跳到主要內容

臺灣博碩士論文加值系統

(44.210.149.205) 您好!臺灣時間:2024/04/17 09:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳亮君
研究生(外文):Liang-Chun Chen
論文名稱:採用資料探勘之快速運動估測演算法與DSP實現
論文名稱(外文):A study of fast motion estimation algorithm based on data mining and DSP implementation
指導教授:王周珍
指導教授(外文):Chou-Chen Wang
學位類別:碩士
校院名稱:義守大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:93
相關次數:
  • 被引用被引用:1
  • 點閱點閱:107
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  高效能視訊編碼(high efficiency video coding: HEVC,又稱H265)是最新一代的視訊編碼標準,HEVC採用更彈性的視訊編碼模組,分別為編碼單位(coding unit: CU)、預測單位(prediction unit: PU)和轉換單位(transform unit: TU),其中PU採用運動估測(motion estimation: ME)來進行畫面間預測(inter prediction),為了提高PU預測的準確性,HEVC允許ME模組執行多重參考畫面(multiple reference frame: MRF)來進行更精準的預測,這也導致ME模組需要更龐大的計算量,以至於難以達到即時視訊傳輸之應用。
  為了降低HEVC中ME模組的計算複雜度,最近Yang等學者提出了快速參考畫面選擇演算法[4],他們經由統計發現在MRF的先進運動向量預測(advanced motion vector prediction: AMVP)中,最小位元率-失真成本(rate-distortion cost: RD cost)所對應的參考畫面與最佳參考畫面間存在很高的相關性。因此,Yang提出當HEVC在進行ME模組之前,利用預先設定的臨界值(threshold)來判斷AMVP中最小RD cost所對應的參考畫面是否為最佳畫面,來加速ME模組的運算。由於Yang主要是根據AMVP在MRF間的相關性統計,並藉由量化參數(quantization parameter: QP)和PU大小來設定臨界值,然而當畫面場景變化較大或背景特徵較複雜時,將導致所需平均參考畫面變多,以至於無法大幅提升ME模組的速度。
  當HEVC應用在4K超高解析度(ultra high definition: UHD)視訊編碼時,ME模組將面臨大數據(big data)的資料量。由於MRF間具有很高的時空關聯性(temporal-spatial correlation),為了改善Yang等學者的方法,本論文利用資料探勘(data mining)的技術,在PU中分別找尋出適合ME模組的屬性(attributes),並在編碼過程中提取出每個屬性相對的數據,接著將數據以ARFF (attribute-relation file format)的檔案格式輸入至軟體工具WEKA[9],透過C4.5機器學習演算法[10]來訓練出適合的最佳參考畫面選擇的決策樹(decision tree),最後將此決策樹運用在PU結構中,來快速選擇最佳的參考畫面,大幅降低MRF的計算複雜度,加速ME模組的速度。
  此外,本論文採用ADSP-BF609開發板來完成所提出快速ME模組的DSP實現。首先,對於DSP內部進行記憶體配置的最佳化,我們將運算複雜度高的PU模組從L3配置到L2中,提高PU模組的執行效率;接著,使用ADSP-BF609開發板專用指令,將原程式碼進行修改與優化,並進行實驗模擬與分析。最後,由實驗結果得知,本論文所提出的方法當參考畫面為4張(MRF=4)時,與HM16.7[]和Yang的時間改善率(time improving ratio: TIR)相比,TIRHM和TIRYang分別為70.09%和46.03%,當MRF=8時,TIRHM和TIRYang分別為82.49%和35.04%。本論文所提出的方法,除了能加速HEVC編碼過程外,更可以得到與HM16.7差異不大的影像品質。
  High efficiency video coding (HEVC) is the newest video encoding standard. HEVC adopts some new coding structures including coding unit (CU), prediction unit (PU) and transform unit (TU). In the PU structure, HEVC adopts motion estimation (ME) module to achieve inter prediction. In order to improve the accuracy of PU prediction, HEVC allows the ME module performing on multiple reference frames (MRF). Although the ME-MRF can enhance the PU performance and allow the encoder to search a better reference frame from several previous pictures, the computational complexity of the ME-MRF dramatically increases. Thus, the real-time applications of HEVC will be limited.
  In order to reduce the computational complexity of ME module in HEVC, Yang et al. proposed a HEVC fast reference picture selection recently [4]. After the statistical analysis of ME-MRF, they found that a high correlation exists between the best reference frame and lowest rate-distortion cost (RD cost) associated with advanced motion vector prediction (AMVP). Therefore, they use the predefined threshold to determine whether the AMVP-selected reference frame is the best reference frame. However, the predefined threshold is inefficient when the video sequence with active motion and complicate background.
  To further improve the accuracies of MRF prediction, we propose a fast ME algorithm based on data mining to speed up encoding process of HEVC encoder. Firstly, we find that there is a high temporal-spatial correlation existing in the MRF. Then, we find appropriate attributes from ME module and extract the corresponding data. We save these attributes as an attribute-relation file format (ARFF). And then, the ARFF is performed on WEKA [9] to train the ME-MRF decision trees using the C4.5 algorithm [10]. Finally, we employ the created decision tree to achieve fast selection of the reference frames.
  In addition, to further achieve the DSP realization for the proposed fast motion estimation algorithm, we embed the codec on the ADSP-BF609. We re-allocate the function of consuming module from L3 DDR-RAM to L1 and L2 SRAM to speed up the encoding time of HEVC. Simulation results show that the proposed method can achieve average time improving ratio (TIR) with MRF=4 about TIRHM=70.09% and TIRYang= 46.03% when compared to HEVC (HM16.7) [7] and Yang’s method, respectively. The gains of TIRHM=70.09% and TIRYang= 46.03% with MRF=8 can be reached. It is clear that the proposed method can efficiently increase the speed of HEVC encoder with insignificant loss of image quality.
摘要 i
ABSTRACT iii
致謝 v
目錄 vi
圖目錄 ix
表目錄 xii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3論文架構 3
第二章 HEVC視訊編碼標準 5
2.1 HEVC視訊編碼標準之發展 5
2.2 HEVC視訊編碼架構與規範 6
2.3 HEVC視訊編碼工具 9
2.3.1 畫面內預測 10
2.3.2 畫面間預測 10
2.3.3 轉換與量化 13
2.3.4 CTU樹形之決定 13
第三章 提升視訊標準編碼效能之運用 15
3.1 多重參考畫面選擇 15
3.1.1 畫面組態與參考畫面設置 18
3.1.2 先進運動向量預測介紹 20
3.1.3 最佳參考畫面之決策 24
3.2 參考畫面提早決策演算法 25
3.2.1 參考畫面複雜度分析 25
3.2.2 快速HEVC參考畫面選擇演算法 27
3.3編碼效能比較 30
3.4討論與分析 32
第四章 採用資料探勘之快速運動估測演算法 33
4.1 資料探勘技術 33
4.1.1 機器學習工具 34
4.1.2 ARFF檔案格式 34
4.1.3 透過C4.5演算法建立決策樹之方法 35
4.2 採用資料探勘之快速運動估測(ME)演算法 38
4.2.1 參考畫面觀察統計與分析 38
4.2.2 屬性選擇與分析 46
4.2.3 快速運動估測演算法與流程 53
第五章 快速運動估測演算法之DSP實現 56
5.1 ADSP-BF609開發板介紹 57
5.1.1 ADSP-BF609晶片 58
5.1.2 ADSP-BF609之記憶體結構 59
5.1.3非同步收發傳輸通訊協定 61
5.1.4直接記憶體存取技術 62
5.2 Blackfin DSP開發環境 63
5.3 快速運動估測(ME)實現於DSP 64
第六章 實驗結果分析與結論 67
6.1實驗結果分析 67
6.2結論 76
6.3未來工作 77
參考文獻 78
[1]J. Ohm, W. J. Han and T. Wiegand, “Overview of the high efficiency video coding (HEVC) standard,” IEEE Trans. Circuits System Video Technology, vol. 22 no. 12, pp. 1649- 1668, Dec. 2012.
[2]T. Wiegand, G. J. Sullivan, G. Bjontegaard and A. Luthra, “Overview of the H.264/AVC video coding standard,” IEEE Trans. Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 560-576, July 2003
[3]B. Bross, W. Han, J. Ohm, G. Sullivan and T. Wiegand, “WD6: Working Draft 6 of High-Efficiency Video Coding,” JCTVC-H1003, JCT-VC Meeting, San Jose, Feb. 2012.
[4]S. H. Yang and K. S. Huang, “HEVC fast reference picture selection,” Electronics letters 10th December 2015 Vol. 51 No. 25 pp. 2109–2111
[5]Reference ADSP-BF609, http://www.analog.com/en/products/processors-dsp/ blackfin/adsp-bf609.html
[6]High efficiency video coding, docment ITU-T Rec. H.265, Oct. 2014.
[7]Reference software HM16.7, https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoft ware/branches/
[8]G. Bjontegaard, “Calculation of average PSNR differences between RD-curves,” in Proc. 13th VCEG Meeting, pp. 1–5, Austin, TX, USA, 2001.
[9]M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann and I. H. Witten, “The WEKA data mining software: An update,” ACM SIGKDD Explorations Newslett., vol. 11, no. 1, pp. 10-18, 2009.
[10]J. R. Quinlan, “C4.5: Programs for Machine Learning,” Morgan Kaufmann Publishers, 1993.
[11]袁梅宇 ”王者歸來WEKA機器學習與大數據聖經” 佳魁資訊, 中華民國一百零六年一月
[12]Reference decision tree, http://spaces.isu.edu.tw/interface/showpage.php?dept_m no=107&dept_id=2&page_id=2246
[13]“ADSP-BF609 Data Sheets,” Analog Devices, Inc., http://www.analog.com/ media/en/technical-documentation/data-sheets/ADSP-BF606_607_608_609.pdf
[14]Reference software CrossCore Embedded Studio (CCES), http://www.analog. com/en/design-center/processors-and-dsp/evaluation-and-development-software/adswt-cces.html#dsp-relatedsoftware
[15]Z Pan, P Jin, J Lei, Y Zhang, X Sun and S Kwong “Fast reference frame selection based on content similarity for low complexity HEVC encoder,” Journal of Visual Communication and Image Representation 40, pp.516-524, Oct. 2016
[16]蔡宜婕 編著“適用於HEVC快速編碼器之TU提早決策演算法”, 義守大學電子工程學系論文, 中華民國一百零二年七月
[17]吳世欣 編著“應用於DSP之高效率記憶體配置來實現H.264視訊編碼器” , 義守大學電子工程學系論文, 中華民國一百零三年七月
[18]陳俊儒 編著“採用資料探勘技術之快速H.265編碼器與DSP實現”, 義守大學電子工程學系論文, 中華民國一百零五年七月
[19]M. Kantardzic. “Data Mining: Concepts, Models, Methods, and Algorithms, 2nd Edition.” Wiley-IEEE Press. 2011.
[20]J. Han and M. Kamber, “Data Mining: Concepts and Techniques, Second Edition.” Morgan Kaufmann. 2006
[21]J. R. Chen, L. C. Chen and C. C. Wang " Fast H.265 Video Encoder Using Data Mining Technique, " The International Conference on Engineering and Applied Sciences (TICEAS), Feb. 2017
[22]G. Correa, P. A. Assuncao, L. V. Agostini, and L. A. D. S. Cruz, “Fast HEVC encoding decisions using data mining,” IEEE Trans. Circuits System Video Technology, vol. 25, no. 4, Apr. 2015.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top