(3.235.191.87) 您好!臺灣時間:2021/05/13 14:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蕭佑甫
研究生(外文):XIAO, YOU-FU
論文名稱:科學園區(20米、地面)、交通區、商業區之環境空氣污染物(顆粒物、金屬元素、離子物種)濃度、來源及其風險評估之研究
論文名稱(外文):Ambient air pollutants (particulates, metallic elements and ionic species) concentrations, sources and health risk assessments studies over Science Park (20 m, ground level), Traffic and Commercial sites
指導教授:方國權方國權引用關係
指導教授(外文):FANG, GURO-CHENG
口試委員:吳玉琛張士昱
口試委員(外文):WU, YUH-SHENCHANG, SHIH-YU
口試日期:2017-06-02
學位類別:碩士
校院名稱:弘光科技大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:127
中文關鍵詞:顆粒金屬元素水溶性離子逆軌跡模式SpearmanANOVA致癌風險
外文關鍵詞:particulatemetallic elementswater-soluble ionicback trajectory analysisSpearmanANOVAcarcinogenic risks
相關次數:
  • 被引用被引用:0
  • 點閱點閱:111
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用PS-1、VAP、MOUDI 和 Wilbur PM2.5等採樣器採集於沙鹿國小、清水國小、合盈光電廠進行環境空氣顆粒污染物之監測與採樣,同時分析環境空氣中的顆粒、重金屬元素及水溶性離子濃度。此外,本研究並使用逆軌跡模式找尋顆粒污染物之主要來源。同時亦使用Spearman統計方法來檢驗大氣氣象條件和污染物之平均濃度是否有無相關性。再者,本研究亦使用ANOVA統計方法來檢驗不同採樣點及不同月份之間重金屬平均濃度是否有顯著之差異。本研究更進一步計算並探討大氣污染物對沙鹿國小、清水國小、合盈光電附近人體之健康風險評估。其研究結果顯示,沙鹿國小所採集到的總懸浮微粒(TSP)濃度值最高,而清水國小所採集到的細懸浮微粒(PM2.5)濃度值最高。而三個採樣點污染物之傳輸途徑相似。除此之外,Spearman統計方法分析結果顯示,大氣氣象條件和污染物濃度間幾乎沒有顯著關係。而ANOVA統計方法分析結果亦顯示,不同採樣點對污染物濃度幾乎沒有顯著差異。另外,三個採樣點對於人體之致癌風險其結果亦顯示,通過吸入暴露的致癌風險高於可接受值,而通過吸入暴露的非致癌風險對人體則無健康危害。最後,三採樣點的日平均細浮微粒濃度均未超過台灣環保署法規標準。整體而言,三採樣點之平均細浮微粒濃度仍具改善空間。
This study measured particulate, metallic elements and water-soluble ionic concentrations in ambient air by using PS-1, VAP, MOUDI and Wilbur PM2.5 sampler at SES, QES and H.P.B. sampling sites. In addition, the sources of pollutants were founded by method of back trajectory analysis. Moreover, Spearman method was used to test the average differences for atmospheric meteorological conditions and pollutants concentrations. And ANOVA analysis was also used to test the average differences for pollutants concentrations among the monthly differences and different sampling sites. Finally, the carcinogenic and non-carcinogenic risk values were calculated for human health at SES, QES and H.P.B. sampling sites. The results indicated that SES has the highest TSP pollutants concentrations, and QES has the highest PM2.5 pollutants concentrations. The pathways of pollutants were similar at those three sampling sites. In addition, Spearman statistical method displayed atmospheric meteorological conditions and pollutants concentrations almost had no significant relationship. Moreover, ANOVA analysis displayed that the three sampling sites almost had no significant differences for pollutants concentrations. Furthermore, the carcinogenic risks via inhalation exposure displayed above the acceptable values at three sampling sites. However, the non-carcinogenic risks via inhalation exposure displayed all the metallic elements were harmful free to human health at those three sampling sites. Finally, daily average PM2.5 particulate matter concentrations for three sampling sites were not exceeded the current Taiwan EPA standard. To sum up, it still remains rooms for improvements for the PM2.5 particulate matter concentrations for this area in Taiwan.
Abstract i
摘要 ii
CONTENT iii
LIST OF TABLES vi
LIST OF FIGURES ix
Abbreviation 1
Chapter 1 Introduction 2
Objectives of this study 4
Chapter 2 Literature Review 5
2.1 Particles Matter (PM) 5
2.1.1 Coarse Particles Matter (PM2.5-10) 6
2.1.2 Fine Particles Matter (PM2.5) 6
2.2 Metallic element 7
2.2.1 Chromium (Cr) 8
2.2.2 Nickel (Ni) 9
2.2.3 Copper (Cu) 10
2.2.4 Zinc (Zn) 10
2.2.5 Cadmium (Cd) 11
2.2.6 Lead (Pb) 12
2.3 Water-soluble ionic 13
2.3.1 Chloride (Cl-) 14
2.3.2 Nitrate (NO3-) 15
2.3.3 Sulfate (SO42-) 16
Chapter 3 Experimental and Methods 17
3.1 Sampling program 17
3.2 Sampling Sites 17
3.2 Equipment 20
3.2.1 PS-1 sampler 20
3.2.2 Versatile air pollutant sampler 21
3.2.3 Micro-Orifice Uniform Deposit Impactor 22
3.2.4 Wilbur PM2.5 Sampler 23
3.3 Chemical analysis 24
3.3.1 Inductively Coupled Plasma Optical Emission Spectrometer 24
3.3.2 Ion Chromatography 25
3.4 Quality control 26
3.5 Hybrid Single Particle Lagrangian Integrated Trajectory Model 27
3.6 Spearman rank correlation 27
3.7 Analysis of variance (ANOVA) 28
3.8 Health risks posed by toxic elements in particles 29
Chapter 4 Results and Discussion 31
4.1 Atmospheric meteorological conditions 31
4.2 Average particulate matter, metallic elements and water-soluble ionic concentrations at SES, QES and H.P.B. 36
4.3 Particulates matter, water-soluble ionic and metallic elements concentrations in TSP and PM2.5 52
4.4 Analysis of back trajectories for particulates 55
4.5 Spearman statistics 65
4.6 ANOVA analysis 79
4.6.1 Two-way ANOVA analysis results 79
4.6.2 One-way ANOVA analysis 85
4.7 Carcinogenic risks from toxic elements in PM2.5 via inhalation and ingestion exposure 90
Chapter 5 Conclusions and Suggestions 99
5.1 Conclusions 99
5.2 Suggestions 101
References 102

Abu–Allaban, M., Gillies, J. A., Gertler, A. W., Clayton, R., Proffitt, D., 2003. Tailpipe, resuspended road dust, and brake–wear emission factors from on–road vehicles. Atmospheric Environment, 37, 5283–5293.
Adriano, D., Adriano, D., 2001. Trace Elements in Terrestrial Environments, Springer, New York.
Agency for Toxic Substances and Disease Registry (ATSDR), 1999. Toxicological profile for lead. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
Agency for Toxic Substances and Disease Registry (ATSDR), 2004. Toxicological profile for Copper. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
Agency for Toxic Substances and Disease Registry (ATSDR), 2005. Toxicological profile for Nickel. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
Agency for Toxic Substances and Disease Registry (ATSDR), 2005. Toxicological profile for Zinc. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
Agency for Toxic Substances and Disease Registry (ATSDR), 2007. Toxicological profile for Lead. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
Agency for Toxic Substances and Disease Registry (ATSDR), 2012. Toxicological Profile for Cadmium. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
Agency for Toxic Substances and Disease Registry (ATSDR), 2012. Toxicological profile for Chromium. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
Agency for Toxic Substances and Disease Registry (ATSDR), 2015. Toxicological profile for Nitrate and Nitrite. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
Ali–Mohamed, A.Y., 1991. Estimation of inorganic particulate matter in the atmosphere of Isa Town, Bahrain, by dry deposition. Atmospheric Environment, Part B, 25, pp. 397–405.
Allen, A.G., Cardoso, A.A., da Rocha, G.O., 2004. Influence of sugar cane burning on aerosol soluble ion composition in Southeastern Brazil. Atmospheric Environment, 38, p. 5025.
Alloway, B.J., 2013. Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability. (third ed.) Springer.
An, J., Wang, H., Shen, L., Zhu, B., Zou, J., Gao, J., Kang, H., 2015. Characteristics of new particle formation events in Nanjing, China: Effect of water–soluble ions. Atmospheric Environment, 108 32–40.
Andreae, M.O., Crutzen, P.J., 1997. Atmospheric aerosols, biogeochemical sources and role in atmospheric chemistry. Science, 276, pp. 1052–1058.
Andreae, M.O., Merlet, P., 2001. Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles, 15, 955–966.
Andres, R.J., Kasgnoc, A.D., 1998. A time–averaged inventory of subaerial volcanic sulfur emissions. Journal of Geophysical Research, 103, pp. 25,251–25,261.
Araújo, D.F., Boaventura, G.R., Machado, W., Viers, J., Weiss, D., Patchineelam, S.R., Ruiz, I., Rodrigues, A.P.C., Babinski, M., Dantas, E., 2017. Tracing of anthropogenic zinc sources in coastal environments using stable isotope composition. Chemical Geology, 449 226–235.
Aravena, R., Mayer, B., 2010. Isotopes and processes in the nitrogen and sulfur cycles. In: Aelion, C.M., Ho¨hener, P., Hunkeler, D., Aravena, R. (Eds.), Isotopes in biodegradation and bioremediation. CRC Press, New York, pp. 203–246.
Baldauf, R.W., Lane, D.D., Marote, G.A., 2001. Ambient air quality monitoring network design for assessing human health impacts from exposures to airborne contaminants. Environmental Monitoring and Assessment, 66, 63–76.
Barceloux, D.G., 1999. Chromium. Clinical Toxicology, 37, 173–194.
Beckett, K.P., Freer–Smith, P.H., Taylor, G., 1998. Urban woodlands: their role in reducing the effects of particulate pollution. Environmental Pollution, 99, pp. 347–360.
Benkovitz, C.M., Schotlz, M.T., Pacyna, J., Tarrason, L., Dignon, J., Voldner, E.C., Spiro, P.A., Logan, J.A., Graedel, T.E., 1996. Global gridded inventories of anthropogenic emissions of sulfur and nitrogen. Journal of Geophysical Research, 101 (29), 253.
Bérubé, K.A., Jones, T.P., Williamson, B.J., Winters, C., Morgan, A.J., Richards, R.J., 1999. Physicochemical characterisation of diesel exhaust particles: factors for assessing biological activity. Atmospheric Environment, 33 (10), 1599–1614.
Bi, X., Feng, X., Yang, Y., Qiu, G., Li, G., Li, F., Liu, T., Fu, Z., Jin, Z., 2006. Environmental contamination of heavy metals from zinc smelting areas in Hezhang County, western Guizhou, China. Environment International, 32, pp. 883–890.
Bompoti, N., Chrysochoou, M., Dermatas, D., 2015. Geochemical characterization of greek ophiolitic environments using statistical analysis. Environmental Processes, 2, 5–21.
Boreson, J., Dillner, A.M., Peccia, J., 2004. Correlating bioaerosol load with PM2.5 and PM10cf concentrations: a comparison between natural desert and urban–fringe aerosols. Atmospheric Environment, 38, 6029–6041.
Borges, D.L.G., Veiga, M.A.M.S., Frescura, V.L.A., Welz, B., Curtis, A.J., 2003. Cloud–point extraction for the determination of Cd, Pb and Pd in blood by electrothermal atomic absorption spectrometry, using Ir or Ru as permanent modifiers. Journal of Analytical Atomic Spectrometry, 18, pp. 501–507.
Borkowf, C.B., 2002. Computing the nonnull asymptotic variance and the asymptotic relative e&ciency of Spearman’s rank correlation. Computational Statistics and Data Analysis, 39, 271–286.
Bove, M.A., Ayuso, R.A., De Vivo, A., Lima, B., Albanese, S., 2011. Geochemical and isotopic study of soils and waters from an Italian contaminated site: Agro Aversano (Campania). Journal of Geochemical Exploration, 109, pp. 38–50.
Buekers, J., De Brouwere, K., Lefebvre, W., Willems, H., Vandenbroele, M., Van Sprang, P., Eliat–Eliat, M., Hicks, K., E. Schlekat, C., R. Oller, A., 2015. Assessment of human exposure to environmental sources of nickel in Europe: Inhalation exposure. Science of the Total Environment, 521–522 359–371.
Bukowiecki, N., Lienemann, P., Hill, M., Figi, R., Richard, A., Furger, M., Rickers, K., Falkenberg, G., Zhao, Y., Cliff, S.S., 2009. Real–world emission factors for antimony and other brake wear related trace elements: size–segregated values for light and heavy duty vehicles. Environmental Science and Technology, 43, pp. 8072–8078.
Cabral, M., Toure, A., Garçon, G., Diop, C., Bouhsina, S., Dewaele, D., Cazier, F., Courcot, D., Tall–Dia, A., Shirali, P., Diouf, A., Fall, M., Verdin, A., 2015. Effects of environmental cadmium and lead exposure on adults neighboring a discharge: Evidences of adverse health effects. Environmental Pollution, 206 (2015) 247–255.
Calvert, J.G., Lazrus, A., Kok, G.L., Heikes, B.G., Walega, J.G., Lind, J., Cantrell, C.A., 1985. Chemical mechanisms of acid generation in the troposphere. Nature, 317, 27–35.
Charlson, R.J., Schwartz, S.E., Hales, J.M., Cess, R.D., Coakley, J.A., Hansen, J.E., et al., 1992. Climate forcing by anthropogenic aerosols. Science, 255, pp. 423–430.
Chebbi, A., Carlier, P., 1996. Carboxylic acids in the troposphere, occurrence, sources, and sinks: A review. Atmospheric Environment, 30, p. 4233.
Chen, B., Stein, A.F., Maldonado, P.G., Sanchez de la Campa, A.M., Gonzalez–Castanedo, Y., Castell, N., de la Rosa, J.D., 2013. Size distribution and concentrations of heavy metals in atmospheric aerosols originating from industrial emissions as predicted by the HYSPLIT model. Atmospheric Environment, 71, pp. 234–244.
Chen B., Kan, H., Chen, R., Jiang, S., Hong, C., 2011. Air pollution and health studies in China–policy implications. Journal of the Air and Waste Management Association, 61, pp. 1292–1299.
Chen, H., Teng, Y., Lu, S., Wang, Y., Wu, J., Wang, J., 2016. Source apportionment and health risk assessment of trace metals in surface soils of Beijing metropolitan, China. Chemosphere, 144, 1002–1011.
Chen, Y.L., Lai, Y.C., Lin, C.J., Chang, Y.K., Ko, M.S., 2013. Controlling sintering atmosphere to reduce the hazardous characteristics of low–energy cement produced with chromium compounds. Journal of Cleaner Production, 43, 45–51.
Cheng, S.H., Yang, L.X., Zhou, X.H., Xue, L.K., Gao, X.M., Zhou, Y., et al., 2011. Size–fractionated water–soluble ions, situ pH and water content in aerosol on hazy days and the influences on visibility impairment in Jinan, China. Atmospheric Environment, 45 (27), pp. 4631–4640.
Cheng, Y., Lee, S., Gu, Z., Ho, K., Zhang, Y., Huang, Y., C. Chow, J., G. Watson, J., Cao, J., Zhang, R., 2015. PM2.5 and PM10–2.5 chemical composition and source apportionment near a Hong Kong roadway. Particuology, 18, 96–104.
Cohen, A.J., 2013. Global burden of disease 2010.pdf. Institute for Health Metrics and Evaluation.
Collin, D., Smith, D., Consterdine, I., Lowe, J., 1997. Marine aerosol, sea–salt, and the marine sulphur cycle: a short review. Atmospheric Environment, 31, p. 73–60.
Councell, T.B., Duckenfield, K.U., Landa, E.R., Callender, E., 2004. Tire–wear particles as a source of zinc to the environment. Environmental Science anf Technology, 38, 4206–4214.
Cruz, C.N., Pandis, S.N., 1997. A study of the ability of pure secondary organic aerosol to act as cloud condensation nuclei. Atmospheric Environment, 31, 2205–14.
Clark, I., Fritz, P., 1997. Environmental isotopes in hydrogeology. CRC Press, New York.
Clark, J., 1996. Coastal Zone Management Handbook. CRC Press, Boca Raton, Fla.
Da Rocha, G.O., Allen, A.G., Cardoso, A.A., 2005. Influence of agricultural biomass burning on aerosol size distribution and dry deposition in southeastern Brazil. Environmental Science and Technology, 39, p. 5293.
Da Rocha, G.O., Franco, A., Allen, A.G., Cardoso, A.A., 2003. Sources of atmospheric acidity in an agricultural–industrial region of São Paulo State, Brazil. Journal of Geophysical Research, 108 (D7).
Dawson, J.C., Tetzlaff, D., Carey, A., Raab, A., Soulsby, C., Killham, K., Meharg, A.A., 2010. Characterizing Pb mobilization from upland soils to streams using206Pb/207Pb isotopic ratios. Environmental Science and Technology, 44, pp. 243–249.
Delmas, R., Ser, A.D., Jambert, C., 1997. Global inventory of NOx sources. Nutrient Cycl. Agroecosyst, 48, 51–60.
Deng, X.l., Shi, C., Wu, B., Yang, Y., Jin, Q., Wang, H., Zhu, S., Yu, C., 2016. Characteristics of the water–soluble components of aerosol particles in Hefei, China. Journal of Environmental Sciences, 42, 32 – 40.
Dockery, D.W., Pope III, C.A., Xu, X., Spengler, J.D., Ware, J.H., Martha, E.F., Ferris Jr., B.G., Speizer, F.E.,1993. An association between air pollution and mortality in six U.S. Cities. New England Journal of Medicine, 329, pp. 1753–1759.
Dokou, Z., Karatzas, G.P., Nikolaidis, N.P., Kalogerakis, N., 2013. Mapping of chromium in the greater area of Asopos river basin. In: 13th International Conference on Environmental Science and Technology. Athens, Greece, p. 8.
Domingos, J.S.S., Regis, A.C.D., Santos, J.V.S., de Andrade, J.B., da Rocha, G.O., 2012. A comprehensive and suitable method for determining major ions from atmospheric particulate matter matrices. Journal of Chromatography A, 1266, 17–23.
Donovan, G.H., Jovan, S.E., Gatziolis, D., Burstyn, I., Michael, Y.L., Amacher, M.C., Monleon, V.J., 2016. Using an epiphytic moss to identify previously unknown sources of atmospheric cadmium pollution. Science of the Total Environment, 559, 84–93.
Draxler, R.R., 1999, HYSPLIT4 user's guide. NOAA Tech. Memo. ERL ARL–230, NOAA Air Resources Laboratory, Silver Spring, MD.
Duong Tuan, Q., Kim, J.S., 2010. Fluoro– and chromogenic chemodosimeters for heavy metal ion detection in solution and biospecimens. Chemical Reviews, 110 (10) 6280–6301.
Dzierzanowski, K., Popek, R., Gawronska, H., Sabo, A., Gawronski, S.W., 2011. Deposition of particulate matter of different size fractions on leaf surfaces and in waxes of urban forest species. International Journal of Phytoremediation, 13, pp. 1037–1046.
Eisler, R., 2000. Handbook of chemical risk assessment: health hazards to humans, plants and animals. Lewis Publishers, New York.
Engler, C., Birmili, W., Spindler, G., Wiedensohler, A., 2012. Analysis of exceedances in the daily PM10 mass concentration (50 mg m–3) at a roadside station in Leipzig, Germany. Atmospheric Chemistry and Physics, 12, 10107–10123.
Falgayrac, G., Sobanska, S., Brémard, C., 2014. Raman diagnostic of the reactivity between ZnSO4 and CaCO3 particles in humid air relevant to heterogeneous zinc chemistry in atmosphere. Atmospheric Environment, 85, 83–91.
Fang, G.C., Chang, S.C., Chen, Y.C., Zhuang, Y.J., 2014. Measuring metallic elements of total suspended particulates (TSPs), dry deposition flux, and dry deposition velocity for seasonal variation in central Taiwan. Atmospheric Research, 143, 107–117.
Fang, G. C., Huang, Y. L., Huang, J. H., Liu, C. K., 2012. Dry deposition of Mn, Zn, Cr, Cu and Pb in particles of sizes of 3 μm, 5.6 μm and 10 μm in central Taiwan. Journal of Hazardous Materials, 203–204 (15), pp. 158–168.
Fang G.C., Kuo, Y. C., Zhuang, Y.J., 2015. Ambient air metallic pollutant study at HAF areas during 2013–2014. Atmospheric Research, 158–159, 107–121.
Fang, G.C., Lin, S.J., Chang, S.Y., Chou, C.C.K., 2009. Effect of typhoon on atmospheric particulates in autumn in central Taiwan. Atmospheric Environment, 43(38), 6039–6048.
Fang, G. C., Wu, Y. S., Fu, P. P.C., Chang, C. N., Chen, M.H., Ho, T. T., Huang, S.H., Rau, J. Y., 2005. Metallic elements study of fine and coarse particulates using a versatile air pollutant system at a traffic sampling site. Atmospheric Research, 75 1–14.
Fang, G.C., Yang, I.L., Liu, C.K., 2010. Measure and modeling the ambient air particles and particle bound mercury. Atmospheric Research 97, 97–105.
Fang, G.C., Zhang, L., Huang, C.S., 2012. Measurements of size–fractionated concentration and bulk dry deposition of atmospheric particulate bound mercury. Atmospheric Environment, 61, 371–377.
Fujikoshi, Y., 1993. Two–way ANOVA models with unbalanced data. Discrete Mathematics, 116(1–3), 315–334.
Gao, J., Tian, H., Cheng, K., Lu, L., Wang, Y., Wu, Y., Zhu, C., Liu, K., Zhou, J., Liu, X., Chen, J., Hao, J., 2014. Seasonal and spatial variation of trace elements in multi-size airborne particulate matters of Beijing, China: Mass concentration, enrichment characteristics, source apportionment, chemical speciation and bioavailability. Atmospheric Environment, 99, 257–265.
García, E., Lopez Biain, I., Astarloa, S., Legarreta, J.A., Gutiérrez–Canas, C., 2007. Zinc aerosols from steelmaking EAF: morphology and growth. European Aerosol Conference, Salzburg.
Gavett, S.H., Madison, S.L., Dreher, K.L., Winsett, D.W., McGee, J.K., Costa, D.L., 1997. Metal and sulfate composition of residual oil fly ash determines airway hyperreactivity and lung injury in rats. Environmental Research, 72, 162–172.
Grgic, I., Dov man, A., Berci, G., Hudnik, V., 1998. The effect of atmospheric organic compounds on the Fe–catalyzed S (IV) autoxidation in aqueous solution. Journal of Atmospheric Chemistry, 29, 315–337.
Grivas, G., Chaloulakou, A., Kassomenos, P., 2008. An overview of the PM10 pollution problem, in the metropolitan area of Athens, Greece. Assessment of controlling factors and potential impact of long range transport. Science of the Total Environment, 389, 165–177.
Guha, T., Lin, C.T., Bhattacharya, S.K., Mahajan, A.S., Ou–Yang, C.F., Lan, Y.P., Hsu, S.C., Liang, M.C., 2017. Isotopic ratios of nitrate in aerosol samples from Mt. Lulin, a highaltitude station in Central Taiwan. Atmospheric Environment, 154, 53–69.
Guo, Z.H., Zhang, L., Cheng, Y., Xiao, X.Y., Pan, F.K., Jiang, K.Q., 2010. Effects of pH, pulp density and particle size on solubilization of metals from a Pb/Zn smelting slag using indigenous moderate thermophilic bacteria. Hydrometallurgy, 104 (1), pp. 25–31.
Hao, Y., Guo, Z., Yang, Z., Fan, D., Fang, M., Li, X., 2008. Tracking historical lead pollution in the coastal area adjacent to the Yangtze River Estuary using lead isotopic compositions. Environmental Pollution, 156, pp. 1325–1331.
Harker, L., Hutcheon, I., Mayer, B., 2015. Use of major ion and stable isotope geochemistry to delineate natural and anthropogenic sources of nitrate and sulfate in the Kettle River Basin, British Columbia, Canada. Comptes Rendus Geoscience, 347, 338–347.
Hinrichs, J., Dellwig, O., Brumsack, H.J., 2002. Lead in sediments and suspended particulate matter of the German Bight: natural versus anthropogenic origin. Applied Geochemistry, 17, pp. 621–632.
Hu, M., Wu, Z., Slanina, J., Lin, P., Liu, S., Zeng, L., 2008. Acidic gases, ammonia and water–soluble ions in PM2.5 at a coastal site in the Pearl River Delta, China. Atmospheric Environment, 42 (25), pp. 6310–6320.
Hu, X., Zhang, Y., Ding, Z., Wang, T., Lian, H., Sun, Y., Wu, J., 2012. Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmospheric Environment, 57, pp. 146–152.
Hueglin, C., Gehrig, R., Baltensperger, U., Gysel, M., Monn, C., Vonmont, H., 2005. Chemical characterization of PM2.5, PM10 and coarse particles at urban, near–city and rural sites in Switzerland. Atmospheric Environment, 39, 637–651.
Inomata, Y., Ohizumi, T., Take, N., Sato, K., Nishikawa, M., 2016. Transboundary transport of anthropogenic sulfur in PM2.5 at a coastal site in the Sea of Japan as studied by sulfur isotopic ratio measurement. Science of the Total Environment, 553, 617–625.
International Agency for Research on Cancer (IARC), 2012. Monographs on the evaluation of carcinogenic risks to humans. A Review of Human Carcinogens: Arsenic, Metals, Fibres, and dusts, IARC, Lyon.
International Programme on Chemical Safety (IPCS), 1992. Cadmium. Environmental health criteria, 134. Geneva: World Health Organisation.
Jacob, D.J., 2004. Introduction to Atmospheric Chemistry. Princeton University Press, p. 1999.
Jeong, J.H., Shon, Z.H., Kang, M., Song, S.K., Kim, Y.K., Park, J., Kim, H., 2017. Comparison of source apportionment of PM2.5 using receptor models in the main hub port city of East Asia: Busan. Atmospheric Environment, 148 115–127.
Jiang, Y., Chao, S., Liu, J., Yang, Y., Chen, Y., Zhang, A., Cao, H., 2017. Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere, 168 1658–1668.
Jones, A., Roberts, D.L., Slingo, A., 1994. A climate model study of indirect radiative forcing by anthropogenic sulphate aerosols. Nature, 370, 450–3.
Joos, F., Baltensperger, U., 1991. A field study on chemistry, S (IV) oxidation rates and vertical transport during fog conditions. Atmospheric Environment, 25A, 217–230.
Jung, H.J., Young–Chul, S., Xiande, L., Li, Y., Ro, C.U., 2012. Single–particle characterization of aerosol particles collected nearby a lead smelter in China. Asian Journal of Atmospheric Environment, 6, pp. 83–95.
Jung, J.S., Lee, H., Kim, Y.J., Liu, X.G., Zhang, Y.H., Gu, J.W., et al., 2009. Aerosol chemistry and the effect of aerosol water content on visibility impairment and radiative forcing in Guangzhou during the 2006 Pearl River Delta campaign. Journal of Environmental Management, 90 (11), pp. 3231–3244.
Karavoltsos, S., Sakellari, A., Makarona, A., Plavsic, M., Ampatzoglou, D., Bakeas, E., Dassenakis, M., Scoullos, M., 2013. Copper complexation in wet precipitation: Impact of different ligand sources. Atmospheric Environment, 80, 13–19.
Kasprzak, K. S., Sunderman Jr., F. Wi., Salnikow, K., 2003. Nickel carcinogenesis. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. Volume 533, Issues 1–2, 10 December, Pages 67–97.
Ke, Y., Chai, L.Y., Min, X.B., Tang, C.J., Chen, J., Wang, Y., Liang, Y.J., 2014. Sulfidation of heavy-metal-containing neutralization sludge using zinc. Minerals Engineering, 61, 105–112.
Kiehl, J.T., Briegleb, B.P., 1993. The relative roles of sulfate aerosols and greenhouse gases in climate forcing. Science, 260, 911–4.
Kim, B.M., Park, J.S., Kim, S.W., Kim, H., Jeon, H., Cho, C., Kim, J.H., Hong, S., Rupakheti, M., K. Panday, A., J. Park, R., Hong, J., Yoon, S.C., 2015. Source apportionment of PM10 mass and particulate carbon in the Kathmandu Valley, Nepal. Atmospheric Environment, 123, 190–199.
Kim, H., Kaown, D., Mayer, B., Lee, J.Y., Hyun, Y., Lee, K.K., 2015. Identifying the sources of nitrate contamination of groundwater in an agricultural area (Haean basin, Korea) using isotope and microbial community analyses. Science of the Total Environment, 533, 566–575.
Kim, K.H., 2014. Present and long–term pollution status of airborne copper in major urban environments. Atmospheric Environment, 94, 1–10.
Kimbrough, D.E., Cohen, Y., Winer, A.M., Creeman, L., Mabuni, C., 1999. A critical assessment of chromium in the environment. Critical Reviews in Environmental Science and Technology, 29, 1–46.
Klemm, R.J., Mason, R.M., Heilig, C.M., Neas, L.M., Dockery, D.W., 2000. Is daily mortality associated specifically with fine particles? Data reconstruction and replication analysis. Journal of the Air and Waste Management Association, 50 (7), 1215–1222.
Kodavanti, U.P., Hauser, R., Christiani, D.C., Meng, Z.H., McGee, J., Ledbetter, A., Richards, J., Costa, D.L., 1998. Pulmonary responses to oil fly ash particles in the rat differ by virtue of their specific soluble metals. Toxicological Sciences, 43 (2), 204–212.
Kupiainen, K.J., Tervahattu, H., Raisanen, M., Makela, T., Aurela, M., Hillamo, R., 2005. Size and composition of airborne particles from pavement wear, tires, and traction sanding. Environmental Science and Technology, 39, 699–706.
Laden, F., Neas, L.M., Dockery, D.W., Schwatz, J., 2000. Association of fine particulate matter from different sources with daily mortality in six U.S. cities. Environmental Health Perspectives, 108 (10), 941–947.
Laden, F., Schwartz, J., Speizer, F.E., Dockery, D.W., 2006. Reduction in fine particulate air pollution and mortality: extended follow–up of the harvard six cities study. American Journal of Respiratory and Critical Care Medicine, 173, 667–72.
Lee, J.C., Son, Y.O., Pratheeshkumar, P., Shi, X., 2012. Oxidative stress and metal carcinogenesis. Free Radical Biology and Medicine, 53, pp. 742–757.
Lee, Y.L., Sequerira, R., 2002. Water–soluble aerosol and visibility degradation in Hong Kong during autumn and early winter, 1998. Environmental Pollution, 116 (2), pp. 225–233.
Legrand, M., 1987. Chemistry of Antarctic snow and ice. Journal of Physics, 48, 77–86.
Lelieveld, J., Evans, J.S., Fnais, M., Giannadaki, D., Pozzer, A., 2015. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 525, 367–371.
Lewis, M., Pryor, R., Wilking, L., 2011. Fate and effects of anthropogenic chemicals in mangrove ecosystems: a review. Environmental Pollution, 159, pp. 2328–2346.
Li, R., Wiedinmyer, C., Hannigan, M.P., 2013. Contrast and correlations between coarse and fine particulate matter in the United States. Science of the Total Environment, 456–457, 346–358.
Li, Z., Feng, X., Li, G., Bi, X., Zhu, J., Qin, H., Dai, Z., Liu, J., Li, Q., Sun, G., 2013. Distributions, sources and pollution status of 17 trace metal/metalloids in the street dust of a heavily industrialized city of central China. Environmental Pollution, 182, pp. 408–416.
Lin, C.C., Chen, S.J., Huang, K.L., Hwang, W.I., G.P., Chien, C., Lin, W.Y., 2005. Characteristics of metals in nano/ultrafine/fine/coarse particles collected beside a heavily trafficked road. Environmental Science and Technology, Vol 39, No.21, pp.8113–8122.
Liu, J., Zhu, L., Wang, H., Yang, Y., Liu, J., Qiu, D., Ma, W., Zhang, Z., Liu, J., 2016. Dry deposition of particulate matter at an urban forest, wetland and lake surface in Beijing. Atmospheric Environment, 125, 178–187.
Lü, X., Bao, X., Huang, Y., Qu, Y., Lu, H., Lu, Z., 2009. Mechanisms of cytotoxicity of nickel ions based on gene expression profiles. Biomaterials, 30, pp. 141–148.
Ma, Y., Cheng, Y., Qiu, X., Lin, Y., Cao, J., Hu, D., 2016. A quantitative assessment of source contributions to fine particulate matter (PM2.5)–bound polycyclic aromatic hydrocarbons (PAHs) and their nitrated and hydroxylated derivatives in Hong Kong. Environmental Pollution, 219, 742–749.
Makkonen, U., Hellen, H., Anttila, P., Ferm, M., 2010. Size distribution and chemical composition of airborne particles in south–eastern Finland during different seasons and wildfire episodes in 2006. Science of the Total Environment, 408, pp. 644–651.
Malm, W.C., Pitchford, M., McDade, C., Ashbaugh, L., 2007. Coarse particle speciation at selected locations in the rural continental United States. Atmospheric Environment, 41, 2225–2239.
Malm, W.C., Sisler, J.F., Huffman, D., Eldred, R.A., Cahill, T.A., 1994. Spatial and seasonal trends in particle concentration and optical extinction in the United States. Journal of Geophysical Research Atmospheres, 99 (D1), 1347–1370.
Maro, D., Connan, O., Flori, J.P., Hébert, D., Mestayer, P., Olive, F., Rosant, J.M., Rozet, M., Sini, J.F., Solier, L., 2014. Aerosol dry deposition in the urban environment: Assessment of deposition velocity on building facades. Journal of Aerosol Science, 69, 113–131.
Marty, M.A., Siegel, D., Mahmud, A., Servin, A., Yee, S., Zuo, Y.P., Collins, J.F., Salmon, A.G., Wang, A.A., 2015. Air Toxics Hot Spots Program. Risk Assessment Guidelines. Guidance Manual for Preparation of Health Risk Assessments, February 2015.
Mayer, B., 2005. Chapter 6 – assessing sources and transformations of sulfate and nitrate in the hydrosphere using isotope techniques. In: Aggarwal, P.K., Gat, J.R., Froehlich, K.F.O. (Eds.), Isotopes in the Water Cycle. Springer, Netherlands.
McMurry, P., Shepherd, M., Vickery, J., 2004. Particulate Matter Science for Policy Makers. A NARSTO Assessment. Cambridge University Press, Cambridge, UK.
McRae, R., Bagchi, P., Sumalekshmy, S., Fahrni, C.J., 2009. In situ imaging of metals in cells and tissues. Chemical Reviews, 109 (10), 4780–4827.
Meira, G.R., Andrade, C., Vilar, E.O., Nery, K.D., 2014. Analysis of chloride threshold from laboratory and field experiments in marine atmosphere zone. Construction and Building Materials, 55, 289–298.
Meira, G.R., Pinto, W.T.A., Lima, E.E.P., Andrade, C., 2017. Vertical distribution of marine aerosol salinity in a Brazilian coastal area – The influence of wind speed and the impact on chloride accumulation into concrete. Construction and Building Materials, 135, 287–296.
Minguillón, M.C., Campos, A.A., Cárdenas, B., Blanco, S., Molina, L.T., Querol, X., 2014. Mass concentration, composition and sources of ne and coarse particulate matter in Tijuana, Mexico, during Cal–Mex campaign. Atmospheric Environment, 88, 320–329.
Moolgavkar, S.H., Luebeck, E.G., 1996. A critical review of the evidence on particulate air pollution and mortality. Epidemiology, 7, 420–8.
Mukai, H., Furuta, N., Fujii, T., Ambe, Y., Sakamoto, K., Hashimoto, Y., 1993. Characterization of sources of lead in the urban air of Asia using ratios of stable lead isotopes. Environmental Science and Technology, 27, pp. 1347–1356.
Mukai, H., Tanaka, A., Fujii, T., Nakao, M., 1994. Lead isotope ratios of airborne particulate matter as tracers of long–range transport of air pollutants around Japan. Journal of Geophysical Research: Atmospheres, 99, pp. 3717–3726.
Mukai, H., Tanaka, A., Fujii, T., Zeng, Y., Hong, Y., Tang, J., Guo, S., Xue, H., Sun, Z., Zhou, J., Xue, D., Zhao, J., Zhai, G., Gu, J., Zhai, P., 2001. Regional characteristics of sulfur and lead isotope ratios in the atmosphere at several Chinese urban sites. Environmental Science and Technology, 35, pp. 1064–1071.
Nie, W., Wang, T., Wang, W., Wei, X., Liu, Q., 2013. Atmospheric concentrations of particulate sulfate and nitrate in Hong Kong during 1995–2008: Impact of local emission and super–regional transport. Atmospheric Environment, 76, 43–51.
Novak, M., Kirchner, J.W., Fottova, D., Prechonova, E., Jackova, I., Paval, K., Hruska, J., 2005. Isotopic evidence for processes of sulfur retention/release in 13 forested catchments spanning a strong pollution gradient (Czech Republic, central Europe). Global Biogeochemical Cycles, 19, Article GB4012.
Ohizumi, T., Take, N., Inomata, Y., Yagoh, H., Endo, T., Takahashi, M., Yanahara, K., Kusakabe, M., 2016. Long–term variation of the source of sulfate deposition in a leeward area of Asian continent in view of sulfur isotopic composition. Atmospheric Environment, 140, 42–51.
Ono K., 2013. Past and future cadmium emissions from municipal solid–waste incinerators in Japan for the assessment of cadmium control policy. Journal of Hazardous Materials, 262, 741–747.
Panagiotakis, I., Dermatas, D., Vatseris, C., Chrysochoou, M., Papasiopi, N., Theologou, E., Mpouras, T., Sakellariou, L., 2013. Investigation of chromium sources in the groundwater of Thiva, Greece. In: 13th International Conference on Environmental Science and Technology. Athens, Greece, p. 8.
Papaevangelou, V.A., Gikas, G.D., Tsihrintzis, V.A., 2017. Chromium removal from wastewater using HSF and VF pilot–scale constructed wetlands: Overall performance, and fate and distribution of this element within the wetland environment. Chemosphere 168, 716–730.
Pavuluri, C.M., Kawamura, K., Mihalopoulos, N., Fu, P., 2013. Year–round observations of water–soluble ionic species and trace metals in Sapporo aerosols: implication for significant contributions from terrestrial biological sources in Northeast Asia. Atmospheric Chemistry and Physics, 13, pp. 6589–6629.
Peled, R., 2011. Air pollution exposure: who is at high risk? Atmospheric Environment, 45, pp. 1781–1785.
Pope, C.A., Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K., Thurston, G.D., 2002. Lung cancer, cardiopulmonary mortality, and long–term exposure to fine particulate air pollution. Journal of the American Medical Association, 287, pp. 1132–1141.
Pope, C.A., Dockery, D.W., 2006. Health effects of fine particulate air pollution: lines that connect. Journal of the Air & Waste Management Association, 56, 709–42.
Pope, C.A., Ezzati, M., Dockery, D.W., 2009. Fine–particulate air pollution and life expectancy in the United States. The New England Journal of Medicine, 360, 376–86.
Potgieter, S.S., Panichev, N., Potgieter, J.H., Panicheva, S., 2003. Determination of hexavalent chromium in South African cements and cement–related materials with electrothermal atomic absorption spectrometry. Cement and Concrete Research, 33, 1589–1593.
Preuss, H.G., 1993. A review of persistent, low–grade lead challenge: neurological and cardiovascular consequences. Journal of the American College of Nutrition, 12, pp. 246–254.
Prion, S., Haerling, K.A., 2014. Making Sense of Methods and Measurement: Spearman–Rho Ranked–Order Correlation Coefficient. Clinical Simulation in Nursing, 10, 535–536.
Qi, L, Zhang, Y, Ma, Y, Chen, M, Ge, X, Ma, Y, Zheng, J, Wang, Z, Li, S, 2016. Source identification of trace elements in the atmosphere during the second Asian Youth Games in Nanjing, China: Influence of control measures on air quality. Atmospheric Pollution Research, 7, 547–556.
Querol, X., Alastuey, A., Rodriguez, S., Plana, F., Ruiz, C.R., Cots, N., Massagué, G., Puig, O., 2001. PM10 and PM2.5 source apportionment in the Barcelona Metropolitan area, Catalonia, Spain. Atmospheric Environment, 35, 6407–6419.
Roy, D., Singh, G., Yadav, P., 2016. Identification and elucidation of anthropogenic source contribution in PM10 pollutant: Insight gain from dispersion and receptor models. Journal of Environmental Sciences, 48, 69 – 7 8.
Safai, P.D., Budhavant, K.B., Rao, P.S.P., Ali, K., Sinha, A., 2010. Source characterization for aerosol constituents and changing roles of calcium and ammonium aerosols in the neutralization of aerosol acidity at a semi–urban site in SW India. Atmospheric Research, 98 (1), pp. 78–88.
Sammut, M.L., Rose, J., Masion, A., Fiani, E., Depoux, M., Ziebel, A., Hazemann, J.L., Proux, O., Borschneck, D., Noack, Y., 2008. Determination of zinc speciation in basic oxygen furnace flying dust by chemical extractions and X–ray spectroscopy. Chemosphere, 70, pp. 1945–1951.
Schumann, U., Huntrieser, H., 2007. The global lightning–induced nitrogen oxides source. Atmospheric Chemistry and Physics, 7, 3823–3907.
Schwartz, J., Laden, F., Zanobetti, A., 2002. The concentration–response relation between PM2.5 and daily deaths. Environ Health Perspectives, 110, 1025–9.
Seinfeld, J.H., Pandis, S.N., 1998. From air pollution to climate change. Atmospheric Chemistry and Physics.
Sen, I.S., Bizimis, M., Tripathi, S.N., Paul, D., 2016. Lead isotopic fingerprinting of aerosols to characterize the sources of atmospheric lead in an industrial city of India. Atmospheric Environment, 129, 27–33.
Shakya, K.M., Ziemba, L.D., Griffin, R.J., 2010. Characteristics and sources of carbonaceous, ionic, and isotopic species of wintertime atmospheric aerosols in Kathmandu Valley, Nepal. Aerosol and Air Quality Research, 10, 219–230.
Shimamura, T., Iwashita, M., Iijima, S., Shintani, M., Takaku, Y., 2007. Major to ultra trace elements in rainfall collected in suburban Tokyo. Atmospheric Environment, 41, p. 6999.
Silbajoris, R., Ghio, A.J., Samet, J.M., Jaskot, R., Dreher, K.L., Brighton, L.E., 2000. In vivo and in vitro correlation of pulmonary MAP kinase activation following metallic exposure. Inhalation Toxicology, 12 (6), 453–468.
Six, L., Smolders, E., 2014. Future trends in soil cadmium concentration under current cadmium fluxes to European agricultural soils. Science of the Total Environment, 485–486, 319–328.
Smith, K.R., Veranth, J.M., Lighty, J.J., Aust, A.E., 1998. Mobilization of iron from coal fly ash was dependent upon the particle size and the source of coal. Chemical Research in Toxicology, 11 (12), 1494–1500.
Sobanska, S., Ricq, N., Laboudigue, A., Guillermo, R., Brémard, C., Laureyns, J., Merlin, J.C., Wignacourt, J.P., 1999. Microchemical investigations of dust emitted by a lead smelter. Environmental Science and Technology, 33, pp. 1334–1339.
Song, F., Gao, Y., 2011. Size distributions of trace elements associated with ambient particular matter in the affinity of a major highway in the New Jersey–New York metropolitan area. Atmospheric Environment, 45, pp. 6714–6723.
Song, X., Yang, S., Shao, L., Fan, J., Liu, Y., 2016. PM10 mass concentration, chemical composition, and sources in the typical coal–dominated industrial city of Pingdingshan, China. Science of the Total Environment, 571, 1155–1163.
Spearman, C., 1904. The proof and measurement of association between two things. The American Journal of Psychology, 15, pp. 72–101.
Spearman, C., 1906. ‘Footrule’ for measuring correlation. British Journal of Psychology, 2, pp. 89–108.
Sturges, W.T., Barrie, L.A., 1989. The use of stable lead 206/207 isotope ratios and elemental composition to discriminate the origins of lead in aerosols at a rural site in eastern Canada. Atmospheric Environment, 23, pp. 1645–1657.
Sugimoto, N., Shimizu, A., Matsui, I., Nishikawa, M., 2016. A method for estimating the fraction of mineral dust in particulate matter using PM2.5–to–PM10 ratios. Particuology, 28, 114–120.
Tao, J., Ho, K., Chen, L., Zhu, L., Han, J., Xu, Z., 2009. Effect of chemical composition of PM2.5 on visibility in Guangzhou, China, 2007 spring. Particuology, 7, 68–75.
Tao, J., Zhang, L., Cao, J., Zhong, L., Chen, D., Yang, Y., Chen, D., Chen, L., Zhang, Z., Wu, Y., Xia, Y., Ye, S., Zhang, R., 2017. Source apportionment of PM2.5 at urban and suburban areas of the Pearl River Delta region, south China – With emphasis on ship emissions. Science of the Total Environment, 574, 1559–1570.
Tie, X.X., Wu, D., Brasseur, G., 2009. Lung cancer mortality and exposure to atmospheric aerosol particles in Guangzhou, China. Atmospheric Environment, 43 (14), 2375–2377.
Tiwari, S., Dumka, U.C., Gautam, A.S., Kaskaoutis, D.G., Srivastava, A.K., Bisht, D.S., Chakrabarty, R.K., Sumlin, B.J., Solmon, F., 2017. Assessment of PM2.5 and PM10 over Guwahati in Brahmaputra River Valley: Temporal evolution, source apportionment and meteorological dependence. Atmospheric Pollution Research, 8, 13–28.
Traversi, R., Becagli, S., Brogioni, M., Caiazzo, L., Ciardini, V., Giardi, F., Legrand, M., Macelloni, G., Petkov, B., Preunkert, S., Scarchilli, C., Severi, M., Vitale, V., Udisti, R., 2017. Multi–year record of atmospheric and snow surface nitrate in the central Antarctic plateau. Chemosphere, 172, 341–354.
Turšič, J., Grgić, I., Podkrajšek, B., 2003. Influence of ionic strength on aqueous oxidation of SO2 catalyzed by manganese. Atmospheric Environment, 37, 2589–2595.
Uzu, G., Banska, S., Sarretg, G., Muñoz, M., Dumat, C., 2010. Foliar lead uptake by lettuce exposed to atmospheric fallouts. Environmental Science and Technology, 44, pp. 1036–1042.
Voutsa, D., Samara, C., 2002. Labile and bioaccessible fractions of heavy metals in the airborne particulate matter from urban and industrial areas. Atmospheric Environment, 36, 3583–3590.
Wang, C., Wang, J., Yang, Z., Mao, C., Ji, J., 2013. Characteristics of lead geochemistry and the mobility of Pb isotopes in the system of pedogenic rock–pedosphere–irrigated riverwater–cereal– atmosphere from the Yangtze River delta region, China. Chemosphere, 93, 1927–1935.
Wang, H., Zhu, B., Shen, L., Xu, H., An, J., Xue, G., Cao, J., 2015. Water–soluble ions in atmospheric aerosols measured in five sites in the Yangtze River Delta, China: Size–fractionated, seasonal variations and sources. Atmospheric Environment, 123, 370–379.
Wang, X., Pu, W., Zhang, X., Ren, Y., Huang, J., 2015. Water–soluble ions and trace elements in surface snow and their potential source regions across northeastern China. Atmospheric Environment, 114, 57–65.
Ward, M.H., Dekok, T.M., Levalliois, P., Brender, J., Gulis, G., Nolan, B.T., Van Derslice, J., 2005. Workgroup report: drinking–water nitrate and health recent findings and research needs. Environmental Health Perspectives, 113, 1607–1614.
Water Treatment Solutions (WTS), 2015. Copper – Cu. Lenntech. http://www.lenntech.com/periodic/elements/cr.htm. Accessed 25 April 2015.
Whittaker, M.H., Wang, G., Chen, X. Q., Lipsky, M., Smith, D., Gwiazda, R., Fowler, B.A., 2011. Exposure to Pb, Cd, and as mixtures potentiates the production of oxidative stress precursors: 30–day, 90–day, and 180–day drinking water studies in rats. Toxicology and Applied Pharmacology, 254, pp. 154–166.
Widory, D., Roy, S., Le Moullec, Y., Goupil, G., Cocherie, A., Guerrot, C., 2004. The origin of atmospheric particles in Paris: a view through carbon and lead isotopes. Atmospheric Environment, 38, pp. 953–961.
Williams, E.J., Guenther, A., Fehsenfeldi, F.C., 1992. An inventory of nitric oxide emissions from soils in the United States. Journal of Geophysical Research Atmospheres, 97, 7511–7519.
Woodcock, A.H., 1953. Salt nuclei in marine air as a function of attitude and wind force. Journal of Meteorology, 10, pp. 362–371.
World Health Organization (WHO), 2014. Ambient (outdoor) air quality and health. Available at: http://www.who.int/mediacentre/ factsheets/fs313/en/. (Date accessed: 02 July2015).
World Health Organization (WHO), 2014. Burden of Disease From Household Air Pollution for 2012. World Health Organization, Geneva, Switzerland, p. 17.
Wu, J.B., Wang, Z., Wang, Q., Li, J., Xu, J., Chen, H., Ge, B., Zhou, G., Chang, L., 2017. Development of an on–line source–tagged model for sulfate, nitrate and ammonium: A modeling study for highly polluted periods in Shanghai, China. Environmental Pollution, 221, 168–179.
Xiong, Q., Zhao, W., Gong, Z., Zhao, W., Tang, T., 2015. Fine particulate matter pollution and hospital admissions for respiratory diseases in Beijing, China. Int. Journal of Environmental Research and Public Health, 12, 11880–11892.
Xiong, Y., Zhou, J., Schauer, J.J., Yu, W., Hu, Y., 2017. Seasonal and spatial differences in source contributions to PM2.5 in Wuhan, China. Science of the Total Environment, 577, 155–165.
Xu, H.M., Cao, J.J., Ho, K.F., Ding, H., Han, Y.M., Wang, G.H., Chow, J.C., Watson, J.G., Khol, S.D., Qiang, J., Li, W.T., 2012. Lead concentrations in fine particulate matter after the phasing out of leaded gasoline in Xi'an, China. Atmospheric Environment, 46, pp. 217–224.
Xu, J., Lian, L.J., Wu, C., Wang, X.F., Fu, W.Y., Xu, L.H., 2008. Lead induces oxidative stress, DNA damage and alteration of p53, Bax and Bcl–2 expressions in mice. Food and Chemical Toxicology, 46 (5), pp. 1488–1494.
Xu, M., Hadi, P., Chen, G., McKay, G., 2014. Removal of cadmium ions from wastewater using innovative electronic waste–derived material. Journal of Hazardous Materials, 273, 118–123.
Yan, H.K., Lee, S.H., Han, K., Kang, B., Lee, S.Y., Yoon, K.H., Kwon, H.S., Park, Y.M., 2015. Lower serum zinc levels are associated with unhealthy metabolic status in normal–weight adults: The 2010 Korea National Health and Nutrition Examination Survey. Diabetes and Metabolism, 41, 282–290.
Yang, Y., Zhou, R., Wu, J., Yu, Y., Ma, Z., Zhang, L., Di, Y., 2015. Seasonal variations and size distributions of water–soluble ions in atmospheric aerosols in Beijing, 2012. Journal of Environmental Sciences, 34, 197 – 205.
Yin, J., Harrison, R.M., Chen, Q., Rutter, A., Schauer, J.J., 2010. Source apportionment of fine particles at urban background and rural sites in the UK atmosphere. Atmospheric Environment, 44, 841–851.
Ying, Q., Mysliwiec, M., Kleeman, M.J., 2004. Source apportionment of visibility impairment using a three–dimensional source–oriented air quality model. Environmental Science and Technology, 38 (4), 1089–1101.
Yu, C.H., Huang, L., Shin, J.Y., Artigas, F., Fan, Z.h.(T.), 2014. Characterization of concentration, particle size distribution, and contributing factors to ambient hexavalent chromium in an area with multiple emission sources. Atmospheric Environment, 94, 701–708.
Zhang, H., Hu, J., Kleeman, M., Ying, Q., 2014. Source apportionment of sulfate and nitrate particulate matter in the Eastern United States and effectiveness of emission control programs. Science of the Total Environment, 490, 171–181.
Zhang, T., Cao, J.J., Tie, X.X., Shen, Z.X., Liu, S.X., Ding, H., Han, Y.M., Wang, G.H., Ho, K.F., Qiang, J., Li, W.T., 2011. Water–soluble ions in atmospheric aerosols measured in Xi'an, China: Seasonal variations and sources. Atmospheric Research, 102, 110–119.
Zhang, Y., Wang, X., Chen, H., Yang, X., Chen, J., Allen, J.O., 2009. Source apportionment of lead–containing aerosol particles in Shanghai using single particle mass spectrometry. Chemosphere, 74, pp. 501–507.
Zhao, L., Li, M., Liu, M., Zhang, Y., Wu, C., Zhang, Y., 2016. Porphyrin–functionalized porous polysulfone membrane towards an optical sensor membrane for sorption and detection of cadmium (II). Journal of Hazardous Materials, 301, 233–241.
Zhang, R., Wang, G., Guo, S., Zamora, M.L., Ying, Q., Lin, Y., Wang, W., Hu, M., Wang, Y., 2015. Formation of urban fine particulate matter. Chemical Reviews, 115, 3803–3855.
Zhang, T., Cao, J.J., Tie, X.X., Shen, Z.X., Liu, S.X., Ding, H., Han, Y.M., Wang, G.H., Ho, K.F., Qiang, J., Li, W.T., 2011. Water–soluble ions in atmospheric aerosols measured in Xi'an, China: Seasonal variations and sources. Atmospheric Research, 102, 110–119.
Zhao, Y., Liu, Y., Ma, J., Ma, Q., He, H., 2017. Heterogeneous reaction of SO2 with soot: The roles of relative humidity and surface composition of soot in surface sulfate formation. Atmospheric Environment, 152, 465–476.
Zhao, Z.Q., Zhang, W., Li, X.D., Yang, Z., Zheng, H.Y., Ding, H., Wang, Q.L., Xiao, J., Fu, P.Q., 2015. Atmospheric lead in urban Guiyang, Southwest China: Isotopic source signatures. Atmospheric Environment, 115, 163–169.
Zhong, W.S., Ren, T., Zhao, L.J., 2016. Determination of Pb (Lead), Cd (Cadmium), Cr (Chromium), Cu (Copper), and Ni (Nickel) in Chinese tea with high–resolution continuum source graphite furnace atomic absorption spectrometry. Journal of Food and Drug Analysis, Volume 24, Issue 1, January, Pages 46–55.
Zhou, S., Yang, L., Gao, R., Wang, X., Gao, X., Nie, W., Xu, P., Zhang, Q., Wang, W., 2017. A comparison study of carbonaceous aerosols in a typical North China Plain urban atmosphere: Seasonal variability, sources and implications to haze formation. Atmospheric Environment, 149, 95–103.
Zhu, T., Shang, J., Zhao, D., 2011. The roles of heterogeneous chemical processes in the formation of an air pollution complex and gray haze. Science China Chemistry, 54 (1), pp. 145–153.

電子全文 電子全文(網際網路公開日期:20220615)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔