跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/08 15:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂昌愷
研究生(外文):Chang-Kai Lu
論文名稱:基於VCSEL二階注入鎖模機制建構56 Gb/s PAM4可見光傳輸系統
論文名稱(外文):A 56 Gb/s PAM4 VCSEL-Based LiFi Transmission with Two-Stage Injection-Locked Technique
指導教授:應誠霖
指導教授(外文):Cheng-Ling Ying
學位類別:碩士
校院名稱:景文科技大學
系所名稱:電子工程系電腦與通訊碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:57
中文關鍵詞:四階脈衝振幅調變可見光通訊系統二階注入鎖模垂直共振腔面射型雷射
外文關鍵詞:Four-level pulse amplitude modulation (PAM4)light-based WiFi (LiFi) transmissiontwo-stage injection-locked techniquevertical-cavity surface-emitting laser (VCSEL)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:302
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
基於VCSEL二階注入鎖模機制建構56 Gb/s PAM4可見光傳輸系統,經實驗結果證明,系統所採用5.4 GHz頻寬VCSEL經本論文所提出之二階注入鎖模,能夠成功傳送56 Gb/s PAM4訊號,同時應用於可見光傳輸。
根據了解,本論文是第一個將二階注入鎖模與PAM4技術應用於680 nm VCSEL可見光傳輸系統中。提出基於VCSEL二階注入鎖模機制建構56 Gb/s PAM4可見光傳輸系統。
所提出的基於VCSEL二階注入鎖模機制建構56 Gb/s PAM4可見光傳輸系統,經實驗結果分析,通過20公尺的自由空間傳輸後獲得了良好的誤碼率性能和三個獨立的清晰眼圖。本論文所提出的基於VCSEL二階注入鎖模機制建構56 Gb/s PAM4可見光傳輸系統可以在未來的無線基礎設施顯著作用,從而有效地提供高傳輸速率和較長距離的自由空間傳輸。
A 56 Gb/s four-level pulse amplitude modulation (PAM4) light-based WiFi (LiFi) transmission based on a 680-nm/5.4-GHz vertical-cavity surface-emitting laser (VCSEL) with a two-stage injection-locked technique is proposed and demonstrated. Experimentally results show that a 5.4-GHz VCSEL with a two-stage injection-locked technique is effective for 56 Gb/s PAM4 LiFi transmissions.
To the authors’ knowledge, it is the first one to adopt a 680-nm VCSEL transmitter with two-stage injection-locked technique in a 56 Gb/s PAM4 LiFi transmission. A pair of doublet lenses is employed in the proposed PAM4 VCSEL-based LiFi transmissions to enhance the free-space link.
The link performances of the proposed PAM4 LiFi transmissions have been analyzed in real time. Good bit error rate performance and three independent clear eye diagrams are obtained over a 20-m free-space link. Such a proposed 56 Gb/s PAM4 VCSEL-based LiFi transmission with two-stage injection-locked technique has the potential to play a significant role in future wireless infrastructure for providing high transmission rate and long free-space transmission distance effectively.
目 錄

摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
表 目 錄 vii
圖 目 錄 viii
第一章 緒 論 1
1.1 研究背景 1
1.1.1 光纖通訊 1
1.1.2 可見光通訊 2
1.2 研究動機與目的 5
1.3 論文架構 5
第二章 系統相關原理介紹 7
2.1 直接調變 7
2.2 不歸零編碼 8
2.3 四階脈衝振幅調變 10
2.4 外部光源注入鎖模技術 12
2.5 眼圖 14
2.6 誤碼率 19
第三章 系統相關元件介紹 20
3.1 垂直共振腔面射型雷射 20
3.2 光隔離器 21
3.3 分光鏡 22
3.4 轉阻放大器 23
3.5 光檢測器 24
3.6 錯誤檢測器 26
3.7 光學系統元件介紹 27
第四章 基於VCSEL二階注入鎖模機制建構56 Gb/s PAM4可見光傳輸系統 30
4.1 文獻回顧與實驗簡介 30
4.2 實驗架構 34
4.3 實驗結果與分析 37
4.4 結語 46
第五章 總結與未來展望 47
參考文獻 49
Publication List 54
中英對照 56
參考文獻

[1] 葉建宏、鄒志偉,「光纖的演進及其關鍵技術應用」,物理,vol. 32,no. 1,2010,第30-37頁。
[2] 趙燿庚、彭擇輝,「可見光無線通訊介紹」,中國無線電協進會102技術論文集,台北,2013,第1-6頁。
[3] 林佳瑢,混合式有線電視/16-QAM-OFDM室內網路,碩士論文,國立台北科技大學光電工程所,台北,2014。
[4] 可見光通訊應用技術介紹,工業技術研究院,2014。
[5] K. Johnson, M. Hibbs-Brenner, W. Hogan, and M. Dummer, “Advances in red VCSEL technology,” Advances in Optical Technologies, vol. 2012, 2012,pp. 13.
[6] Fehér, E. Udvary, C. Füzy, T. Cseh, T. Berceli, “Pulsedmode red VCSEL for high speed VLC communication,” International Conference on Transparent Optical Networks, 2012, pp. 1-4.
[7] C. L. Ying, H. H. Lu, C. Y. Li, C. J. Cheng, P. C.Peng, and W. J. Ho, “20-Gbps optical LiFi transport system,” Optics Letters, vol. 40, 2015, pp. 3276-3279.
[8] C. del Río Campos, P. R. Horche, and A. M. Minguez. “Interaction of semiconductor laser chirp with fiber dispersion: Impact on WDM directly modulated system performance,” in Proceedings of The Fourth International Conference on Advances in Circuits, Electronics and Micro-electronics (CENICS), Citeseer vol 283, no.15, 2011, pp.3058-3066.
[9] F. Yuan, D. Che, and W. Shieh, “Receiver bandwidth effects on complex modulation and detection using directly modulated lasers,” Optics Letters, vol. 41, no.9, 2016, pp. 2041-2044.
[10] M. Cvijetic, “Optical transmission systems engineering,”Artech House. 2004.
[11] Brey, Barry. The Intel Microprocessors, Columbus: Pearson Prentice Hall.ISBN 0-13-119506-9
[12] Tami Pippert,Keysight Technologies,PAM-4訊號傳輸機制帶來全新測試挑戰,EET電子工程專輯,Jan, 26, 2017。
[13] X. Jin, and S. L. Chuang, “Microwave modulation of a quantum-well laser with and without external optical injection,” IEEE Photonics Technology Letters, vol. 13, 2001, pp. 648-650.
[14] A. Kaszubowska, P. Anandarajah, and L. P. Barry, “Improved performance of a hybrid radio/fiber system using a directly modulated laser transmitter with external injection,” IEEE Photonics Technology Letters, vol. 14, 2002, pp. 233-235.
[15] C. H. Henry, N. A. Olsson, and N. K. Dutta, “Locking range and stability of injection locked 1.54 µm InGaAsP semiconductor lasers,” IEEE Journal of Quantum Electronics, vol. 21, 1985, pp. 1152-1156.
[16] H. J. Cheng, High-Speed Two Sectional Integrated Optical Injection Semiconductor Lasers at 1.55μm Wavelength, Master Thesis, NCU, Taoyuan, 2009.
[17] H. H. Lu, C. Y. Li, S. J. Tzeng, H. C. Peng, and W. I. Lin, “Full-duplex radio-on-fiber transport systems based on main and multiple side modes Injection-locked DFB laser diode,” Optical Fiber Technology, vol. 15, 2009, pp. 251-257.
[18] 馮國璋,改善光電模組/系統流量品質/眼圖訊號分析功不可沒,新通訊技術前瞻,2008。
[19] 吳昌任,雙向光纖-無線/光纖-可見雷射光傳輸系統,碩士論文,國立台北科技大學光電工程所,台北,2016。
[20] 鄭鈞仁,雙向光纖-無線傳輸系統,碩士論文,國立台北科技大學,台北,2015。
[21] R. Paschotta, Faraday isolators, Encyclopedia of Laser Physics and Technology, 1. edition, 2008.
[22] Agilecom Fiber Solution,光隔離器-工作原理。
[23] 岳華展光電,“ITEM NO: BS5050 (分光鏡 50T/50R)”
[24] Electronic Principles Paul E. Gray, Campbell Searle, p. 641.
[25] 嚴浩天,砷化銦鎵光崩潰二極體於單光子偵測器之應用,碩士論文,國立交通大學電子工程所,新竹,2007。
[26] 顏褀晃,超晶格結構p-i-n 氮化鋁鎵光偵測器之研究,碩士論文,國立台北科技大學光電工程所,台北,2004。
[27] T. M. Thompson, From Error-Correcting Codes through Sphere Packings to Simple Groups, The Carus Mathematical Monographs (#21), The Mathematical Association of America: vii, 1983, ISBN 0-88385-023-0
[28] C.E. Shannon, “A Mathematical Theory of Communication,” Bell System Tech. Journal, vol 27, 1948, p. 418.
[29] 陳柏睿,基於光電震盪機制整合光纖-無線/光纖-不可見光傳輸系統,碩士論文,國立台北科技大學光電工程所,台北,2016。
[30] Thorlabs, “CFC-8X-C,” http://www.thorlabs.hk/thorproduct.cfm?partnumber=CFC-8X-C.
[31] Thorlabs, “AC300-100-C,” http://www.thorlabs.hk/thorproduct.cfm?partnumber=AC300-100-C.
[32] Thorlabs, “AC508-100-C,” http://www.thorlabs.hk/thorproduct.cfm?partnumber=AC508-100-C.
[33] Y. Wang, X. Huang, L. Tao, J. Shi, and N. Chi, “8-Gb/s RGBY LED-Based WDM VLC System Employing High-Order CAP Modulation and Hybrid Post Equalizer,” IEEE Photonics Journal, vol. 7, 2015, 7904507(8p.).
[34] Y. P. Lin, H. H. Lu, P. Y. Wu, C. Y. Chen, T. W. Jhang, S. S. Ruan, and K. H. Wu, “A 10-Gbps optical WiMAX transport system,” Optics Express, vol. 22, no. 39, 2014, pp. 2761-276.
[35] C. L. Ying, H. H. Lu, C. Y. Li, C. J. Cheng, P. C. Peng, and W. J. Ho, “20-Gbps optical LiFi transport system,” Optics Letters, vol. 40, 2015, pp. 3276-3279.
[36] H. H. Lu, C. Y. Li, H. W. Chen, Z. Y. Yang, X. Y. Lin, M. T. Cheng, C. H. Lu, and T. T. Shih, “45 Gb/s PAM4 transmission based on VCSEL with light injection and optoelectronic feedback techniques,” Optics Letters, vol. 41, no. 21, 2016, pp. 5023-5026.
[37] S. Lange, M. Gruner, C. Meuer, R. Kaiser, M. Hamacher, K. O. Velthaus, and M. Schell, “Low switching voltage Mach–Zehnder modulator monolithically integrated with DFB laser for data transmission up to 107.4 Gb/s,” IEEE/OSA Journal of Lightwave Technology, vol. 34, no. 2, 2016, pp. 401-406.
[38] S. M. Motaghiannezam, T. Pham, A. Chen, T. Du, C. Kocot, C. Cole, J. Xu, and B. Huebner, “Single chip 52 Gb/s PAM4 transmission through −58 and +10 ps/nm chromatic dispersion using directly modulated laser,” in Proc. Conf. Optical Fiber Communications, 2016, Paper Th2A.59.
[39] R. Motaghiannezam, T. Pham, A. Chen, T. Du, C. Kocot, J. Xu, and B. Huebner, “52 Gbps PAM4 receiver sensitivity study for 400GBase-LR8 system using directlymodulated laser,” Optics Express, vol. 24, no. 7, 2016, pp. 7374-7380.
[40] C. Yang, R. Hu, M. Luo, Q. Yang, and C. Li, “IM/DD-based 112-Gb/s/lambda PAM-4 transmission using 18-Gbps DML,” IEEE Photonics Journal, vol. 8, no. 3, 2016, Art. no. 7903907.
[41] S. Zhou, X. Li, L. Yi, Q. Yang, and S. Fu, “Transmission of 2 × 56 Gb/s PAM-4 signal over 100 km SSMF using 18 GHz DMLs,” Optics Letters, vol. 41, no. 8, 2016, pp. 1805-1808.
[42] R. Motaghiannezam, I. Lyubomirsky, H. Daghighian, C. Kocot, T. Gray, J. Tatum, A. Amezcua-Correa, M. Bigot-Astruc, D. Molin, F. Achten, and P. Sillard, “Four 45 Gbps PAM4 VCSEL based transmission through 300 m wideband OM4 fiber over SWDM4 wavelength grid,” Optics Express, vol. 24, no. 15, 2016, pp. 17193-17199.
[43] D. Sadot, G. Dorman, A. Gorshtein, E. Sonkin, and O. Vidal, “Single channel 112 Gbit/sec PAM4 at 56 Gbaud with digital signal processing for data centers applications,” Optics Express, vol. 23, no. 2, 2015, pp. 991-997.
[44] H. H. Lu, C. Y. Lin, C. A. Chu, T. C. Lu, B. R. Chen, C. J. Wu, and D. H. Lin, “10 m/25 Gbps LiFi transmission system based on a two-stage injection-locked 680 nm VCSEL transmitter,” Optics Letters, vol. 40, no. 19, 2015, pp. 4563-4566.
[45] C. L. Ying, H. H. Lu, C. Y. Li, C. J. Cheng, P. C. Peng, and W. J. Ho, “20-Gbps optical LiFi transport system,” Optics Letters, vol. 40, no. 14, 2015, pp. 3276-3279.
[46] K. Szczerba, P. Westbergh, J. Karout, J. S. Gustavsson, Å. Haglund, M. Karlsson, P. A. Andrekson, E. Agrell, and A. Larsson, “4-PAM for high-speed short-range optical communications,” IEEE/OSA Journal of Optical Communications and Networking, vol. 4, no. 11, 2012, pp. 885-894.
[47] E. Agrell, J. Lassing, E. G. Str ¨om, and T. Ottosson, “On the optimality of the binary reflected Gray code,” IEEE Transactions on Information Theory, vol. 50, no. 12, 2004, pp. 3170-3182.
[48] X. Zhao, D. Parekh, E. K. Lau, H. K. Sung, M. C. Wu, W. Hofmann, M. C. Amann, and C. J. Chang-Hasnain, “Novel cascaded injection-locked 1.55-μm VCSELs with 66 GHz modulation bandwidth,” Optics Express, vol.15, no. 22, 2007, pp. 14810-14816.
[49] S. Mohrdiek, H. Burkhard, and H. Walter, “Chirp reduction of directly modulated semiconductor lasers at 10 Gb/s bystrong CW light injection,” Journal of Lightwave Technology, vol. 12, no. 12, 1994, pp. 418-424.
[50] H. H. Lu, C. Y. Li, T. C. Lu, C. J. Wu, C.A. Chu, A. Shiva, and T. Mochii, “Bidirectional fiber-wireless and fiber-VLLC transmission system based on an OEO-based BLS and a RSOA,” Optics Letters, vol. 41, no. 3, 2016, pp. 476-479.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top