(3.80.6.131) 您好!臺灣時間:2021/05/17 02:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃朝陽
研究生(外文):HUANG, CHAO-YANG
論文名稱:濕地、科學園區、機場之大氣污染物(顆粒物、金屬元素、顆粒汞)其濃度來源之研究
論文名稱(外文):Ambient air pollutants (particulates, metallic elements and Hg(p)) concentrations, sources studies at (wetland, Science Park and airport) sampling sites
指導教授:方國權方國權引用關係
指導教授(外文):FANG, GUOR-CHENG
口試委員:吳玉琛張士昱
口試委員(外文):WU, YUH-SHENCHANG, SHIH-YU
口試日期:2017-06-02
學位類別:碩士
校院名稱:弘光科技大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:113
中文關鍵詞:懸浮微粒重金屬元素逆軌跡模式ANOVA發散係數主成分分析
外文關鍵詞:ParticulateMetallic elementsHYSPLITANOVACoefficient of Divergence analysisPCA analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:100
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用總懸浮微粒、VAP、MOUDI及PM2.5採樣器於2016年7月至2017年3月期間於公民國中、高美濕地及合盈光電等地點收集環境空氣顆粒汙染物及分析其附著在懸浮微粒之重金屬濃度。此外,亦使用逆軌跡模式(HYSPLIT)模式 找尋汙染氣團來源,再利用ANOVA統計和COD統計分析來測每季TSP、PM2.5及重金屬於不同採樣點是否有相關性或顯著差異。最後再使用PCA統計法找尋公民國中、高美濕地、合營光電污染來源。本研究結果顯示, TSP於高美濕地有最高平均污染濃度值, PM2.5於合營光電有最高之污染物濃度值。此外,逆軌跡模式結果顯示其主要污染源來自台灣海域及中國海域。而ANOVA統計其結果顯示於不同季節之污染物濃度值,其結果並無顯著差異。此外,發散係數分析其結果顯示於三個採樣點具有相似污染源。最後在主成分分析其結果顯示,公民國中主要污染來源為台中航空站、漢翔航空公司,而高美濕地主要污染來源為關連工業區,合營光電其主要污染來源則為台中科學園區。
This study measured ambient air particulates, metallic elements and Hg(p) in ambient air by using PS-1, VAP, MOUDI and Wilbur PM2.5 samplers at Gome-Ming Junior High School, Kal-Mei wetlands and H.P.B Optoelectronics sampling sites during Jul. 2016 to Mar. 2017. In addition, the method of HYSPLIT was used to find the pollutants parcels sources. Statistical ANOVA and COD methods were also used to test the mean concentrations differences among seasonal variations for ambient air particulates and metallic elements. Moreover, PCA method was used to identify the pollutants sources at GMS, KMW and H.P.B. sampling sites. The results indicated that KMW has the highest average TSP pollutants concentrations, and H.P.B. has the highest average PM2.5 pollutants concentrations. The main transport pathway was came from Taiwan and China seashores areas. In addition, ANOVA analysis displayed different seasons had no significant differences for particulates and metallic elements pollutants concentrations. Beside, we concluded that three sampling sites have similar pollutants sources by way of Coefficient of Divergence analysis. Finally, Principal Component Analysis have the following results 1) The pollutants sources were came from Taichung airport station and aerospace industrial development corporation at GMS. 2) The pollutants sources were came from Kwan-Lien Park (THKLP) at KMW. 3) The pollutants sources were came from Taichung Science Park at H.P.B. sampling site.
CONTENT
Abstract i
摘要 ii
CONTENT iii
LIST OF TABLES vi
LIST OF FIGURES vii
Abbreviation 1
Chapter 1 Introduction 2
Objectives of this study 4
Chapter 2 Literature Review 5
2.1. Particles Matter (PM) 5
2.1.1. Coarse Particles Matter (PM10) 6
2.1.2. Fine Particles Matter (PM2.5) 7
2.2. Metallic elements 7
2.2.1 Aluminum (Al) 8
2.2.2 Chromium (Cr) 9
2.2.3 Manganese (Mn) 9
2.2.4 Nickel (Ni) 11
2.2.5 Copper (Cu) 11
2.2.6 Zinc (Zn) 12
2.2.7 Cadmium (Cd) 13
2.2.8 Lead (Pb) 14
2.2.9 Mercury (Hg) 14
Chapter 3 Methodology 16
3.1 Sampling sites 16
3.2 Sampling device 19
3.2.1 PS-1 sampler 19
3.2.2 Wilbur PM2.5 Sampler 20
3.2.3 Micro-Orifice Uniform Deposit Impactor (MOUDI) 21
3.2.4 Versatile air pollutant sampler (VAP) 23
3.2.5 VS7 logger sampler 24
3.3 Chemical analysis 25
3.3.1 Direct Mercury Analyzer (DMA) 25
3.3.2 Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES) and Microwave assisted acid digestion 26
3.4 Statistical methods 27
3.4.1 Principal Component Analysis (PCA) 27
3.4.2 Analysis of variance (ANOVA) 28
3.4.3 Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) 28
3.4.4 Coefficient of Divergence (COD) 29
3.5 Quality control 30
Chapter 4 Results and Discussions 31
4.1 Atmospheric meteorological conditions during Jul. 2016 to Mar. 2017 31
4.2 Total suspended particulate and fine particulate concentrations during Jul. 2016 to Mar. 2017 37
4.3 Ambient air particulate bound mercury Hg(p) concentrations during Jul. 2016 to Mar. 2017 41
4.4 Metallic elements concentrations during Jul. 2016 to Mar. 2017 45
4.5 Analysis of variance (ANOVA) 58
4.6 Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) 64
4.7 Coefficient of Divergence 80
4.8 Principal Component Analysis (PCA) 85
Chapter 5 Conclusion 91
Suggestions 93
References 94

Agency for Toxic Substances and Disease Registry (ATSDR), 2000. Toxicological profile for manganese. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
Agency for Toxic Substances and Disease Registry (ATSDR), 2012. Toxicological profile for Manganese. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
Agency for Toxic Substances and Disease Registry (ATSDR). 1999. Toxicological profile for Mercury. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
Agency for Toxic Substances and Disease Registry (ATSDR). 2004. Toxicological profile for Copper. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
Agency for Toxic Substances and Disease Registry (ATSDR). 2005. Toxicological profile for Nickel. Atlanta, GA: U.S. Department of Healthand Human Services, Public Health Service.
Agency for Toxic Substances and Disease Registry (ATSDR). 2005. Toxicological profile for Zinc. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
Agency for Toxic Substances and Disease Registry (ATSDR). 2007. Toxicological profile for Lead. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
Agency for Toxic Substances and Disease Registry (ATSDR). 2008. Toxicological profile for Aluminum. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
Agency for Toxic Substances and Disease Registry (ATSDR). 2012. Toxicological Profile for Chromium. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
Agency for Toxic Substances and Disease Registry (ATSDR). 2012. Toxicological Profile for Cadmium. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
Aguilar F., Audrup H., Barlow S., Camey L., Crebelli R., Dekant W., Engel K.-H., Gontard N., Gott D., Filli S., Gürtler R., Larsen J.-C., Leclercq C., J Leblanc.-C., Malcata F.-X., Mennes W., Milana M.-R., Pratt I.,Rietjens I., Tobback P., Toldrá F. 2008. Scientific opinion of the panel on food additives, flavourings, processing aids and food contact materials on a request from European Commission on Safety of aluminium from dietary intake. EFSA J., 754: 1–34
Aldabe J., Elustondo D., Santamaría C., Lasheras E., Pandolfi M., Alastuey A., Querol X., Santamaría J.M. 2011. Chemical characterisation and source apportionment of PM2.5 and PM10 at rural, urban and traffic sites in Navarra (North of Spain). Atmospheric Research. 102: 191–205
Alloway, B.J., 2013. Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability. (third ed.).
Arden Pope III C., Dockery D.W. 2006. Health effects of fine particulate air pollution. Journal of the Air & Waste Management Association., 56: 709–742
Arhami M., Hosseini V., Shahne M.Z., Bigdeli M., Lai A., Schauer J. J. 2017. Seasonal trends, chemical speciation and source apportionment of fine PM in Tehran. Atmospheric Environment. 153: 70-82
Bahéna A.B.V., Mendoza O.T., Ma. Godínez E.M., Souto S.A.S., Ruizc J., Beristain G.H. 2017. Source apportionment of lead in the blood of women of reproductive age living near tailings in Taxco, Guerrero, Mexico: An isotopic study. Science of The Total Environment. 583:104-114
Baldauf R.W., Lane D.D., Marote G.A., 2001. Ambient air quality monitoring network design for assessing human health impacts from exposures to airborne contaminants. Environmental Monitoring and Assessment. 66: 63–76
Beckett K.P., Freer–Smith P.H., Taylor G., 1998. Urban woodlands: their role in reducing the effects of particulate pollution. Environmental Pollution. 99: 347–360.
Bérubé K.A., Jones T.P., Williamson B.J., Winters C., Morgan, A.J., Richards, R.J., 1999. Physicochemical characterisation of diesel exhaust particles: factors for assessing biological activity. Atmospheric Environment. 33 (10): 1599–1614
Bhuiea, A.K., Ogunseitana, O.A., Whiteb, R.R., Sainc, M., Roy, D.N., 2005. Modeling the environmental fate of manganese from methylcyclopentadienyl manganese tricarbonyl in urban landscapes. Science of the Total Environment, 339 167 – 178.
Bilos C., Colombo J.C., Skorupka C.N., Rodriguez Presa M.J. 2001. Sources, distribution and variability of airborne trace metals in La Plata City area. Argentina. Environmental Pollution. 111: 149–158
Boudia, N., Halley, R., Kennedy, G., Lambert, J., Gareau, L., Zayed, J., 2006. Manganese concentrations in the air of the Montreal (Canada) subway in relation to surface automobile traffic density. Science of the Total Environment, 366 143 – 147.
Brown R.J.C., Aswegen S.V., Webb W.R., Goddard S.L. 2014. UK concentrations of chromium and chromium (VI), measured as water soluble chromium, in PM10. Atmospheric Environment. 99: 385-391
Brunekreef B., Holgate S. 2002. Air pollution and health. The Lancet, 360: 1233–1242
Buekers J., Brouwere K.D., Lefebvre W., Willems H., Vandenbroele M., Sprang P.V., Eliat-Eliat M., Hicks K., Schlekat C.E., Oller A.R. 2015. Assessment of human exposure to environmental sources of nickel in Europe: Inhalation exposure. Science of The Total Environment. 521-522: 359-371
Bukowiecki N., Lienemann P., Hill M., Figi R., Richard A., Furger M., Rickers K., Falkenberg G., Zhao Y., Cliff S.S. 2009. Real–world emission factors for antimony and other brake wear related trace elements: size–segregated values for light and heavy duty vehicles. Environmental Science and Technology. 43: 8072–8078
Carter, M.R., Gaudet, B.J., Stauffer, D.R., White, T.S., Brantley, S.L., 2015. Using soil records with atmospheric dispersion modeling to investigate the effects of clean air regulations on 60 years of manganese deposition in Marietta, Ohio (USA). Science of the Total Environment, 515–516, 49–59.
Cassee F.R., Heroux M.-E., Gerlofs-Nijland M.E., Kelly F.J. 2013. Particulate matter beyond mass: recent health evidence on the role of fractions, chemical constituents and sources of emission (Review). Inhalation Toxicology. 25: 802–812
Central Pollution Control Board. 2010. Air Quality Monitoring, Emission Inventory and Source Apportionment Study for Indian Cities. Central Pollution Control Board, Delhi, India
Chan D., Stachowiak G.W. 2004. Review of automotive brake friction materials. Proc. Inst. Mech. Journal of Automobile Engineering. 218: 953–966
Chen Y.L., Lai Y.C., Lin C.J., Chang Y.K., Ko M.S., 2013. Controlling sintering atmosphere to reduce the hazardous characteristics of low–energy cement produced with chromium compounds. Journal of Cleaner Production. 43: 45–51.
Choi, H.D., Holsen, T.M., Hopke, P.K., 2008. Atmospheric mercury (Hg) in the adirondacks: concentrations and sources. Environmental Science & Technology. 42: 5644-5653
Cotzias, G.C., 1958. Manganese in health and disease. Physiological Reviews, 38, 503– 533.
D'Angiola A., Dawidowski L.E., Gómez D.R., Osses M. On-road traffic emissions in a megacity. Atmospheric Environment. 44: 483–493
Daniels M.J., Dominici F., Samet J.M., Zeger S.L. 2000. Estimating particulate matter-mortality dose-response curves and threshold levels: An analysis of daily time-series for the 20 largest US cities. American Journal of Epidemiology. 152
Dominigo J.L. 1995. Reproductive and developmental toxicity of aluminium: a review. Neurotoxicology and Teratology. 17: 515–521
Draxler R.R. (1999) HYSPLIT4 user's guide. NOAA Tech. Memo. ERL ARL-230, NOAA Air Resources Laboratory, Silver Spring, MD.
Dye J.A., Lehmann J.R., McGee J.K., Winsett D.W., Ledbetter A.D., Everitt J.I., Ghio A.J., Costa D.L. 2001. Acute pulmonary toxicity of particulate matter filter extracts in rats: coherence with epidemiologic studies in Utah Valley residents. Environmental Health Perspectives. 109: 395
Expert Panel on Air Quality Standards (EPAQS). 2009. Guidelines for Metals and Metalloids in Ambient Air for the Protection of Human Health, DEFRA, London.
Fajersztajn L., Veras M., Barrozo L.V., Saldiva P. 2013. Air pollution: a potentially modifiable risk factor for lung cancer. Nature Reviews Cancer, 13: 674–678
Fang G.C., Lin S.J., Chang S.Y., Chou C.C.K. 2009. Effect of typhoon on atmospheric particulates in autumn in central Taiwan. Atmospheric Environment. 43(38): 6039-6048.
Fang, G. C., Wu, Y. S., Fu, P. P.C., Chang, C. N., Chen, M.H., Ho, T. T., Huang, S.H., Rau, J. Y., 2005. Metallic elements study of fine and coarse particulates using a versatile air pollutant system at a traffic sampling site. Atmospheric Research 75 1– 14.
Fang, G.C., Chang, S.C., Chen, Y.C., Zhuang, Y.J., 2014. Measuring metallic elements of total suspended particulates (TSPs), dry deposition flux, and dry deposition velocity for seasonal variation in central Taiwan. Atmospheric Research 143: 107–117
Fang, G.C., Yang, I.L., Liu, C.K., 2010. Measure and modeling the ambient air particles and particle bound mercury. Atmospheric Research 97 97– 105
Fang, G.C., Zhang, L., Huang, C.S., 2012. Measurements of size-fractionated concentration and bulk dry deposition of atmospheric particulate bound mercury. Atmospheric Environment 61 : 371-377
Feng J., Yu H., Su X., Liu S., Li Y., Pan Y., Sun J.H. 2016. Chemical composition and source apportionment of PM2.5 during Chinese Spring Festival at Xinxiang, a heavily polluted city in North China: Fireworks and health risks. Atmospheric Research. 182: 176-188
Ferreira-Baptista L., De Miguel E. 2005. Geochemistry and risk assessment of street dust in Luanda, Angola: a tropical urban environment. Atmospheric Environment. 39 (25): 4501–4512
Forlano, L., Hedgecock, I.M., Pirrone, N. 2000. Elemental gas phase atmospheric mercury as it interacts with the ambient aerosol and its subsequent speciation and deposition. Science of Total Environment. 259(1-3), 211-222
Francesca A.M.D., Zeger S.L., Samet J.M. 2003. Airborne particulate matter and mortality: timescale effects in four US cities. American Journal of Epidemiology. 157:15
Freeland–Graves, J.H., Behmardi, F., Bales, CW., et al., 1988. Metabolic balance of manganese in young men consuming diets containing five levels of dietary manganese. Journal of Nutrition, 118, 764– 773.
Fujikoshi Y. 1993. Two-way ANOVA models with unbalanced data. Discrete Mathematics, 116(1-3), 315-334.
Gabriel, M.C., Williamson, D.G., Brooks, S., Lindberg, S., 2005. Atmospheric speciation of mercury in two contrasting Southeastern US airsheds. Atmospheric Environment. 39: 4947-4958.
Gandhi H.S., Graham G.W., McCabe R.W. 2003. Automotive exhaust catalysis. Journal of Catalysis. 216: 433–442
Gao, J., Tian, H., Cheng, K., Lu, L., Wang, Y., Wu, Y., Zhu, C., Liu, K., Zhou, J., Liu, X., Chen, J., Hao, J., 2014. Seasonal and spatial variation of trace elements in multi-size airborne particulate matters of Beijing, China: Mass concentration, enrichment characteristics, source apportionment, chemical speciation and bioavailability. Atmospheric Environment, 99, 257–265.
Gavett S.H., Madison S.L., Dreher K.L., Winsett D.W., McGee, J.K., Costa, D.L., 1997. Metal and sulfate composition of residual oil fly ash determines airway hyperreactivity and lung injury in rats. Environmental Research. 72: 162–172
Ghio A.J., Devlin R.B. 2001. Inflammatory lung injury after bronchial instillation of air pollution particles. American Journal of Respiratory and Critical Care Medicine. 164: 704–708
Ghose M.K., Majee S.R. 2001. Characteristics of air-borne dust emitted by opencast coal mining in Jharia coalfield. Indian Journal of Chemical Technology., 8 (5): 417–424
González C.M., Gómez C.D., Rojas N.Y., Acevedo H., Aristizábal B.H. 2017. Relative impact of on-road vehicular and point-source industrial emissions of air pollutants in a medium-sized Andean city. Atmospheric Environment. 152: 279-289
Guo Y., Gao X., Zhu T., Luo L., Zheng Y. 2017. Chemical profiles of PM emitted from the iron and steel industry in northern China. Atmospheric Environment. 150: 187-197
Hall J.L. 2002. Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany. 53 (366): 1–11
Han D., Cheng J., Hu X., Jiang Z., Mo L., Xu H., Ma Y., Chen X., Wang H. 2017. Spatial distribution, risk assessment and source identification of heavy metals in sediments of the Yangtze River Estuary, China. Marine Pollution Bulletin. 115(1-2): 141-148
Heal, K.V., 2001. Manganese and land–use in upland catchments in Scotland. The Science of the Total Environment. 265, 169 – 179.
Hernández-Ochoa, I., García-Vargas, G., López-Carrillo, L., Rubio-Andrade, M., MoránMartínez, J., Cebrián, M.E., Quintanilla-Vega, B., 2005. Low lead environmental exposure alters semen quality and sperm chromatin condensation in northern Mexico. Reproductive Toxicology. 20, 221–228
Holgate S.T., Davies D.E., Puddicombe S., Richter A., Lackie P., Lordan J., Howarth P. 2003. Mechanisms of airway epithelial damage: epithelial-mesenchymal interactions in the pathogenesis of asthma. European Respiratory Journal. 44. 24–29
Iijima A., Sato K., Yano K., Tago H., Kato M., Kimura H., Furuta N. 2007. Particle size and composition distribution analysis of automotive brake abrasion dusts for the evaluation of antimony sources of airborne particulate matter. Atmospheric Environment. 41: 4908–4919
International Agency for Research on Cancer (IARC). 2012. Monographs on the evaluation of carcinogenic risks to humans. A Review of Human Carcinogens: Arsenic, Metals, Fibres, and dusts, IARC, Lyon
International Programme on Chemical Safety (IPCS). 2007. Aluminium from all sources, including food additives (addendum). Safety Evaluation of Certain Food Additives and Contaminants, Prepared by the Sixty-seventh Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), WHO Food Additives Series 58, Geneva : Organization WH: 119–208
Izhar S., Goel A., Chakraborty A., Gupta T. 2016. Annual trends in occurrence of submicron particles in ambient air and health risk posed by particle bound metals. Chemosphere. 146: 582-590
Jalavaa P.I., Wang Q., Kuuspalo K., Ruusunen J., Hao L., Fang D., Väisänen O., Ruuskanen A., Sippula O., Happo M.S., Uski O., Kasurinen S., Torvela T., Koponen H., Lehtinen K.E.J., Komppula M., Gu C., Jokiniemi J., Hirvonen M.-R. 2015. Day and night variation in chemical composition and toxicological responses of size segregated urban air PM samples in a high air pollution situation. Atmospheric Environment. 120: 427-437
Jandacka D., Durcanska D. 2014. Particle pollution in urban and no-urban area. 14th Multidisciplinary Scientific GeoConference SGEM 2014, STEF92 Technology Ltd., Sofia, Bulgaria,. 467-474
Jandackaa D., Durcanskaa D., Bujdos M. 2017. The contribution of road traffic to particulate matter and metals in air pollution in the vicinity of an urban road. Transportation Research Part D: Transport and Environment. 50: 397-408
Järup, L., Åkesson, A., 2009. Current status of cadmium as an environmental health problem. Toxicology and Applied Pharmacology. 238 (3), 201–208.
Järup, L., Berglund, M., Elinder, C.G., Nordberg, G., Vahter, M., 1998. Health effects of cadmium exposure – a review of the literature and a risk estimate. Scand. J. Work Environ. Health 24 (Suppl 1), S1–S51.
Jiang S.Y., Kaul D.S., Yang F., Sun L., Ning Z. 2015. Source apportionment and water solubility of metals in size segregated particles in urban environments. Science of The Total Environment. 533: 347-355
Jiang, Y., Chao, S., Liu, J., Yang, Y., Chen, Y., Zhang, A., Cao, H., 2017. Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere. 168: 1658–1668
Jin, T., Nordberg, G., Ye, T., Bo, M., Wang, H., Zhu, G., Kong, Q., Bernard, A., 2004. Osteoporosis and renal dysfunction in a general population exposed to cadmium in China. Environmental Research. 96 (3), 353–359.
Kalaiarasan G., Balakrishnan R.M., Khaparde V.V. 2016. Receptor model based source apportionment of PM10 in the metropolitan and industrialized areas of Mangalore. Environmental Technology & Innovation. 6: 195-203
Karagulian F., Belis C.A., Dora C.F.C., Prüss-Ustün A.M., Bonjour S., Adair-Rohani H., Amann M. 2015. Contributions to cities' ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmospheric Environment. 120: 475-483
Karavoltsos, S., Sakellari, A., Makarona, A., Plavsic, M., Ampatzoglou, D., Bakeas, E., Dassenakis, M., Scoullos, M., 2013. Copper complexation in wet precipitation: Impact of different ligand sources. Atmospheric Environment, 80, 13–19.
Karita, K., Yano, E., Dakeishi, M., Iwata, T., Murata, K., 2005. Benchmark dose of lead inducing anemia at the workplace. Risk Analysis. 25, 957–962
Keen, L., Leach, RM., 1988. Manganese Chapter 34. In: Seiler HG, Sigel H, editors. Handbook on toxicity of inorganic compounds. New York, USA7 Marcel Dekker, Inc. p. 405 – 15 1069.
Kim K.H., Kumar P., Szulejko J.E., Adelodun A.A., Junaid M.F., Uchimiya M., Chambers S. 2017. Toward a better understanding of the impact of mass transit air pollutants on human health. Chemosphere. 174: 268-279
Kim, E., Hopke, P.K., Pinto, J.P., Wilson, W.E., 2005. Spatial variability of fine particle mass, components, and source contributions during the regional air pollution study in St. Louis. Environmental Science and Technology. 39: 4172-4179.
Kodavanti U.P., Hauser R., Christiani D.C., Meng Z.H., McGee J., Ledbetter A., Richards J., Costa D.L., 1998. Pulmonary responses to oil fly ash particles in the rat differ by virtue of their specific soluble metals. Toxicological Sciences. 43 (2): 204–212
Kong S., Li X., Li L., Yin Y., Chen K., Yuan L., Zhang Y., Shan Y., Ji Y. 2015. Variation of polycyclic aromatic hydrocarbons in atmospheric PM2.5 during winter haze period around 2014 Chinese Spring Festival at Nanjing: Insights of source changes, air mass direction and firework particle injection. Science of The Total Environment. 520(1): 59-72
Laden F., Neas L.M., Dockery D.W., Schwatz J., 2000. Association of fine particulate matter from different sources with daily mortality in six U.S. cities. Environmental Health Perspectives. 108 (10): 941–947.
Lee K.Y., Wong C.K.C., Chuang K.J., Bien M.Y., Cao J.J., Han Y.M., Tian L.W., Chang C.C. 2014. Methionine oxidation in albumin by fine haze particulate matter: an in vitro and in vivo study. Journal of Hazardous Materials. 274: 384–391
Li Z., Feng, X., Li G., Bi X., Zhu J., Qin H., Dai Z., Liu J., Li Q., Sun G. 2013. Distributions, sources and pollution status of 17 trace metal/metalloids in the street dust of a heavily industrialized city of central China. Environmental Pollution. 182: 408–416.
Licbinsky R., Frybort A., Huzlik J., Adamec V., Effenberger K., Mikuska P., Vojtesek M., Krumal K. 2010. Usage of scanning electron microscopy for particulate matter sources identification. Transportation Science. 3 (3): 137-144
Liu J., Zhu L., Wang H., Yang Y., Liu J., Qiu D., Ma W., Zhang Z., Liu J., 2016. Dry deposition of particulate matter at an urban forest, wetland and lake surface in Beijing. Atmospheric Environment. 125, 178–187
Liu Z.R., Hu B., Liu Q., Sun Y., Wang Y.S. 2014. Source apportionment of urban fine particle number concentration during summertime in Beijing. Atmospheric Environment. 96: 359–369
Liu, X.M., Song, Q.J., Tang, Y., Li, W.L., Xu, J.M., Wu, J.J., Wang, F., Brookes, P.C., 2013. Human health risk assessment of heavy metals in soil-vegetable system: a multi-medium analysis. Science of the Total Environment. 463-464, 530-540.
Londoño J., Correa M.A., Palacio C.A. 2011. Estimación de las emisiones de contaminantes Atmosféricos provenientes de fuentes móviles en el área urbana de Envigado, Colombia. In Spanish vol. 16, Revista EIA. 149–162
Loomis D., Grosse Y., Lauby-Secretan B., El Ghissassi F., Bouvard V., Benbrahim-Tallaa L., Guha N., Baan R., Mattock H., Straif K. 2013. The carcinogenicity of outdoor air pollution. The Lancet Oncology. 14: 1262–1263
Makkonen U., Hellen H., Anttila P., Ferm M. 2010. Size distribution and chemical composition of airborne particles in south–eastern Finland during different seasons and wildfire episodes in 2006. Science of the Total Environment. 408: 644–651
Malcolm, E.G., Keeler, G.J. 2007. Evidence for a sampling artifact for particulate-phase mercury in the marine atmosphere. Atmospheric Environment. 41(16), 3352-3359
Malekshah A., Torabizadeh Z., Naghshwa F.V. 2005. Developmental toxicity of Aluminum from high doses of ALCL3 in mice. The Journal of Applied Research., 5 (4): 575–580
Masiol M., Squizzato S., Rampazzo G., Pavoni B. 2014. Source apportionment of PM2.5 at multiple sites in Venice (Italy): spatial variability and the role of weather. Atmospheric Environment. 98: 78–88
Mattei E.F., Rivera E., Gioda A., Rivera D.S., Roman-Velazquez F.R., Jimenez-Velez B.D. 2010. Use of human bronchial epithelial cells (BEAS-2B) to study immunological markers resulting from exposure to PM2.5 organic extract from Puerto Rico. Toxicology and Applied Pharmacology. 243: 381–389
McClellan R.O. 2002. Setting ambient air quality standards for particulate matter. Toxicology. 181:329–347
Mestaghanmi H., El-Amrani S., Saile R. 2002. Effects of aluminium chloride administration during gestation in rat. Sciences et techniques de l'animal de laboratoire, 27: 73–81
Muntner, P., He, J., Vupputuri, S., Coresh, J., Batuman, V., 2003. Blood lead and chronic kidney disease in the general United States population: results from NHANES III. Kidney International. 63, 1044–1050.
Navas-Acien, A., Guallar, E., Silbergeld, E.K., Rothenberg, S.J., 2007. Lead exposure and cardiovascular disease a systematic review. Environmental Health Perspectives. 115, 472–482.
Nealson, K.H., 1993. The microbial manganese cycle. In: Krumbein WE, editor. Microbial geochemistry. Oxford: Blackwell, 191–221.
Ni X.Y., Huang H., Du W.P. 2017. Relevance analysis and short-term prediction of PM2.5 concentrations in Beijing based on multi-source data. Atmospheric Environment. 150: 146-161
Nkwenkeu, S.F., Kennedy, G., Philippe, S., Zayed, J., 2002. Oral manganese intake estimated with dietary records and with direct chemical analysis. The Science of the Total Environment, 287, 147 – 153.
Nriagu, J.O., 1989. A global assessment of natural metal sources of atmospheric trace metals. Nature, 338, 47–49.
Nriagu, J.O., Pacyna, J.M., 1988. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333, 134–139.
Pacyna, E.G., Pacyna, J.M., Sundseth, K., Munthe, J., Kindbom, K., Wilson, S., Steenhuisen, F., Maxson, P. 2010. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmospheric Environment. 44(20), 2487-2499
Pavuluri C.M., Kawamura K., Mihalopoulos N., Fu P. 2013. Year–round observations of water–soluble ionic species and trace metals in Sapporo aerosols: implication for significant contributions from terrestrial biological sources in Northeast Asia. Atmospheric Chemistry and Physics. 13: 6589–6629
Perrone M.G., Larsen B.R., Ferrero L., Sangiorgi G., De Gennaro G., Udisti R., Zangrando R., Gambaro A., Bolzacchini E. 2012. Sources of high PM2.5 concentrations in Milan, Northern Italy: molecular marker data and CMB modelling. Science of the Total Environment. 414: 343–355
Peters, J.L., Perlstein, T.S., Perry, M.J., McNeely, E., Weuve, J., 2010. Cadmium exposure in association with history of stroke and heart failure. Environmental Research. 110 (2), 199–206
Pinto, J.P., Lefohn, A.S., Shadwick, D.S., 2004. Spatial variability of PM2.5 in urban areas in the United States. Journal of the Air and Waste Management Association 54: 440-449
Pope C.A., Dockery D.W. 2006. Health effects of fine particulate air pollution: lines that connect. Journal of the Air & Waste Management Association. 56: 709–742
Qi L., Zhang Y., Ma Y., Chen M., Ge X., Ma Y., Zheng J., Wang Z., Li S. 2016. Source identification of trace elements in the atmosphere during the second Asian Youth Games in Nanjing, China: Influence of control measures on air quality. Atmospheric Pollution Research. 7: 547–556
Raman R.S., Hopke P.K. 2007. Source apportionment of fine particles utilizing partially speciated carbonaceous aerosol data at two rural locations in New York State. Atmospheric Environment. 41 (36): 7923–7939
Roy D., Singh G., Yadav P. 2016. Identification and elucidation of anthropogenic source contribution in PM10 pollutant: Insight gain from dispersion and receptor models. Journal of Environmental Sciences. 48: 69-78
Roy M., Harrison J.Y. 2000. Particulate matter in the atmosphere: which particle properties are important for its effects on health?. Science of the Total Environment. 249: 85–101
Sahu S.K., Beig G., Parkhi N.S. 2011. Emissions inventory of anthropogenic PM2.5 and PM10 in Delhi during commonwealth games 2010. Atmospheric Environment. 45 (34): 6180–6190
Salehi, F., Krewski, D., Mergler, D., Normandin, L., Kennedy, G., Philipps, S., et al., 2003. Bioaccumulation and locomotor effects of manganese phosphate/sulfate mixture in Sprague–Dawley rats following subchronic (90 days) inhalation exposure. Toxicology and Applied Pharmacology, 191, 264 – 71.
Salih, N.F., Jaafar, M.S., 2013. Heavy metals in blood and urine impact on the woman fertility. Chemistry of Materials. 3, 81–89.
Schroeder, W.H., Munthe, J. 1998. Atmospheric mercury – an overview Atmospheric Environment. 32: 809–822
Schwartz J. 1994. Air pollution and daily mortality: a review and meta analysis. Environmental Research. 64: 36–52
Seinfeld J.H., Pandis S.N. 2006. Atmospheric Chemistry and Physics: from Air Pollution to Climate Change. John Wiley & Sons, Inc, Hoboken, New Jersey
Silbajoris R., Ghio A.J., Samet J.M., Jaskot R., Dreher K.L., Brighton, L.E., 2000. In vivo and in vitro correlation of pulmonary MAP kinase activation following metallic exposure. Inhalation Toxicology. 12 (6): 453–468.
Smith K.R., Veranth J.M., Lighty J.J., Aust A.E., 1998. Mobilization of iron from coal fly ash was dependent upon the particle size and the source of coal. Chemical Research in Toxicology. 11 (12): 1494–1500
Song X., Yang S., Shao L., Fan J., Liu Y. 2016. PM10 mass concentration, chemical composition, and sources in the typical coal-dominated industrial city of Pingdingshan, China. Science of The Total Environment. 571(15): 1155-1163
Squizzato S., Cazzaro M., Innocente E., Visin F., Hopke P.K., Rampazzo G. 2017. Urban air quality in a mid-size city - PM2.5 composition, sources and identification of impact areas: From local to long range contributions. Atmospheric Research. 186: 51-62
Staessen, J.A., Roels, H.A., Emelianov, D., Kuznetsova, T., Thijs, L., Vangronsveld, J., Fagard, R., 1999. Environmental exposure to cadmium, forearm bone density, and risk of fractures: prospective population study. Lancet 353 (9159), 1140–1144.
Stoeger T., Reinhard C., Takenaka S., Schroeppel A., Karg E., Ritter B. 2006. Instillation of six differentultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environmental Health Perspectives. 114: 328–333
Stolzel M., Breitner S., Cyrys J., Pitz M., Wolke G., Kreyling W., Heinrich J., Wichmann H.E., Peters A. 2007. Daily mortality and particulate matter in different size classes in Erfurt, Germany. Journal of Exposure Science and Environmental Epidemiology. 17: 458–467
Tan C., Zhao T., Xu X., Liu J., Zhang L., Tang L. 2015. Climatic analysis of satellite aerosol data on variations of submicron aerosols over East China. Atmospheric Environment. 123: 392-398
Tecer L.H. 2013. Comparison and seasonal evaluation of the rural and urban ambient PM2.5 and PM10 mass concentrations based on meteorological parameters. 13th Multidisciplinary Scientific GeoConference SGEM 2013, STEF92 Technology Ltd., Sofia, Bulgaria, 593–600
Tiwari S., Bisht D.S., Srivastava A.K., Pipal A.S., Taneja A., Srivastava M.K., Attri S.D. 2014. Variability in atmospheric particulates and meteorological effects on their mass concentrations over Delhi, India. Atmospheric Research. 145–146. 45-56
Tuia D., Ossés de Eicker M., Zah R., Osses M., Zarate E., Clappier A. 2007. Evaluation of a simplified top-down model for the spatial assessment of hot traffic emissions in mid-sized cities. Atmospheric Environment. 41: 3658–3671
U.S. Environmental Protection Agency. 1984. Health Effects Assessment for Hexavalent Chromium, EPA 540/1-86-019. U.S. EPA, Washington DC
Ul-Saufie A.Z., Yahaya A.S., Ramli N.A., Rosaida N., Hamid H.A. 2013. Future daily PM10 concentrations prediction by combining regression models and feedforward backpropagation models with principle component analysis (PCA). Atmospheric Environment. 77: 621-630
United States Environmental Protection Agency (USEPA). 2000. Risk-based Concentration Table. United States Environmental Protection. Agency, Philadelphia, PA; Washington DC.
United States Environmental Protection Agency (USEPA). 2016. Our Nation's air status and trends through 2015. https://gispub.epa.gov/air/trendsreport/2016/
Valavanidis A., Fiotakis K., Vlachogianni T. 2008. Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. Journal of Environmental Science and Health Part C Environmental Carcinogenesis & Ecotoxicology. 26: 339–362
Voutsa D., Samara C., 2002. Labile and bioaccessible fractions of heavy metals in the airborne particulate matter from urban and industrial areas. Atmospheric Environment. 36: 3583–3590
Vu T.V., Delgado-Saborit J.M., Harrison R.M. 2015. Review: particle number size distributions from seven major sources and implications for source apportionment studies. Atmospheric Environment. 122: 114–132
Wang Y., Wang R., Fan L., Chen T., Bai Y., Yu Q., Liu Y. 2017. Assessment of multiple exposure to chemical elements and health risks among residents near Huodehong lead-zinc mining area in Yunnan, Southwest China. Chemosphere. 174: 613-627
Wang, C.J., Wang, Z.W., Ci, Z.J., Zhang X.S., Tang X. 2016. Spatial-temporal distributions of gaseous element mercury and particulate mercury in the Asian marine boundary layer. Atmospheric Environment. 126: 107-116
Water Treatment Solutions. 2017. Water treatment: Aluminum (Al). http://www.lenntech.com/periodic/elements/al.htm
Water Treatment Solutions. 2017. Water treatment: Cadmium (Cd). http://www.lenntech.com/periodic/elements/cd.htm
Water Treatment Solutions. 2017. Water treatment: Chromium (Cr). http://www.lenntech.com/periodic/elements/cr.htm
Water Treatment Solutions. 2017. Water treatment: Copper (Cu). http://www.lenntech.com/periodic/elements/cu.htm
Water Treatment Solutions. 2017. Water treatment: Copper (Zn). http://www.lenntech.com/periodic/elements/zn.htm
Water Treatment Solutions. 2017. Water treatment: Nickel (Ni). http://www.lenntech.com/periodic/elements/ni.htm
Wilson, J.G., Kingham, S., Pierce, J., Struman, A.P., 2005. A review of intraurban variations in particulate air pollution: implications for epidemiological research. Atmospheric Environment. 39: 6444-6462.
Wiseman C.L.S., Parnia A., Chakravartty D., Archbold J., Zawar N., Copes R., Cole D.C. 2017. Blood cadmium concentrations and environmental exposure sources in newcomer South and East Asian women in the Greater Toronto Area, Canada. Environmental Research. 154: 19-27
Wongphatarakul, V., Friedlander, S.K., Pinto, J.P., 1998. A comparative study of PM2.5 ambient aerosol chemical databases. Environmental Science and Technology. 32: 3926-3934
World Health Organization. 2014. Ambient (outdoor) air quality and health. Available at: http://www.who.int.rpa.hk.edu.tw:81/mediacentre/factsheets/fs313/en/. (Date accessed: 02 July2015)
Wu J., Jiang W., Fu C., Su B., Liu H., Tang J. 2004. Simulation of the radiative effect of black carbon aerosols and the regional climate responses over China. Advances in Atmospheric Sciences. 21: 637–649
Xu Y., Sun Q., Yi L., Yin X., Wang A., Li Y., Chen J. 2014. The source of natural and anthropogenic heavy metals in the sediments of the Minjiang River Estuary (SE China): implications for historical pollution. Science of the Total Environment. 493: 729–736
Yadav V., Turner J. 2014. Gauging intraurban variability of ambient particulate matter arsenic and other air toxic metals from a network of monitoring sites. Atmospheric Environment. 89: 318-328
Yassa H.A., George S.M., Mohamed H.K. 2017. Folic acid improve developmental toxicity induced by aluminum sulphates. Environmental Toxicology and Pharmacology. 50: 32-36
Yin J., Harrison R.M., Chen Q., Rutter A., Schauer J.J. 2010. Source apportionment of fine particles at urban background and rural sites in the UK atmosphere. Atmospheric Environment. 44: 841–851
Yu L., Zhai Q., Yin R., Li P., Tian F., Liu X., Zhao J., Gong J., Zhang H., Chen W. 2016. Lactobacillus plantarum CCFM639 alleviate trace element imbalance-Related oxidative stress in liver and kidney of chronic aluminum exposure mice. Biol. Trace Elem. Res., 14: http://dx.doi.org.rpa.hk.edu.tw:81/10.1007/s12011-016-0843-8 [Epub ahead of print]
Zárate E., Belalcázar L.C., Clappier A., Manzi V., Van den Bergh H. 2007. Air quality modelling over Bogota, Colombia: Combined techniques to estimate and evaluate emission inventories. Atmospheric Environment. 41: 6302–6318
Zhang Y., Wang W., Wu S., Wang K., Minoura H., Wang Z. 2014. Impacts of updated emission inventories on source apportionment of fine particle and ozone over the southeastern US. Atmospheric Environment. 88: 133–154
Zhang Y., Wang X., Chen H., Yang X., Chen J., Allen J.O. 2009. Source apportionment of lead–containing aerosol particles in Shanghai using single particle mass spectrometry. Chemosphere. 74: 501–507
Zhang Z., Juying L., Mamat Z., Qing F.Y. 2016. Sources identification and pollution evaluation of heavy metals in the surface sediments of Bortala River, Northwest China. Ecotoxicology and Environmental Safety. 126: 94–101

電子全文 電子全文(網際網路公開日期:20220101)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top