(3.238.186.43) 您好!臺灣時間:2021/02/28 21:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃宇謙
研究生(外文):Yu-Chian Huang
論文名稱:在矽基板上製作磷化銦鎵和砷化鋁鎵金氧半高電子移動率電晶體
論文名稱(外文):InGaP and AlGaAs Metal-Oxide-Semiconductor High-Electron-Mobility Transistor on Si substrate
指導教授:李冠慰
指導教授(外文):Kuan-Wei Lee
學位類別:碩士
校院名稱:義守大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:85
中文關鍵詞:高電子移動率電晶體液相氧化法金氧半
外文關鍵詞:high electron mobility transistor (HEMT)liquid phase oxidation (LPO)metal-oxide-semiconductor (MOS)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:27
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文致力於液相氧化法在磷化銦鎵和砷化鋁鎵高電子移動率電晶體作為閘 極介電層之應用。相較於其他的氧化法而言,液相氧化法是一種簡易及經濟的化學方法。
磷化銦鎵金氧半高電子移動率電晶體直流特性而言,經量測得到最大汲極電流密度為203.4 mA/mm,在VDS = 2 V時最大轉導峰值為128.5 mS/mm,兩端反向崩潰電壓為 -13 V。砷化鋁鎵金氧半高電子移動率電晶體直流特性而言,經量測得到最大汲極電流密度為 149.3 mA/mm,在VDS = 2 V時最大轉導峰值為100.6 mS/mm,兩端反向崩潰電壓為 -38.5 V。
對磷化銦鎵高頻特性而言,傳統高電子移動率電晶體及金氧半高電子移動率電晶體之截止頻率分別為 4.5 GHz 和 5.9 GHz,最大震盪頻率分別為 4.6 GHz 和 8.4 GHz。對砷化鋁鎵高頻特性而言,傳統高電子移動率電晶體及金氧半高電子移動率電晶體之截止頻率分別為 3.8 GHz 和 5.7 GHz,最大震盪頻率分別為 3.9 GHz 和 6.3 GHz。低頻雜訊也有相當程度的改善。
在本研究中,利用液相氧化法於磷化銦鎵和砷化鋁鎵金氧半高電子移動率電晶體之閘極絕緣層製作上,可得到直流及高頻特性的提升,證明其具有高速與低雜訊的應用潛力。
Native oxide as gate insulators on InGaP and AlGaAs high electron mobility transistors (HEMT) were fabricated and characterized in this thesis through a liquid phase oxidation (LPO) method. Compared with others, the method is a simple, economic, and effective technique used to form a native oxide layer on GaAs material at near-room temperature (30-70°C).
For the InGaP MOS-HEMT DC characteristics, the maximum drain current density is 203.4 mA/mm, the maximum peak transconductance is 128.5 mS/mm at the VDS = 2 V, two-terminal diode of the reverse breakdown voltage is -13 V for MOS-HEMT. For the AlGaAs MOS-HEMT DC characteristics, the maximum drain current density is 149.3 mA/mm, the maximum peak transconductance is 100.6 mS/mm at the VDS = 2 V, two-terminal diode of the reverse breakdown voltage is -38.5 V for MOS-HEMT.
For the InGaP Microwave characteristics , the cut-off frequencies of conventional HEMT and MOS-HEMT are 4.5 GHz and 5.9 GHz; the maximum oscillation frequencies are 4.6 GHz and 8.4 GHz, respectively. For the AlGaAs Microwave characteristics , the cut-off frequencies of conventional HEMT and MOS-HEMT are 3.8 GHz and 5.7 GHz; the maximum oscillation frequencies are 3.9 GHz and 6.3 GHz, respectively. The low frequency noises are improved significantly.
Consequently, the InGaP and AlGaAs MOS-HEMT with liquid phase oxidized GaAs as gate insulator is promising for low noise and high speed applications.
誌謝 I
中文摘要 II
ABSTRACT III
CONTENTS IV
LIST OF FIGURES VII
LIST OF TABLES X
Chapter 1 Introduction 1
1.1 Background 1
1.2 Organization 4
Chapter 2 Experimental Procedures and Characterizations of LPO on InGaP and AlGaAs 6
2.1 Fabricate the Liquid Phase Oxidation films 6
2.2 Oxidation Mechanism 7
Chapter 3 Fabrication Procedures and Performance of InGaP HEMT with LPO 11
3.1 Introduction 11
3.2 Device Structure 11
3.3 InGaP MOS-HEMT 12
3.4 The DC Experiment Results 21
3.4.1 The Saturated Drain Current 21
3.4.2 The Transconductance 22
3.4.3 The Subthreshold Swing 23
3.4.4 The Two-terminal Diode Characteristics 23
3.4.5 The Gate Leakage Current 24
3.5 The Microwave Experiment Results 25
3.5.1 The Cutoff Frequency & The Maximum Oscillation Frequency 25
3.5.2 The Flicker Noise 25
3.6 Summary 26
Chapter 4 Fabrication Procedures and Performance of AlGaAs HEMT with LPO 41
4.1 Introduction 41
4.2 Device Structure 42
4.3 AlGaAs MOS-HEMT 42
4.4 The DC Experiment Results 47
4.4.1 The Saturated Drain Current 47
4.4.2 The Transconductance 47
4.4.3 The Subthreshold Swing 48
4.4.4 The Two-terminal Diode Characteristics 48
4.4.5 The Gate Leakage Current 48
4.5 The Microwave Experiment Results 49
4.5.1 The Cutoff Frequency & The Maximum Oscillation Frequency 49
4.5.2 The Flicker Noise 49
4.6 Summary 49
Chapter 5 Conclusions and Future Works 64
5.1 Conclusions 64
5.2 Future works 67
REFERENCE 68
[1]Naoya Okamoto, and Naoki Hara, “Surface Passivation of InGaP/InGaAs/GaAs Pseudomorphic HEMTs with Ultrathin GaS Film, ” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 47, NO. 12, DECEMBER 2000.C. D. Jones, A. B. Smith, and E.F. Roberts, Book Title, Publisher, Location, Date.
[2]F. Ali, and A. Gupta, HEMTS and HBTS: Devices, Fabrication and Circuits, Boston London: Artech House, 1991.
[3]F. Schwierz, and J J. Liou, Modern Microwave Transistors: Theory, Design, and Performance, USA, New Jersey, John Wiley & Sons, Inc, 2002.
[4]R. Dingle, H. L. Störmer, A. C. Gossard and W. Wiegmann, “Electron mobility in modulation-doped semiconductor hetero-junction superlattices,” Appl. Phys. Lett., vol 33, pp. 665-667, 1978.
[5]M. Akiyama, Y. Kawarada, and K. Kamanishi: J. Cryst. Growth 68 (1984) 21.
[6]R. Menozzi, P. Cova, C. Canali, and F. Fantini, “Breakdown walkout in pseudomorphic HEMT’s,” IEEE Trans. Electron Devices, vol. 43, pp. 543– 546, 1996.
[7]M. A. Rao, E. J. Caine, H. Kroemer, S. I. Long, and D. I. Babic, “Determination of valence and conduction-band discontinuities at the (Ga,In)P/GaAs heterojunction by C–V profiling,” J. Appl. Phys., vol. 61, pp. 643–649, 1987.
[8]S. Fujita, T. Noda, A. Wagai, C. Nozaki, and Y. Ashizawa, “Novel HEMT structures using a strained InGaP schottky layer,” in Proc. 5th Indium Phosphide and Related Materials, pp. 497–500, 1993.
[9]K. Nakamura, N. C. Paul, M. Takebe, K. Iiyama, and S. Takamiya, “Depletion/Enhancement Mode InAlAs/InGaAs - MOSHEMTs with nm – Thin Gate Insulating Layers Formed by Oxidation of the InAlAs Layer,” in Proc. 16th Indium Phosphide and Related Materials, pp. 191-194, 2004.
[10]K. W. Lee, P. W. Sze, Y. J. Lin, N. Y. Yang, M. P. Houng, and Y. H. Wang, “InGaP/InGaAs Metal–Oxide–Semiconductor Pseudomorphic High-Electron-Mobility Transistor With a Liquid-Phase-Oxidized InGaP as Gate Dielectric,” IEEE ELECTRON DEVICE LETTERS, VOL. 26, pp. 864-866, 2005.
[11]H. H. Wang, J. Y. Wu, Y. H. Wang, and M. P. Houng, “Effect of PH values on the kinetics of liquid phase chemical enhanced oxidation of GaAs,” J. Electronchem. Soc., vol. 146, pp. 2328-2332, 1999.
[12]H. H. Wang, Y. H. Wang, and M. P. Houng, “Near room temperature selective oxidation on GaAs using photoresist as a mask,” Jpn. J. Appl. Phys., vol. 37, pp. L988-990, 1998.
[13]J. Y. Wu, H. H. Wang, Y. H. Wang, and M. P. Houng, “A GaAs MOSFET with a liquid phase oxidized gate,” IEEE Electron Dev. Lett., vol. 20, pp. 18-20, 1999.
[14]J. Y. Wu, H. H. Wang, Y. H. Wang, and M. P. Houng, “GaAs MOSFET’s fabrication with a liquid phase oxidized gate,” IEEE Trans. Electron Dev., vol. 48, pp. 634-637, 2001.
[15]K. W. Lee, P. W. Sze, Y. H. Wang, and M. P. Houng, “Liquid phase chemical enhanced oxidation on AlGaAs and its application,” Jpn. J. Appl. Phys., vol. 43, pp. 4087-4091, 2004.
[16]K. W. Lee, P. W. Sze, Y. H. Wang, and M. P. Houng, “AlGaAs/InGaAs metal-oxide-semiconductor pseudomorphic high-electron–mobility transistor with a liquid phase oxidized AlGaAs as gate dielectric,” Solid-State Electron., vol. 49, pp. 213-217, 2005.
[17]K. W. Lee, N. Y. Yang, M. P. Houng, and Y. H Wang, “Improved breakdown voltage and impact ionization in InAlAs/InGaAs metamorphic high-electron-mobility transistor with a liquid phase oxidized InGaAs gate,” Appl. Phys. Lett., vol. 87, pp. 263501-1-263501-3, 2005.
[18]T. Sugano, “Oxidation of GaAs1-xPx surface by oxygen plasma and properties of oxide film,” J. Electrochem. Soc., vol. 121, pp. 113-118, 1974.(ch2)
[19]L. H. Chu, E. Y. Chang, L. Chang, Y. H. Wu, S. H. Chen, H. T. Hsu, T. L. Lee, Y. C. Lien, and C. Y. Chang, “Effect of gate sinking on the device performance of the InGaP/AlGaAs/InGaAs enhancement-mode PHEMT,” IEEE Electron Device Lett., vol. 28, pp. 82-85, 2007.
[20]H. Willemsen, and D. Nicholson, “GaAs ICs in commercial OC-192 equipment,” IEEE GaAs IC Symp. Tech. Dig., pp. 262-265, 1996.
[21]Y. J. Chan, and D. Pavlidis, “Trap studies in GaInP/GaAs and AlGaAs/GaAs HEMT’s by means of low-frequency noise and transconductance dispersion characterization,” IEEE Trans. Electron Devices, vol. 41, pp. 637-642, 1994.
[22]H. K. Huang, Y. H. Wang, C. L. Wu, C. Wang, and C. S. Chang, “Super low noise InGaP gated PHEMT,” IEEE Electron Dev. Lett, vol. 23, pp. 70-72, 2002.
[23]Y. S. Lin, S. S. Lu, and Y. J. Wang, “High-performance GaInP/GaAs airbridge gate MISFET’s grown by gas-source MBE,” IEEE Trans. Electron Dev., vol. 44, pp. 921-929, 1997.
[24]W. C. Liu, W. L. Chang, W. S. Lour, H. J. Pan, W. C. Wang, J. Y. Chen, K. H. Yu, and S. C. Feng, “High-performance InGaP/InxGa1-xAs HEMT with an inverted delta-doped V-shaped channel structure, ” IEEE Electron Dev. Lett., vol. 20, p. 548, 1999.
[25]K. W. Lee, Y. J. Lin, N. Y. Yang, Y. C. Lee, P. W. Sze, Y. H. Wang, and M. P. Houng, “InGaP/InGaAs/GaAs metal-oxide semiconductor pseudomorphic high electron mobility transistor with a liquid phase oxidized InGaP gate ,” in proceedings of 7th IEEE International Conference on Solid-State and Integrated Circuits Technology (ICSICT), Beijing, China, Oct. 18-21, 2004, pp. 2301-2304.
[26]F. Schwierz, and J J. Liou, Modern Microwave Transistors: Theory, Design, and Performance, USA, New Jersey, John Wiley & Sons, Inc, 2002.
[27]C. L. Lau, M. Feng, T. R. Lepkowski, G. W. Wang, Y. Chang, and C. Ito, “Half-micrometer gate-length ion-implanted GaAs MESFET with 0.8-dB noise figure at 16 GHz,” IEEE Electron Dev. Lett., vol. 10, pp. 409-411, 1989.
[28]F. N. Hooge, T. G. M. Kleinpenning, and L. K. J. Vandamme, “Experimental studies on l/f noise,” Rep. Prog. Phys., vol. 44, pp .480-530, 1981.
[29]G. P. Zhigal''ski, “Nonequilibrium 1/f γ noise in conducting films and contacts,” Physics –Uspekhi, vol. 46, pp .449-471, 2003.
[30]F. N. Hooge, “l/f Noise Sources,” IEEE Trans. Electron Dev., vol. 40, pp.1926–1935, 1994.
[31]Y. C. Huang, J. S. Huang, K. W. Lee, and Y. H. Wang, “Formation of Liquid-Phase Oxidized GaAs for InGaP MOS-HEMT on Si Substrate ,” The 3rd Annual World Congress of Smart Materials-2017(WCSM-2017), Bangkok, Thailand, Mar. 16-18, 2017.
[32]M. K. Fei, J. S. Huang, K. W. Lee, and Y. H. Wang, “AlGaAs/InGaAs MOS-HEMT on Si Substrate Grown by MBE,” The Fifth International Conference on Innovation, Communication and Engineering-2016 (ICICE-2016), Xi’an, Shaanxi, China, Nov. 2016.
[33]I. Thayne. “Advanced Ⅲ-Ⅳ HEMTs,” The advanced semiconductor magazine, vol. 16, pp. 48-51, 2003.
[34]C. L. Lau, M. Feng, T. R. Lepkowski, G. W. Wang, Y. Chang, and C. Ito, “Half-micrometer gate-length ion-implanted GaAs MESFET with 0.8-dB noise figure at 16 GHz,” IEEE Electron Dev. Let., vol. 10, pp. 409-411, 1989.
[35]F. N. Hooge, T. G. M. Kleinpenning ,and L. K. J. Vandamme, “Experimental studies on 1/f noise,” Rep. Prog. Phys., vol. 44, pp. 480-530.
[36]G. P. Zhigal`ski, “Nonequilibrium 1/f γnoise in conducting films and contacts,” Physics-Uspekhi, vol.46, pp. 449-471, 2003.
[37]K. Y. Lam, J. S. Huang, Y. J. Zou, K. W. Lee, and Y. H. Wang, “Reduced Subthreshold Characteristics and Flicker Noise of an AlGaAs/InGaAs PHEMT Using Liquid Phase Deposited TiO2 as a Gate Dielectric,” Materials., vol. 9, pp. 861, 2016.
[38]K. W. Lee, “Improved Impact Ionization in AlGaAs/InGaAs PHEMT with a Liquid Phase Deposited SiO2 as the Gate Dielectric, ” ECS Journal of Solid State Science and Technology., vol. 2, pp. Q27-Q29, 2013.
[39]H. C. Lin, C. C Wu, F. M. Lee, K. W. Lee, F. Adriyanto, and Y. H. Wang, “Characteristics of InGaP/InGaAs MOS-PHEMT with Liquid Phase–Oxidized GaAs Gate Dielectric,” Journal of The Electrochemical Society., vol. 158, pp. H1225-H1227, 2011.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔