細機制尚須進一步探討。

Esophageal cancer is the sixth leading cause of cancer deaths worldwide with a mortality rate of 87.8%. There is currently no effective treatment for esophageal cancer due to a lack of appropriate medications and drug resistance and side effects resulting from chemotherapy drugs; thus, there is an urgent need for the development of new medications. Rutaecarpine (RTP) is a type of quinazolinocarboline and an important alkaloid from the Chinese medicinal herb Evodia rutaecarpa. Many studies have shown that RTP has cardiovascular protective, anti-inflammatory, anti-proliferative. However, no research has been conducted on the ability of RTP to induce apoptosis in esophageal cancer cells and its mechanism remains unclear. Therefore, this study investigated the issue using cells and xenograft models.
In the cell model, CE81T/VGH human esophageal squamous-cell carcinoma cells were treated with various concentrations of RTP (5, 10, and 20 μM). Cisplatin (cis-diamminedichloroplatinum (II), CDDP), a chemotherapy drug, was treated as the positive control group. The cell cycle and cell apoptosis were analyzed. The expression of proteins p53, Bax (Bcl-2-associated X), and Bcl-2 (B-cell lymphoma 2) was identified using Western blot. In the animal model, a xenograft test was conducted on nude mice (BALB/cAnN) treated with low dose RTP (25 mg/kg body weight /twice weekly/p.o), high dose RTP (75 mg/kg body weight/twice weekly/p.o), or CDDP (5 mg/kg body weight/twice weekly/i.p). The animals were sacrificed and analyzed after six weeks.
The cell model results indicated that RTP significantly inhibited the proliferation of esophageal squamous-cell carcinoma cells and induced apoptosis, which was dose- and time-dependent (P<0.05). Further investigation showed that RTP significantly increased p53 protein expression, induced Bax, and inhibited Bcl-2 expression (P<0.05). It is supposed that RTP can induce the apoptosis of esophageal squamous-cell carcinoma cells by increasing the expression of p53 and Bax proteins and inhibiting Bcl-2 protein.
The animal model results indicated that tumor tissue volume and weight were significantly reduced in the groups with high dosage RTP and CDDP treatments (P<0.05). The expression of p53 and Bax was significantly increased and the expression of Bcl-2 was reduced in the groups treated with low dosage RTP, high dosage RTP, and CDDP (P<0.05). These results are similar to those in the cell experiment. Further analysis showed that low and high dosage RTP and CDDP treatment increased the expression of caspase-9 and caspase-3 proteins (P<0.05). Moreover, RTP significantly inhibited the expression of proliferating cell nuclear antigen (PCNA) in tumor tissue (P<0.05). As such, these findings confirmed the results obtained in the cell experiment.
Furthermore, this study also analyzed the concentrations of blood urea nitrogen (BUN) and creatinine (Cre) in blood serum, red blood cells, hemoglobin, hematocrit, and mean corpuscular hemoglobin to examine whether RTP had nephrotoxicity and haematological toxicity. The results indicated that there were no significant differences between the control group and the groups treated with high and low dosage RTP (P>0.05), whereas in the group treated with CDDP, BUN and Cre concentrations significantly increased (P<0.05). With regard to the blood test, there were no significant differences between the control group and the groups treated with high and low dosage RTP (P>0.05). This shows that the RTP dosages used in this study did not cause nephrotoxicity or haematological toxicity. However, its inhibiting effect on esophageal squamous-cell carcinoma cells was similar to that of CDDP.
Taken together results showed that RTP increases p53 and Bax proteins, inhibits Bcl-2 protein, and activates caspase-9 and caspase-3 proteins, inducing the apoptosis of esophageal squamous-cell carcinoma cells and inhibiting tumor growth. These findings suggest that the RTP increases the expression of protein p53 and induces apoptosis via an intrinsic pathway. However, further research is needed to determine its exact mechanism.

中文摘要……………………………………………Ⅰ
英文摘要……………………………………………Ⅲ
目錄………………………………………………………Ⅴ
表目次…………………………………………………Ⅷ
圖目次…………………………………………………Ⅸ
縮寫表…………………………………………………ⅩⅠ
實驗架構……………………………………………ⅩⅢ
1. 文獻探討………………………………………1
2. 研究動機與目的……………………………6
3. 材料與方法…………………………………7
4. 結果………………………………………………20
5. 討論………………………………………………25
6. 結論………………………………………………28
7. 表目次…………………………………………29
8. 圖目次…………………………………………36
9. 參考文獻……………………………………54
10. 附錄……………………………………………61


衛生福利部統計處。民國104年主要死因分析。網址: http://www.mohw.gov.tw
Bao MH, Dai W, Li YJ, Hu CP. 2011. Rutaecarpine prevents hypoxia-reoxygenation-induced myocardial cell apoptosis via inhibition of NADPH oxidases. Canadian Journal of Physiology and Pharmacology. 89:177-186.
Basu A, Krishnamurthy S. 2010. Cellular responses to Cisplatin-induced DNA damage. Journal of Nucleic Acids. pii:201367.
Chan ST, Yang NC, Huang CS, Liao JW, Yeh SL. 2013. Quercetin enhances the antitumor activity of trichostatin A through upregulation of p53 protein expression in vitro and in vivo. PLoS One. 8:e54255.
Chang L, Huo B, Lv Y, Wang Y, Liu W. 2014. Ginsenoside Rg3 enhances the inhibitory effects of chemotherapy on esophageal squamous cell carcinoma in mice. Molecular and Clinical Oncology. 2:1043-1046.
Chao DT, Korsmeyer SJ. 1998. BCL-2 family: regulators of cell death. Annual Review Of Immunology. 16:395-419.
Chen J. 2016. The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression. Cold Spring Harbor Perspectives in Medicine. 6:a026104.
Chiou WF, Liao JF, Chen CF. 1996. Comparative study of the vasodilatory effects of three quinazoline alkaloids isolated from Evodia rutaecarpa. Journal of Natural Products. 59:374-378.
Chiu WC, Lee YC, Su YH, Wang YY, Tsai CH, Hou YA, Wang CH, Huang YF, Huang CJ, Chou SH, Hsieh PW, Yuan SF. 2016. The Synthetic β-Nitrostyrene Derivative CYT-Rx20 Inhibits Esophageal Tumor Growth and Metastasis via PI3K/AKT and STAT3 Pathways. PLoS One. 11:e0166453.
Cohen SM, Lippard SJ. 2001. Cisplatin: from DNA damage to cancer chemotherapy. Progress in Nucleic Acid Research and Molecular Biology. 67:93-130.

Domitrović R, Cvijanović O, Šušnić V, Katalinić N. 2014. Renoprotective mechanisms of chlorogenic acid in cisplatin-induced kidney injury. Toxicology. 324:98-107
Elmore S. 2007. Apoptosis: a review of programmed cell death. Toxicologic Pathology. 35:495-516
Enzinger PC, Mayer RJ. 2003. Esophageal cancer. The New England Journal of Medicine. 349:2241-2252
Fiandalo MV, Kyprianou N. 2012. Caspase control: protagonists of cancer cell apoptosis. Experimental oncology. 4:165-175
Fridman Y, Palgi N, Dovrat D, Ben-Aroya S, Hieter P, Aharoni A. 2010. Subtle alterations in PCNA-partner interactions severely impair DNA replication and repair. PLoS Biol. 8:e1000507.
Fuchs Y, Steller H. 2015. Live to die another way: modes of programmed cell death and the signals emanating from dying cells. Nature Reviews Molecular Cell Biology. 16:329-344.
Grünberger B, Raderer M, Schmidinger M, Hejna M. 2007. Palliative chemotherapy for recurrent and metastatic esophageal cancer. Anticancer Research. 27:2705-2714.
Herrup K. 2013. Post-mitotic role of the cell cycle machinery. Current Opinion in Cell Biology. 25:711-716.
Hu CP, Xiao L, Deng HW, Li YJ. 2003. The depressor and vasodilator effects of rutaecarpine are mediated by calcitonin gene-related peptide. Planta Medica. 69:125-129.
Hu Y, Fahmy H, Zjawiony JK, Davies GE. 2010. Inhibitory effect and transcriptional impact of berberine and evodiamine on human white preadipocyte differentiation. Fitoterapia. 81:259-268.
Jamil S, Lam I, Majd M, Tsai SH, Duronio V. 2015. Etoposide induces cell death via mitochondrial-dependent actions of p53. Cancer Cell International. 15:79.
Jeon TW, Jin CH, Lee SK, Jun IH, Kim GH, Lee DJ, Jeong HG, Lee KB, Jahng Y, Jeong TC. 2006. Immunosuppressive effects of rutaecarpine in female BALB/c mice. Toxicology Letters 164:155-166.
Jiang L, Sheikh MS, Huang Y. 2010. Decision Making by p53: Life versus Death. Molecular and cellular pharmacology. 2:69-77.
Kan SF, Yu CH, Pu HF, Hsu JM, Chen MJ, Wang PS. 2007. Anti-proliferative effects of evodiamine on human prostate cancer cell lines DU145 and PC3. Journal of Cellular Biochemistry. 101:44-56.
Kobayashi Y, Nakano Y, Kizaki M, Hoshikuma K, Yokoo Y, Kamiya T. 2001. Capsaicin-like anti-obese activities of evodiamine from fruits of Evodia rutaecarpa, a vanilloid receptor agonist. Planta Medica. 67:628-633.
Lee SH, Son JK, Jeong BS, Jeong TC, Chang HW, Lee ES, Jahng Y. 2008. Progress in the studies on Rutaecarpine. Molecules 13:272-300.
Lee SJ, Ahn H, Nam KW, Kim KH, Mar W. 2012 Effects of rutaecarpine on hydrogen peroxide-induced apoptosis in murine hepa-1c1c7 cells. Biomolecules & Therapeutics. 20:487-491.
Lee TJ, Kim EJ, Kim S, Jung EM, Park JW, Jeong SH, Park SE, Yoo YH, Kwon TK. 2006. Caspase-dependent and caspase-independent apoptosis induced by evodiamine in human leukemic U937 cells. Molecular Cancer Therapeutics. 5:2398-2407.
Levine AJ, Oren M. 2009. The first 30 years of p53: growing ever more complex. Nature Reviews Cancer. 9:749-758.
Li N, Sun C, Zhou B, Xing H, Ma D, Chen G, Weng D. 2014. Low concentration of quercetin antagonizes the cytotoxic effects of anti-neoplastic drugs in ovarian cancer. PLoS One. 9:e100314.
Li T, Kon N, Jiang L, Tan M, Ludwig T, Zhao Y, Baer R, Gu W. 2012. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell. 149:1269-1283.
Li WQ, Li XH, Du J, Zhang W, Li D, Xiong XM, Li YJ. 2016. Rutaecarpine attenuates hypoxia-induced right ventricular remodeling in rats. Naunyn-Schmiedebergs Archives Of Pharmacology. 389:757-767
Liao CH, Pan SL, Guh JH, Chang YL, Pai HC, Lin CH, Teng CM. 2005. Antitumor mechanism of evodiamine, a constituent from Chinese herb Evodiae fructus, in human multiple-drug resistant breast cancer NCI/ADR-RES cells in vitro and in vivo. Carcinogenesis. 26:968-975.
Lin LC, Chou CJ, Chen KT, Chen CF. 1991. Flavonoids from Evoidae fructus. Journal of Traditional Chinese Medicine. 2:94-101.
Liu T, Liu X, Li W. 2016. Tetrandrine, a Chinese plant-derived alkaloid, is a potential candidate for cancer chemotherapy. Oncotarget. 7:40800-40815.
Liu YN, Pan SL, Liao CH, Huang DY, Guh JH, Peng CY, Chang YL, Teng CM. 2009. Evodiamine represses hypoxia-induced inflammatory proteins expression and hypoxia-inducible factor 1alpha accumulation in RAW264.7. Shock. 32:263-269.
Lukin DJ, Carvajal LA, Liu WJ, Resnick-Silverman L, Manfredi JJ. 2015. p53 Promotes cell survival due to the reversibility of its cell-cycle checkpoints. Molecular Cancer Research. 13:16-28.
Lv Q, Zhang J, Yi Y, Huang Y, Wang Y, Wang Y, Zhang W. 2016. Proliferating Cell Nuclear Antigen Has an Association with Prognosis and Risks Factors of Cancer Patients: a Systematic Review. Molecular Neurobiology. 53:6209-6217.
Mattern J, Volm M. 2004. Imbalance of cell proliferation and apoptosis during progression of lung carcinomas. Anticancer Research. 24:4243-4276.
Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, Hoffman B, Reed JC. 1994. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene. 9:1799-1805.
Nichols JW, Bae YH. 2012.Odyssey of a cancer nanoparticle: from injection site to site of action. Nano Today. 7: 606-618.
Ogasawara M, Matsunaga T, Takahashi S, Saiki I, Suzuki H. 2002. Anti-invasive and metastatic activities of evodiamine. Biological and Pharmaceutical Bulletin. 25:1491-1493.
Ojha S, Venkataraman B, Kurdi A, Mahgoub E, Sadek B, Rajesh M. 2016. Plant-Derived Agents for Counteracting Cisplatin-Induced Nephrotoxicity. Oxidative Medicine and Cellular Longevity. 2016:4320374.
Pabla N, Dong Z. 2008. Cisplatin nephrotoxicity: Mechanisms and renoprotective strategies. Kidney International. 73:994-1007
Pellegata NS, Antoniono RJ, Redpath JL, Stanbridge EJ. 1996. DNA damage and p53-mediated cell cycle arrest: a reevaluation. Proceedings of the National Academy of Sciences of the United States of America. 93:15209-15214.
Pennathur A, Gibson MK, Jobe BA, Luketich JD. 2013. Oesophageal carcinoma. Lancet. 381:400-412.
Senturk E, Manfredi JJ. 2013. p53 and cell cycle effects after DNA damage. Methods in Molecular Biology. 962:49-61.
Shah N, Dizon DS. 2009. New-generation platinum agents for solid tumors. Future Oncology. 5:33-42.
Sheu JR, Hung WC, Wu CH, Lee YM, Yen MH. 2000. Antithrombotic effect of rutaecarpine, an alkaloid isolated from Evodia rutaecarpa, on platelet plug formation in in vivo experiments. British Journal of Haematology.110:110-115.
Sheu JR, Kan YC, Hung WC, Su CH, Lin CH, Lee YM, Yen MH. 1998. The antiplatelet activity of rutaecarpine, an alkaloid isolated from Evodia rutaecarpa, is mediated through inhibition of phospholipase C. Thrombosis Research 92:53-64.
Sheu JR. 1999. Pharmacological Effects of Rutaecarpine, an Alkaloid Isolated from Evodia rutaecarpa. Cardiovascular Drug Reviews. 17:237-245
Siddik ZH. 2003. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. 22:7265-7279.
Son JK, Chang HW, Jahng Y. 2015. Progress in studies on rutaecarpine. II.--synthesis and structure-biological activity relationships. Molecules. 20:10800-10821.
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. 2015. Global cancer statistics, 2012. CA: A Cancer Journal for Clinicians. 65:87-108.
Tsai ST, Wang PJ, Liou NJ, Lin PS, Chen CH, Chang WC. 2015. ICAM1 is a potential cancer stem cell marker of esophageal squamous cell carcinoma. PLoS ONE. 10:e0142834.
Ummat A, Rechkoblit O, Jain R, Roy Choudhury J, Johnson RE, Silverstein TD, Buku A, Lone S, Prakash L, Prakash S, Aggarwal AK. 2012. Structural basis for cisplatin DNA damage tolerance by human polymerase η during cancer chemotherapy. Nature Structural & Molecular Biology. 19:628-632.
Visconti R, Della Monica R, Grieco D. 2016. Cell cycle checkpoint in cancer: a therapeutically targetable double-edged sword. Journal of Experimental & Clinical Cancer Research. 35:153.
Vousden KH. 2005. Apoptosis. p53 and PUMA: a deadly duo. Science. 309:1685-1686.
Vousden KH1, Prives C. 2009. Blinded by the Light: The Growing Complexity of p53. Cell. 137:413-431.
Wang D, Lippard SJ. 2005. Cellular processing of platinum anticancer drugs. Nature Reviews Drug Discovery. 4:307-320.
Wang Q, Du H, Geng G, Zhou H, Xu M, Cao H, Zhang B, Song G, Hu T. 2014. Matrine inhibits proliferation and induces apoptosis via BID-mediated mitochondrial pathway in esophageal cancer cells. Molecular Biology Reports. 41:3009-3020.
Watanabe M, Baba Y, Yoshida N, Ishimoto T, Nagai Y, Iwatsuki M, Iwagami S, Baba H. 2014. Outcomes of preoperative chemotherapy with docetaxel, cisplatin, and 5-fluorouracil followed by esophagectomy in patients with resectable node-positive esophageal cancer. Annals of Surgical Oncology. 21:2838-2844.
Wen B, Roongta V, Liu L, Moore DJ. 2014. Metabolic activation of the indoloquinazoline alkaloids evodiamine and rutaecarpine by human liver microsomes: dehydrogenation and inactivation of cytochrome P450 3A4. Drug Metabolism & Disposition. 42:1044-1054.
World Health Organization. 2015. World Cancer Report.
Xu Y, Liu Q, Xu Y, Liu C, Wang X, He X, Zhu N, Liu J, Wu Y, Li Y, Li N, Feng T, Lai F, Zhang M, Hong B, Jiang JD, Si S. 2014. Rutaecarpine suppresses atherosclerosis in ApoE-/- mice through upregulating ABCA1 and SR-BI within RCT. The Journal of Lipid Research. 55:1634-1647.
Xue H, Cheng Y, Wang X, Yue Y, Zhang W, Li X. 2015. Rutaecarpine and evodiamine selected as β1-AR inhibitor candidates using β1-AR/CMC-offline-UPLC/MS prevent cardiac ischemia-reperfusion injury via energy modulation. Journal of Pharmaceutical and Biomedical Analysis. 115:307-314.
Yan C, Zhang J, Wang S, Xue G, Hou Y. 2013. Neuroprotective effects of rutaecarpine on cerebral ischemia reperfusion injury. Neural Regeneration Research. 8:2030-2038.
Yang J, Cai X, Lu W, Hu C, Xu X, Yu Q, Cao P. 2013. Evodiamine inhibits STAT3 signaling by inducing phosphatase shatterproof 1 in hepatocellular carcinoma cells. Cancer Letters 328:243-251.
Yang XW, Zhang H, Li M, Du LJ, Yang Z, Xiao SY. 2006. Studies on the alkaloid constituents of Evodia rutaecarpa (Juss) Benth var. bodinaieri (Dode) Huang and their acute toxicity in mice. Journal of Asian Natural Products Research 8:697-703,
Zhang Y, Wu LJ, Tashiro S, Onodera S, Ikejima T. 2003. Intracellular regulation of evodiamine-induced A375-S2 cell death. Biological and Pharmaceutical Bulletin. 26:1543-1547.
Zhao LC, Li J, Liao K, Luo N, Shi QQ, Feng ZQ, Chen DL. 2015. Evodiamine Induces Apoptosis and Inhibits Migration of HCT-116 Human Colorectal Cancer Cells. International Journal of Molecular Sciences. 16:27411-27421.
Zuckerman V, Wolyniec K, Sionov RV, Haupt S, Haupt Y. 2009. Tumour suppression by p53: the importance of apoptosis and cellular senescence. Journal of Pathology. 219:3-15.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top