(3.239.192.241) 您好!臺灣時間:2021/03/02 20:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:常銘
研究生(外文):Ming Chang
論文名稱:ICP乾蝕刻表面粗化對垂直型氮化鎵發光二極體之研究
論文名稱(外文):The study of inductively coupled plasma dry etching surface roughness on vertical gallium nitride light emitting diodes
指導教授:蘇水祥
指導教授(外文):Shui-Hsiang Su
學位類別:碩士
校院名稱:義守大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:56
相關次數:
  • 被引用被引用:0
  • 點閱點閱:121
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:4
垂直LED製程中為了有效提高表面出光率,一般是以KOH濕式蝕刻對n-GaN進行表面粗化製程,形成六角錐結構破壞全反射面,使光線路徑改變進而增加光的逃逸機率,而提高光的萃取效率。本論文研究是以pattern sapphire substrate (PSS)經laser lift-off (LLO)轉移至Si基板留下來的微米級特定規則的微結構圖案,利用inductively coupled plasma (ICP)乾式蝕刻方式移除undoped-GaN後,持續蝕刻n-GaN表面作出相似於不規則六角錐圖案取代KOH濕式蝕刻圖案。
ICP機台參數是可分段設定進行蝕刻,利用各段氣體不同比例組合交叉蝕刻,以不同蝕刻機制獲得不同圖案輪廓,以期使元件達到與KOH濕式蝕刻方式相同的光輸出效率。優化ICP乾式蝕刻參數分為兩段主蝕刻參數,第一段:BIAS power:120 W、ICP power:120 W、APC pressure:2 Pa、CHF3:30 Sccm、O2:5 Sccm,第二段:BIAS power:350 W、ICP power:280 W、APC pressure:7 Pa、Cl2:50 Sccm、BCl3:22.5 Sccm。元件封裝後特性在700 mA時,波長為453 nm;發光強度為846 mW;順向電壓為3.33 V;同時濕式蝕刻之元件特性在相同電流下,波長為454 nm;發光強度為877 mW;順向電壓為3.29 V。研究結果顯示乾式蝕刻之成效已趨近濕式蝕刻,證明對基板轉換後之n-GaN表面粗化,ICP乾式蝕刻為一有效方法。
One of the effective techniques for improving light output efficiency of vertical LED is n-GaN surface roughening using KOH wet etching, forming the hexagonal pyramid structure to destroy the complete reflection surface so that the light path changes thereby increasing the chances of escape of light, and improving the light extraction efficiency.
In this study, the pattern sapphire substrate (PSS) by laser lift-off (LLO) transferred to the Si substrate to stay behind the micron-specific rules of microstructure pattern. After removal of undoped-GaN layer by ICP dry etching, continue etching on the n-GaN surface making a similar to the irregular hexagonal pyramid pattern to replace the KOH wet etching pattern.
As the ICP machine parameters can be segmented etching, cross-etching is performed using different groups of chemical gas groups to control the etching rate to make different pattern profiles, achieve the light output efficiency with KOH wet etching. Optimizd experimental parameters are divided into two main etching parameters. First step: BIAS power: 120 W, ICP power: 120 W, APC pressure: 2 Pa, CHF3: 30 Sccm, O2: 5 Sccm. Second step: BIAS power: 350 W, ICP power: 280 W, APC pressure: 7 Pa, Cl2: 50 Sccm, BCl3:22.5 Sccm. The LED package show forward voltage is 3.33 V and light intensity is 846 mW at wavelength of 453 nm driven at 700 mA. At the same time wet etching package components at the same current, forward voltage is 3.29 V and light intensity is 877 mW at wavelength of 454 nm. Experimental results demonstrate dry and wet etching data is not significant, proving to be one of the effective techniques for roughing the n-GaN surface.
中文摘要 I
ABSTRACT II
致謝 IV
第一章 緒論 1
1-1前言 1
1-2氮化鎵發光二極體發展歷史 1
1-3論文回顧 2
1-4 研究動機 3
第二章 理論 8
2-1 LED光電特性 8
2-2 LED發光原理 10
2-2-1 光逃逸錐角 12
2-3 歐姆接觸原理 13
2-4 感應耦合式電漿 14
2-4-1 電漿蝕刻原理 14
2-4-2 乾蝕刻作動機制 15
第三章 實驗系統與步驟 21
3-1前言 21
3-2元件製程 21
3-2-1氮化鎵薄膜沈積 21
3-2-2晶圓接合 21
3-2-3雷射剝離基板 22
3-2-4感應耦合式電漿之表面處理 23
3-2-5走道(NISO ICP)蝕刻 23
3-2-6磊晶表面粗化 24
3-2-7電極製作 24
第四章 結果與討論 29
4-1 ICP-RIE機台參數特性 29
4-2實驗參數 30
4-3 N型歐姆接觸 30
4-4探討N-GAN表面狀態 31
4-5元件特性 31
4-5-1電流-電壓特性分析 31
4-5-2發光強度分析 32
4-5-3發散角分析 32
第五章 結論與展望 41
5-1結論 41
5-2展望 41
參考文獻 42
[1]Michael R. Krames, Oleg B. Shchekin, Regina Mueller-Mach, Gerd O.Mueller,Ling Zhou, Gerard Harbers, and M. George Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” Journal of Display Technology, 3, (2), 160 (2007)
[2]E. Fred Schubert, “Light-emitting diodes” (Cambridge, New York, 2006)
[3]Donald A. Neamen, “Semiconductor phsics and devices,” McGraw-Hill, 2033.
[4]S. Nakamura, Jpn. J. Appl.Phys. (1991) 30, L1705
[5]S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, Jpn. J. Appl. Phys. (1989) 31, L139.
[6]C. Kao, H. C. Kyo, Member, H. W. Huang, J. T. Chu, Y. C. Peng, Y. L. Hsieh, C. Y. Luo, S. C. Wamg, Member, C. C. Yu, and C. F. Lin, IEEE Photon. Technol. Lett Jan.2005, vol. 17, NO. 1, 19-21
[7]R. Aleksiejunas, M. Sudzius, T. Malinauskas, J. Vaitkus, K. Jarasiunas and S, Sakai, Applied Physics Letters 83, 1157 (2003).
[8]L. W. Tu, W. C. Kuo, K. H. Lee, P. H. Tsao, C. M. Lai, A. K. Chu and J. K. Sheu, Applied Physics Letters 77, 3788 (2000).
[9]M. R. Krames et al., Proceedings of SPIE 3938, 2 (2000).
[10]J. M. Shah, Y. -L. Li, Th. Fessmann and E. F. Schubert, Journal of Applied Physics 94, 2627 (2003).
[11]Toyoda Gosei Corporation, Japan, General LED catalogue (2004).
[12]E. L. Waldron “Optoelectronic properties of AlGaN/GaN Superlatices” ph. D. Dissertation, Boston University (2002).
[13]Woei-Kai Wang, Dong-Sing Wuu, Shu-Hei Lin, Pin Han, Ray-Hua Horng, Ta-Cheng Hsu, Donald Tai-Chan Huo, Ming-Jiunn Jou, Yuan-Hsin Yu, and Aikey Lin, IEEE Journal of Quantum Electronics, Nov. 2005, vol. 41, NO. 11.
[14]Masayoshi Koike, Naoki Shibata, hisaki Kato, and Yuji Takahashi, IEEE Journal on Selected Topics in Quantum Electronics, Mar/Apr. 2002, vol. 8, NO. 2.
[15]Z. S. Zhang, B. Zhang, J. Xu, K. Xu, Z. J. Yang, Z. X. Qin, T. J. Yu, and D. P. Yu, Appl. Phy. Lett. (2006) 88, 1103.
[16]X. Guo and E. F. Schubert “Current crowding and optical saturation effects in InGaN/GaN light-emitting diodes grown on insulating substrates” Appl. Phys. Lett. 78, 3337 (2001).
[17]S. -R. Jeon, Y-H. Song, H.-J. Jang, G. M. Yang, S. W. Hwang, and S. H. Son “Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions” Appl. Phys. Lett. 78, 3265 (2001).
[18]Y. Gao, T. Fujii, R. Sharma, K. Fujito, S. P. Denbaars, S. Nakamura, and E. L. Hu “Roughening hexagonal surface morphology on laser lift-off (LLO) N-face GaN with simple photo-enhanced chemical wet etching” Jpn. J. Appl. Phys. Lett. 43, L 637 (2004).
[19]T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening” Appl. Phys. Lett. 84, 855 (2004).
[20]V. Haerle “Naturally textured GaN surface” China Hi-Tech Fair (CHTF) Shenzhen, China, Oct 12-17 (2004).
[21]Osram Opto Semiconductors Corporation. Regensburg, Germany “Osram Opto enhances brightness of blue InGaN-LEDs” Press Release (January 2001).
[22]I. Schnitzer, E. Yablonovitch, C. Caneau, T, J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface-textured, thin-film light-emitting diodes” Appl. Phys. Lett. 63, 2174 (1993).
[23]R. Windisch, B. Dutta, M. Kuijk, A. Knobloch, S. Meinlschmidt, S. Schoberth, P. Kiesel, G. Borghs, G. H. Doehler, and P. Heremans “40% efficient thin-film surface textured light-emitting diodes by optimization of natural lithograghy” IEEE Trans. Electron Dev. 47, 1492 (2000).
[24]C. H. Chen, S. A. Stockman, M. J. Peanasky, and C. P. Kuo, in High Brightness Light-Emitting Diodes, edited by G. B. Stringfellow and M. G. Craford, Semiconductors and Semimetals, 48 (Academic, San Diego, 1997), pp. 97-144 and references therein.
[25]T. gessnann, E. F. Schubert, J. W. Graff, K. Streubel, and C. karnutsch, “Omnidirectional reflective contacts for light-emitting diodes” IEEE Electron Dev. 24, 683 (2003).
[26]Hung-Wen Huang, C. C. Kao, J. T. Chu, H. C. kuo, S. C. Wang, C. C. Yu, “Improvement of InGaN-GaN light-emitting diodes performance with a nano-roughened p-GaN surface” IEEE Phontonics Technol Lett 17, 983. (2005).
[27]J. H. Lee, J. T. Oh, S. B. Choi, Y. C. Kim, H. I. Cho, J. H. Lee, IEEE Photonics Technol. Lett. 20 (2008) 345–347.
[28]H. Kim, K. K. Kim, K. K. Choi, J. Cho, J. O. Song, S. N. Lee, C. Sone, Y. Park, T. Y. Seong, Opt. Lett.33 (2008) 1273–1275.
[29]C. F. Chu, C. C. Cheng, W. H. Liu, J. Y. Chu, F. H. Fan, H. C. Cheng, T. Doan, C. A. Tran, Proc. IEEE 98 (2010) 1197–1207.
[30]節能照明技術-淺談發光二極體,532期科學月刊,作者/許世杰。
[31]半導體科技雜誌SST-AP Taiwan,北美智權報第102期。
[32]Ph.D. Thesis "Excimer laser liftoff and processing of GaN thin films and light-emitting heterostructures" (graduate student: William Wong, MSE Ph.D, 1999 with TDS and Prof. Nathan Cheung, EECS, UC Berkeley)
[33]KEREN J. KANARIK, SAMANTHA TAN, JOHN HOLLAND, AARON EPPLER, VAHID VAHEDI, JEFF MARKS, and RICHARD A. GOTTSCHO, Lam Research Corporation, Fremont, CA USA.
[34]陳彥偉:P型氮化鋁鎵之歐姆接研究,國立交通大學電子物理研究所,碩士論文。
[35]Nanowires - Fundamental Research", book edited by Abbass Hashim, ISBN 978-953-307-327-9, Published: July 19, 2011 under CC BY-NC-SA 3.0 licence.
[36]陳美戎:電感偶和電漿蝕刻系統對氮化鎵蝕刻之研究,國立交通大學電子物理研 究所,碩士論文。
[37]余長治:氮化鎵相關材料發光元件製程技術之研究,國立交通大學光電工程研究 所,博士論文。
[38]歐陽妙佳:氮化銦鎵/氮化鎵多重量子井奈米住光學特性之研究,國立交通大學光 電工程研究所,碩士論文。
[39]邱偉哲:藍寶石基板上的圖案尺寸與形狀對氮化鎵磊晶成長的影響,國立交通大 學材料科學與工程學系,碩士論文。
[40]鐘志偉:以雷射剝離技術研製矽基板氮化鎵發光二極體,私立義守大學電子工程 所光電領域,碩士論文。
[41]郭浩中、賴芳儀、郭守義 “LED原理與應用” 五南出版(第三版)
[42]陳隆建 “LED元件與產業概況” 五南出版。
[43]林建宏:砷化銦/砷化鎵量子點與量子環的載子動力學,國立交通大學應用化學研究所,碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔