跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/09 10:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許育銘
研究生(外文):Yu-Ming Hsu
論文名稱:番荔枝科植物曲葉紫玉盤Uvaria flexuosa與黑潮花裙海葵Zoanthus kuroshio化學成分與抗發炎活性之研究
論文名稱(外文):Studies on the Chemical Constituents and Anti-inflammatory Activity of the Annonaceous Plant Uvaria flexuosa and the Marine Zoanthid Zoanthus kuroshio
指導教授:張芳榮張芳榮引用關係吳永昌
指導教授(外文):Fang-Rong ChangYang-Chang Wu
口試委員:許志宏宋秉鈞吳志中黃聰龍
口試委員(外文):Jyh-Horng SheuPing-Jyun SungChin-Chung WuTsong-Long Hwang
學位類別:博士
校院名稱:高雄醫學大學
系所名稱:天然藥物研究所博士班
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:351
中文關鍵詞:藥物新藥開發抗發炎抗氧化曲葉紫玉盤番荔枝科黑潮花裙海葵海葵
外文關鍵詞:DrugNew drug developmentAnti-inflammatoryAntioxidantUvaria flexuosaAnnonaceae3-Methyl-45-dihydro-oxepinePolyoxygenated cyclohexenesPolyoxygenated seco-cyclohexenesZoanthus kuroshioZoanthidZoanthamine-type alkaloids
相關次數:
  • 被引用被引用:0
  • 點閱點閱:551
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
番荔枝科植物Uvaria flexuosa僅分佈於柬埔寨和越南等地,針對其甲醇萃取物所進行的研究共得到7個新化合物(UF-1–UF-7)以及4個已知黃酮類化合物(UF-8–UF-11)。在新化合物當中,包含1個3-methyl-4,5-dihydro-oxepine [flexuvaroxepine A (UF-1)]、4個polyoxygenated seco-cyclohexene [flexuvarins A–D (UF-2–UF-5)]和2個polyoxygenated cyclohexene [flexuvarols A and B (UF-6 and UF-7)]等骨架之衍生物。所有化合物的結構都是經由許多不同的光譜資料分析而決定。本研究也有針對這些新化合物可能的生合成途徑進行探討。
  本研究的另一個題目為台灣產黑潮花裙海葵Zoanthus kuroshio。黑潮花裙海葵是ㄧ種色彩豐富的海葵,具有螢光粉紅色口腔盤以及棕色觸手,在本次研究中,從Z. kuroshio的乙醇萃取物中共分離得到6個新zoanthamine-type alkaloids [5α-iodozoanthenamine (ZK-1), 11β-chloro-11-deoxykuroshine A (ZK-2), 18-epi-kuroshine A (ZK-3), 7α-hydroxykuroshine E (ZK-4), 5α-methoxykuroshine E (ZK-5) and 18-epi-kuroshine E (ZK-6)]以及6個已知zoanthamine-type alkaloids (ZK-7–ZK-12)。其中ZK-1和ZK-2是此類生物鹼中首次發現的鹵化衍生物,而ZK-3與ZK-6則是首次發現A/B環結構為cis-junction的zoanthamine-type alkaloids立體異構物。
  所有化合物的抗發炎活性則是藉由superoxide anion generation和elastase release試驗來進行評估。在所有從U. flexuosa分離的到的化合物中,UF-7和UF-9對於superoxide anion generation和elastase release皆具有顯著的抑制活性,IC50值落在2.25-5.55 µM之間,而UF-8僅對於superoxide anion generation具有選擇性的抑制活性,其IC50值為1.19 ± 0.34 µM。至於所有zoanthamines類化合物,在10 µM濃度下僅有ZK-1對於superoxide anion generation和elastase release具有顯著的抑制活性,其抑制百分率分別為24 ± 6%和43 ± 2%。
The phytochemical investigation of the methanolic extract of Uvaria flexuosa (Annonaceae) have led to the isolation of seven new compounds, including one 3-methyl-4,5-dihydro-oxepine [flexuvaroxepine A (UF-1)], four polyoxygenated seco-cyclohexene [flexuvarins A–D (UF-2–UF-5)], two polyoxygenated cyclohexene [flexuvarols A and B (UF-6 and UF-7)] derivatives, together with four known flavones (UF-8–UF-11). The structures of the isolated compounds were elucidated using different spectroscopic techniques. A plausible biogenetic route of the new compounds was discussed.
Zoanthus kuroshio is a colorful zoanthid with a fluorescent pink oral disc and brown tentacles. Six new zoanthamines [5α-iodozoanthenamine (ZK-1), 11β-chloro-11-deoxykuroshine A (ZK-2), 18-epi-kuroshine A (ZK-3), 7α-hydroxykuroshine E (ZK-4), 5α-methoxykuroshine E (ZK-5) and 18-epi-kuroshine E (ZK-6)] and six known compounds (ZK-7–ZK-12) were isolated from the ethanolic extract. Among those zoanthamines, ZK-1 and ZK-2 are the first examples of halogenated zoanthamine-type alkaloids isolated from nature. ZK-3 and ZK-6 are the first zoanthamine stereoisomers with a cis-junction of the A/B rings.
The anti-inflammatory activity of all isolates was evaluated by superoxide anion generation and elastase release assays in human neutrophils. Among those from U. flexuosa, UF-7 and UF-9 showed potent anti-inflammatory effect by inhibiting superoxide anion generation and elastase release with IC50 2.25-5.55 µM. UF-11 showed selective inhibitory activity on superoxide anion generation with an IC50 of 1.19 ± 0.34 µM. As for those zoanthamines, only ZK-1 showed potent inhibitory activity on both superoxide anion generation (24 ± 6%) and elastase release (43 ± 2%) at 10 µM.
目錄
目錄 ----I
圖目錄 ----III
表目錄 -----IX
第一章 緒論----1
第一節 前言----1
第二節 曲葉紫玉盤Uvaria flexuosa之型態及分佈----4
第三節 紫玉盤屬Uvaria之文獻回顧----7
第四節 黑潮花裙海葵Zoanthus kuroshio之型態及分佈----64
第五節 花裙海葵屬Zoanthus文獻回顧----66
第六節 研究動機----84
第二章 研究材料與方法----85
第一節 曲葉紫玉盤Uvaria flexuosa之研究材料與方法----85
第二節 黑潮花裙海葵Zoanthus kuroshio之研究材料與方法----89
第三章 Uvaria flexuosa化合物結構解析與生合成探討----95
第一節 Flexuvaroxepine A (UF-1)之結構解析----95
第二節 Flexuvarin A (UF-2)之結構解析----106
第三節 Flexuvarin B (UF-3)之結構解析----117
第四節 Flexuvarin C (UF-4)之結構解析----128
第五節 Flexuvarin D (UF-5)之結構解析----138
第六節 Flexuvarol A (UF-6)之結構解析----148
第七節 Flexuvarol B (UF-7)之結構解析----159
第八節 UF系列化合物生合成探討----170
第四章 Zoanthus kuroshio之Zoanthamine-type alkaloids結構解析----174
第一節 5α-Iodozoanthenamine (ZK-1)之結構解析----181
第二節 11β-Chloro-11-deoxykuroshine A (ZK-2)之結構解析----195
第三節 18-epi-Kuroshine A (ZK-3)之結構解析-----208
第四節 7α-Hydroxykuroshine E (ZK-4)之結構解析----219
第五節 5α-Methoxykuroshine E (ZK-5)之結構解析----231
第六節 18-epi-Kuroshine E (ZK-6)之結構解析----243
第五章 抗發炎活性試驗------254
第一節 UF系列化合物抗發炎活性試驗結果----254
第二節 ZK系列化合物抗發炎活性試驗結果----256
第六章 結論----258
第七章 相關實驗部分----267
第一節 儀器與材料-----267
第二節 曲葉紫玉盤Uvaria flexuosa分離純化流程----270
第三節 黑潮花裙海葵Zoanthus kuroshio分離純化流程----277
第四節 化合物之物理與光譜數據總整理----283
第五節 抗發炎活性試驗----306
第八章 參考文獻----309
第九章 著作發表與相關產出----321
第一節 期刊論文發表----321
第二節 研討會論文發表----324
第三節 發明專利----332
第四節 新型專利----333
第五節 專書著作----334

圖目錄
圖2-1-1 U. flexuosa分配萃取與分離流程圖----86
圖2-2-1 黑潮花裙海葵實景圖----89
圖2-2-1 Z. kuroshio分配萃取與分離流程圖----90
圖3-1-1 化合物UF-1之UV圖譜----101
圖3-1-2 化合物UF-1之IR圖譜----101
圖3-1-3 化合物UF-1之HRESIMS圖譜----102
圖3-1-4 化合物UF-1之13C NMR圖譜(150 MHz, CDCl3)----102
圖3-1-5 化合物UF-1之DEPT圖譜----103
圖3-1-6 化合物UF-1之1H NMR圖譜(600 MHz, CDCl3)----103
圖3-1-7 化合物UF-1之HSQC圖譜----104
圖3-1-8 化合物UF-1之COSY圖譜----104
圖3-1-9 化合物UF-1之HMBC圖譜----105
圖3-1-10 化合物UF-1之NOESY圖譜----105
圖3-2-1 化合物UF-2之UV圖譜----112
圖3-2-2 化合物UF-2之IR圖譜----112
圖3-2-3 化合物UF-2之HRESIMS圖譜----113
圖3-2-4 化合物UF-2之13C NMR圖譜(150 MHz, CDCl3) ----113
圖3-2-5 化合物UF-2之DEPT圖譜----114
圖3-2-6 化合物UF-2之1H NMR圖譜(600 MHz, CDCl3) ----114
圖3-2-7 化合物UF-2之HSQC圖譜----115
圖3-2-8 化合物UF-2之COSY圖譜----115
圖3-2-9 化合物UF-2之HMBC圖譜----116
圖3-2-10 化合物UF-2之NOESY圖譜----116
圖3-3-1 化合物UF-3之UV圖譜----123
圖3-3-2 化合物UF-3之IR圖譜----123
圖3-3-3 化合物UF-3之HRESIMS圖譜----124
圖3-3-4 化合物UF-3之13C NMR圖譜(100 MHz, CDCl3)----124
圖3-3-5 化合物UF-3之DEPT圖譜----125
圖3-3-6 化合物UF-3之1H NMR圖譜(400 MHz, CDCl3)----125
圖3-3-7 化合物UF-3之HSQC圖譜----126
圖3-3-8 化合物UF-3之COSY圖譜----126
圖3-3-9 化合物UF-3之HMBC圖譜----127
圖3-3-10 化合物UF-3之NOESY圖譜----127
圖3-4-1 化合物UF-4之UV圖譜----133
圖3-4-2 化合物UF-4之IR圖譜----133
圖3-4-3 化合物UF-4之HREIMS圖譜----134
圖3-4-4 化合物UF-4之13C NMR圖譜(100 MHz, CDCl3)----134
圖3-4-5 化合物UF-4之DEPT圖譜----135
圖3-4-6 化合物UF-4之1H NMR圖譜(400 MHz, CDCl3) ----135
圖3-4-7 化合物UF-4之HSQC圖譜----136
圖3-4-8 化合物UF-4之COSY圖譜----136
圖3-4-9 化合物UF-4之HMBC圖譜----137
圖3-4-10 化合物UF-4之NOESY圖譜----137
圖3-5-1 化合物UF-5之UV圖譜----143
圖3-5-2 化合物UF-5之IR圖譜----143
圖3-5-3 化合物UF-5之HRESIMS圖譜----144
圖3-5-4 化合物UF-5之13C NMR圖譜(150 MHz, CDCl3) ----144
圖3-5-5 化合物UF-5之DEPT圖譜----145
圖3-5-6 化合物UF-5之1H NMR圖譜(600 MHz, CDCl3) ----145
圖3-5-7 化合物UF-5之HSQC圖譜-----146
圖3-5-8 化合物UF-5之COSY圖譜----146
圖3-5-9 化合物UF-5之HMBC圖譜----147
圖3-5-10 化合物UF-5之NOESY圖譜----147
圖3-6-1 化合物UF-6之UV圖譜----154
圖3-6-2 化合物UF-6之IR圖譜----154
圖3-6-3 化合物UF-6之HREIMS圖譜----155
圖3-6-4 化合物UF-6之13C NMR圖譜(150 MHz, CDCl3)----155
圖3-6-5 化合物UF-6之DEPT圖譜----156
圖3-6-6 化合物UF-6之1H NMR圖譜(600 MHz, CDCl3)----156
圖3-6-7 化合物UF-6之HSQC圖譜----157
圖3-6-8 化合物UF-6之COSY圖譜----157
圖3-6-9 化合物UF-6之HMBC圖譜----158
圖3-6-10 化合物UF-6之NOESY圖譜----158
圖3-7-1 化合物UF-7之UV圖譜----165
圖3-7-2 化合物UF-7之IR圖譜----165
圖3-7-3 化合物UF-7之HREIMS圖譜----166
圖3-7-4 化合物UF-7之13C NMR圖譜(150 MHz, CDCl3) ----166
圖3-7-5 化合物UF-7之DEPT圖譜----167
圖3-7-6 化合物UF-7之1H NMR圖譜(600 MHz, CDCl3) ----167
圖3-7-7 化合物UF-7之HSQC圖譜----168
圖3-7-8 化合物UF-7之COSY圖譜----168
圖3-7-9 化合物UF-7之HMBC圖譜----169
圖3-7-10 化合物UF-7之NOESY圖譜----169
圖3-8-1 Flexuvaroxepine A (UF-1)生合成路徑圖----171
圖3-8-2 Flexuvarin D (UF-3 - UF-5)生合成路徑圖----171
圖3-8-3 Flexuvarin A (UF-2)生合成路徑圖----172
圖3-8-3 Flexuvarol A (UF-6)與Flexuvarol B (UF-7)生合成路徑圖----173
圖4-1-1 化合物ZK-1之UV圖譜----189
圖4-1-2 化合物ZK-1之IR圖譜----189
圖4-1-3 化合物ZK-1之ESI-MS圖譜----190
圖4-1-4 化合物ZK-1之HRESIMS圖譜----190
圖4-1-5 化合物ZK-1之13C NMR圖譜(150 MHz, C5D5N) ----191
圖4-1-6 化合物ZK-1之DEPT圖譜----191
圖4-1-7 化合物ZK-1之1H NMR圖譜(600 MHz, C5D5N) ----192
圖4-1-8 化合物ZK-1之HSQC圖譜----192
圖4-1-9 化合物ZK-1之COSY圖譜----193
圖4-1-10 化合物ZK-1之HMBC圖譜----193
圖4-1-11 化合物ZK-1之NOESY圖譜----194
圖4-2-1 化合物ZK-2之UV圖譜----202
圖4-2-2 化合物ZK-2之IR圖譜----202
圖4-2-3 化合物ZK-2之ESI-MS圖譜----203
圖4-2-4 化合物ZK-2之HRESIMS圖譜----203
圖4-2-5 化合物ZK-2之13C NMR圖譜(100 MHz, C5D5N)----204
圖4-2-6 化合物ZK-2之DEPT圖譜----204
圖4-2-7 化合物ZK-2之1H NMR圖譜(400 MHz, C5D5N) ----205
圖4-2-8 化合物ZK-2之HSQC圖譜----205
圖4-2-9 化合物ZK-2之COSY圖譜----206
圖4-2-10 化合物ZK-2之HMBC圖譜----206
圖4-2-11 化合物ZK-2之NOESY圖譜----207
圖4-3-1 化合物ZK-3之UV圖譜----214
圖4-3-2 化合物ZK-3之IR圖譜----214
圖4-3-3 化合物ZK-3之HRESIMS圖譜----215
圖4-3-4 化合物ZK-3之13C NMR圖譜(100 MHz, C5D5N) ----215
圖4-3-5 化合物ZK-3之DEPT圖譜----216
圖4-3-6 化合物ZK-3之1H NMR圖譜(400 MHz, C5D5N) ----216
圖4-3-7 化合物ZK-3之HSQC圖譜----217
圖4-3-8 化合物ZK-3之COSY圖譜----217
圖4-3-9 化合物ZK-3之HMBC圖譜----218
圖4-3-10 化合物ZK-3之NOESY圖譜----218
圖4-4-1 化合物ZK-4之UV圖譜----226
圖4-4-2 化合物ZK-4之IR圖譜----226
圖4-4-3 化合物ZK-4之HRESIMS圖譜----227
圖4-4-4 化合物ZK-4之13C NMR圖譜(150 MHz, C5D5N)----227
圖4-4-5 化合物ZK-4之DEPT圖譜----228
圖4-4-6 化合物ZK-4之1H NMR圖譜(600 MHz, C5D5N) ----228
圖4-4-7 化合物ZK-4之HSQC圖譜----229
圖4-4-8 化合物ZK-4之COSY圖譜----229
圖4-4-9 化合物UF-4之HMBC圖譜----230
圖4-4-10 化合物UF-4之NOESY圖譜----230
圖4-5-1 化合物ZK-5之UV圖譜----238
圖4-5-2 化合物ZK-5之IR圖譜----238
圖4-5-3 化合物ZK-5之HRESIMS圖譜----239
圖4-5-4 化合物ZK-5之13C NMR圖譜(150 MHz, C5D5N) ----239
圖4-5-5 化合物ZK-5之DEPT圖譜----240
圖4-5-6 化合物ZK-5之1H NMR圖譜(600 MHz, C5D5N) ----240
圖4-5-7 化合物ZK-5之HSQC圖譜----241
圖4-5-8 化合物ZK-5之COSY圖譜----241
圖4-5-9 化合物ZK-5之HMBC圖譜----242
圖4-5-10 化合物ZK-5之NOESY圖譜----242
圖4-6-1 化合物ZK-6之UV圖譜----249
圖4-6-2 化合物ZK-6之IR圖譜----249
圖4-6-3 化合物ZK-6之HRESIMS圖譜----250
圖4-6-4 化合物ZK-6之13C NMR圖譜(150 MHz, C5D5N)----250
圖4-6-5 化合物ZK-6之DEPT圖譜----251
圖4-6-6 化合物ZK-6之1H NMR圖譜(600 MHz, C5D5N)----251
圖4-6-7 化合物ZK-6之HSQC圖譜----252
圖4-6-8 化合物ZK-6之COSY圖譜----252
圖4-6-9 化合物ZK-6之HMBC圖譜----253
圖4-6-10 化合物ZK-6之NOESY圖譜----253
圖5-1-1 所有UF系列化合物結構----254
圖5-2-1 所有ZK系列化合物結構----256
圖7-2-1 U. flexuosa之萃取以及分配萃取流程----270
圖7-2-2 U. flexuosa之水摻甲醇層(UFM)分離流程----271
圖7-2-3 U. flexuosa之劃分層UFM-6分離流程----272
圖7-2-4 U. flexuosa之劃分層UFM-7分離流程----273
圖7-2-5 U. flexuosa之劃分層UFM-8+UFM-9+UFM-10分離流程----274
圖7-2-6 U. flexuosa之劃分層UFM-15與UFM-15-L3分離流程----275
圖7-2-7 U. flexuosa之劃分層UFM-15-L4分離流程----276
圖7-3-1 Z. kuroshio之萃取以及分配萃取流程----277
圖7-3-2 Z. kuroshio之劃分層ZO1-M與ZO1-M-S2分離流程----278
圖7-3-3 Z. kuroshio之劃分層ZO1-M-S2-1分離流程----279
圖7-3-4 Z. kuroshio之劃分層ZO1-M-S2-2分離流程----280
圖7-3-5 Z. kuroshio之劃分層ZO1-M-S2-3分離流程----281
圖7-3-6 Z. kuroshio之劃分層ZO1-M-S2-4分離流程----282

表目錄
表1-3-1 紫玉盤屬植物之黃酮類化合物文獻回顧整理----8
表1-3-2 紫玉盤屬植物之多氧取代環己烯類化合物文獻回顧整理----17
表1-3-3 紫玉盤屬植物之番荔枝乙醯生合成物文獻回顧整理----29
表1-3-4 紫玉盤屬植物之苯類化合物文獻回顧整理----36
表1-3-5 紫玉盤屬植物之生物鹼類化合物文獻回顧整理----42
表1-3-6 紫玉盤屬植物之三萜類化合物文獻回顧整理----48
表1-3-7 紫玉盤屬植物之固醇類化合物文獻回顧整理----51
表1-3-8 紫玉盤屬植物之長鏈類化合物文獻回顧整理----52
表1-3-9 紫玉盤屬植物之倍半萜類化合物文獻回顧整理----52
表1-3-10 紫玉盤屬植物之dihydrooxepine類化合物文獻回顧整理----53
表1-3-11 紫玉盤屬植物之木酚素類化合物文獻回顧整理----54
表1-3-12 紫玉盤屬植物之單萜類化合物文獻回顧整理----55
表1-3-13 紫玉盤屬植物之香豆素類化合物文獻回顧整理----56
表1-3-14 紫玉盤屬植物之其他類化合物文獻回顧整理----56
表1-5-1 花群海葵屬之zoanthamine-type生物鹼類文獻回顧整理----67
表1-5-2 花裙海葵屬之固醇類化合物文獻回顧整理----74
表1-5-3 花裙海葵屬之長鏈化合物與脂肪酸文獻回顧整理----78
表1-5-4 花裙海葵屬之sulfated sphingolipid類化合物文獻回顧整理----80
表2-1-1 紫玉盤屬植物U. flexuosa分離成分分類----87
表2-2-1 黑潮花裙海葵Z.kuroshio分離成分結構----91
表3-1-1 1H and 13C NMR Spectroscopic Data of UF-1----100
表3-2-1 1H and 13C NMR Spectroscopic Data of UF-2----111
表3-3-1 1H and 13C NMR Spectroscopic Data of UF-3 and Grandiuvarin C----122
表3-4-1 1H and 13C NMR Spectroscopic Data of UF-4 and Flexuvarin B----132
表3-5-1 1H and 13C NMR Spectroscopic Data of UF-5 and Flexuvarin C----142
表3-6-1 1H and 13C NMR Spectroscopic Data of UF-6 and Uvamalol C----153
表3-7-1 1H and 13C NMR Spectroscopic Data of UF-7 and Flexuvarol A----164
表4-1-1 1H and 13C NMR Spectroscopic Data of ZK-1 and Zoanthenamine----188
表4-2-1 1H and 13C NMR Spectroscopic Data of ZK-2 and Kuroshine A----201
表4-3-1 1H and 13C NMR Spectroscopic Data of ZK-3 and Kuroshine A----213
表4-4-1 1H and 13C NMR Spectroscopic Data of ZK-4 and Kuroshine E----225
表4-5-1 1H and 13C NMR Spectroscopic Data of ZK-5 and Kuroshine E----237
表4-6-1 1H and 13C NMR Spectroscopic Data of ZK-6 and Kuroshine E----248
1. Singer, P., Setting Limits: Medical Goals in an Aging Society. Bioethics, 1988. 2(2): p. 151-169.
2. YE, Y., X.-Q. Li, and C.-P. Tang, Natural Products Chemistry Research 2009''s Progress in China Chin. J. Nat. Med., 2011. 9(1): p. 7-16.
3. Demain, A.L. and S. Sanchez, Microbial Drug Discovery: 80 Years of Progress. J. Antibiot., 2009. 62(1): p. 5-16.
4. Molinski, T.F., et al., Drug Development from Marine Natural Products. Nat. Rev. Drug Discovery, 2009. 8(1): p. 69-85.
5. Lee, K.-H., Discovery and Development of Natural Product-Derived Chemotherapeutic Agents Based on a Medicinal Chemistry Approach. J. Nat. Prod., 2010. 73(3): p. 500-516.
6. Kinghorn, A.D., et al., The Relevance of Higher Plants in Lead Compound Discovery Programs. J. Nat. Prod., 2011. 74(6): p. 1539-1555.
7. McChesney, J.D., S.K. Venkataraman, and J.T. Henri, Plant Natural Products: Back to the Future or into Extinction? . Phytochemistry, 2007. 68(14): p. 2015-2022.
8. Parmar, V.S., et al., Novel Constituents of Uvaria species. Nat. Prod. Rep. , 1994. 11(2): p. 219-224.
9. Nkunya, M.H.H., et al., Cyclohexenes, (+)-Pandoxide, (+)-Senepoxide and (-)-Pandoxide, from Uvaria pandensis. Phytochemistry, 1987. 26(9): p. 2563-2565.
10. Pancharoen, O., P. Tuntiwachwuttikul, and W.C. Taylor, Cyclohexane Oxide Derivatives from Kaempferia angustifolia and Kaempferia species. Phytochemistry, 1989. 28(4): p. 1143-1148.
11. Taneja, S.C., et al., Oxygenated Cyclohexanes from Piper species. Phytochemistry, 1991. 30(3): p. 871-874.
12. Kuramoto, M., et al., Structure-Activity Relationship of Norzoanthamine Exhibiting Significant Inhibition of Osteoporosis. Bull. Chem. Soc. Jpn., 1998. 71(4): p. 771-779.
13. Villar, R., et al., Evaluation of the Effects of Several Zoanthamine-type Alkaloids on the Aggregation of Human Platelets. Bioorg. Med. Chem., 2003. 11(10): p. 2301-2306.
14. Leboeuf, M., et al., The Phytochemistry of the Annonaceae. Phytochemistry, 1982. 21(12): p. 2783-2813.
15. Li, H., et al., Flora of Taiwan VI. 1979: 現代關係出版社.
16. 廖日京, 台灣木本植物學名目錄. 1993: 台灣大學森林學系.
17. Hufford, C.D. and W.L.J. Lasswell, Uvaretin and Isouvaretin. Two Novel Cytotoxic C-Benzylflavanones from Uvaria chamae L. J. Org. Chem., 1976. 41(7): p. 1297-1298.
18. Lasswell, W.J. and C. Hufford, Cytotoxic C-Benzylated Flavonoids from Uvaria chamae. J. Org. Chem., 1977. 42(8): p. 1295-1302.
19. Achenbach, H., et al., Oxygenated Pyrenes, their Potential Biosynthetic Precursor and Benzylated Dihydroflavones from Two African Uvaria species. Phytochemistry, 1997. 44(2): p. 359-364.
20. Kongstad, K., et al., Fungal Plasma Membrane H⁺-ATPase Inhibitory Activity of O-Hydroxybenzylated Flavanones and Chalcones from Uvaria chamae P. Beauv. Fitoterapia, 2015. 105: p. 102-106.
21. Cole, J.R., et al., Uvaretin, a New Antitumor Agent from Uvaria acuminata (Annonaceae). J. Org. Chem., 1976. 41(10): p. 1852-1855.
22. Hufford, C.D. and B.O. Oguntimein, Dihydrochalcones from Uvaria angolensis. Phytochemistry, 1980. 19(9): p. 2036-2038.
23. Nkunya, M.H.H., et al., Benzylated Dihydrochalcones from Uvaria leptocladon. Phytochemistry, 1993. 32(5): p. 1297-1300.
24. Ichimaru, M., et al., Cytotoxic C-Benzylated Dihydrochalcones from Uvaria acuminata. Chem. Pharm. Bull., 2004. 52(1): p. 138-141.
25. Santi, T.-P., et al., Chemical Constituents from the Roots of Uvaria rufa. Chem. Nat. Compd., 2011. 47(3): p. 474-476.
26. Hufford, C.D., B.O. Oguntimein, and J.K. Baker, New Flavonoid and Coumarin Derivatives of Uvaria afzelii. J. Org. Chem., 1981. 46(15): p. 3073-3078.
27. Kodpinid, M., C. Thebtaranonth, and Y. Thebtaranonth, Benzyl Benzoates and O-Hydroxybenzyl Flavanones from Uvaria ferruginea. Phytochemistry 1985. 24(12): p. 3071-3072.
28. Okpekon, T., et al., A Novel 1-Indanone Isolated from Uvaria afzelii roots. Nat. Prod. Res., 2009. 23(10): p. 909-915.
29. Charles, D.H., O.O. Babajide, and N.S. James, Angoluvarin, an Antimicrobial Dihydrochalcone from Uvaria angolensis. J. Org. Chem., 1987. 52(23): p. 5286-5288.
30. Chantrapromma, K., et al., 5-Hydroxy-7-methoxy-2-phenyl-4H-1-benzopyran-4-one (Tectochrysin) and 2,5-Dihydroxy-7-methoxy-2-phenyl-2,3-dihydro-4H-1-benzopyran-4-one: Isolation From Uvaria rufas and X-Ray Structures. Aust. J. Chem., 1989. 42(12): p. 2289-2293.
31. Nkunya, M.H.H., et al., Schefflerin and Isoschefflerin: Prenylated Chalcones and other Constituents of Uvaria scheffleri. Phytochemistry, 1990. 29(4): p. 1261-1264.
32. Nkunya, M.H.H., R. Waibel, and H. Achenbach, Three Flavonoids from the Stem bark of the Antimalarial Uvaria dependens. Phytochemistry, 1993. 34(3): p. 853-856.
33. Huang, L., et al., New Compounds with DNA Strand-scission Activity from the Combined Leaf and Stem of Uvaria hamiltonii. J. Nat. Prod., 1998. 61(4): p. 446-450.
34. Fleischer, T.C., R.D. Waigh, and P.G. Waterman, A Novel Retrodihydrochalcone from the Stem Bark of Uvaria mocoli. Phytochemistry, 1998. 47(7): p. 1387-1391.
35. Chantrapromma, K., et al., A Chalcone and a Dihydrochalcone from Uvaria dulcis. Phytochemistry, 2000. 53(4): p. 511-513.
36. Ichimaru, M., et al., Hydroxyespintanol and Schefflerichalcone: Two New Compounds from Uvaria scheffleri. J. Nat. Med., 2010. 64(1): p. 75-79.
37. Chen, Z., et al., Two New Flavones from Uvaria macrophylla Roxb. var. microcarpa and Their Cytotoxic Activities. Heterocycles, 2011. 83(12): p. 2857-2863.
38. Moriyasu, M., et al., Chemical Studies on the Roots of Uvaria welwitschii. J. Nat. Med., 2011. 65(2): p. 313-321.
39. Nguyen, T., et al., A New Lignan Glycoside from the Aerial Parts and Cytotoxic Investigation of Uvaria rufa. Nat. Prod. Res., 2015. 29(3): p. 247-252.
40. Kaweetripob, W., et al., Cyclohexene Long-chain Fatty Acid Esters from Uvaria dulcis (Dunal). Phytochem. Lett., 2015. 12: p. 248-251.
41. Said, S., Two New Special Flavones from Uvaria accuminata. Nat. Prod. Res., 2011. 25(10): p. 987-994.
42. Hufford, C.D., et al., Vafzelin and Uvafzelin, Novel Constituents of Uvaria afzelii. J. Am. Chem. Soc., 1980. 102(24): p. 7365-7367.
43. Kodpinid, M., et al., Structures of β-Senepoxide, Tingtanoxide, and their Diene Precursors. Constituents of Uvaria ferruginea. Tetrahedron Letters, 1983. 24(19): p. 2019-2022.
44. Nkunya, M.H.H. and H. Weenen, Two Indolosesquiterpenes from Uvaria pandensis. Phytochemistry, 1989. 28(8): p. 2217-2218.
45. Zhang, C.-R., et al., Polyoxygenated Cyclohexene Derivatives from Uvaria rufa. Helv. Chim. Acta, 2006. 89(7): p. 1408-1416.
46. Jolad, S.D., et al., Structures of Zeylenol and Zeylena, Constituents of Uvaria zeylanica (Annonaceae). J. Org. Chem., 1981. 46(21): p. 4267-4272.
47. Pan, X.-P. and D.-Q. Yu, Two Polyoxygenated Cyclohexenes from Uvaria grandiflora. Phytochemistry, 1995. 40(6): p. 1709-1711.
48. Xu, Q., et al., New Polyoxygenated Cyclohexenes from Uvaria kweichowensis and their Antitumour Activities. Chem. Pharm. Bull. (Tokyo), 2005. 53(7): p. 826-828.
49. Takeuchi, Y., et al., Polyoxygenated Cyclohexenes from the Chinese tree, Uvaria purpurea. Biosci., Biotechnol., Biochem., 2002. 66(3): p. 537-542.
50. Takeuchi, Y., et al., Four Polyoxygenated Cyclohexenes from the Chinese Tree, Uvaria purpurea. Biosci., Biotechnol., Biochem., 2001. 65(6): p. 1395-1398.
51. Jolad, S.D., et al., 1-Epizeylenol from Uvaria zeylanica Roots. Phytochemistry, 1984. 23(4): p. 935-936.
52. Pan, X.-P., R.-Y. Chen, and D.-Q. Yu, Polyoxygenated Cyclohexenes from Uvaria grandiflora. Phytochemistry, 1998. 47(6): p. 1063-1066.
53. Zhao, W.-M., et al., Tonkinenin A. A New Polyoxygenated Cyclohexane Derivative from Uvaria tonkinensis. Tetrahedron, 1996. 52(38): p. 12373-12380.
54. Liao, Y.-H., et al., Three Cyclohexene Oxides from Uvaria grandiflora. Phytochemistry, 1997. 45(4): p. 729-732.
55. Awale, S., et al., Antiausterity Agents from Uvaria dac and their Preferential Cytotoxic Activity against Human Pancreatic Cancer Cell Lines in a Nutrient-deprived Condition. J. Nat. Prod., 2012. 75(6): p. 1177-1183.
56. Ho, D.V., et al., A New Polyoxygenated Cyclohexene and a New Megastigmane Glycoside from Uvaria grandiflora. Bioorg. Med. Chem. Lett., 2015. 25(16): p. 3246-3250.
57. Holbert, G.W., et al., Shikimate-derived Metabolites Revised Structure and Total Synthesis of Pipoxide. Tetrahedron Letters, 1979. 20(8): p. 715-718.
58. Schulte, G.R., et al., The Structure of Ferrudiol. A Highly Oxidized Constituent of Uvaria Ferruginea. Tetrahedron Letters, 1982. 23(3): p. 289-292.
59. Kodpinid, M., et al., Benzyl Benzoates from the Root of Uvaria purpurea. Phytochemistry, 1984. 23(1): p. 199-200.
60. Ueda, J., et al., (+)-Grandifloracin, an Antiausterity Agent, Induces Autophagic PANC-1 Pancreatic Cancer Cell Death. Drug Des Devel Ther., 2014. 8: p. 39-47.
61. Ankisetty, S., et al., Aromatic Constituents of Uvaria grandiflora. J. Nat. Prod., 2006. 69(4): p. 692-694.
62. Zhou, G., et al., Three Polyoxygenated Cyclohexenes from Uvaria calamistrata. J. Asian Nat. Prod. Res., 2010. 12(8): p. 696-701.
63. Akendengue, B., et al., Acaricidal Activity of Uvaria versicolor and Uvaria Klaineana (Annonaceae). Phytother. Res., 2003. 17(4): p. 364-367.
64. Tempesta, M.S., G.R. Kriek, and R.B. Bates, Uvaricin, a New Antitumor Agent from Uvaria accuminata (Annonaceae). J. Org. Chem., 1982. 47(16): p. 3151-3153.
65. Hishama, A., et al., Uvariamicin-I, II and III: Three Novel Acetogenins from Uvaria narum. Tetrahedron Letters, 1990. 31(32): p. 4649-4652.
66. Hisham, A., et al., Squamocin-28-one and Panalicin, Two Acetogenins from Uvaria narum. Phytochemistry, 1991. 30(2): p. 545-548.
67. Raynaud, S., et al., Acetogenins from the Bark of Uvaria pauci-ovulata. Phytochemistry, 1997. 46(2): p. 321-326.
68. Hisham, A., et al., Acetogenins from Root Bark of Uvaria narum. Phytochemistry, 1991. 30(7): p. 2373-2377.
69. Chen, Y. and Y. DQ, Tonkinelin: a Novel Annonaceous Acetogenin from Uvaria tonkinensis. Planta Med., 1996. 62(6): p. 512-514.
70. Chen, Y., R.Y. Chen, and D.Q. Yu, Six Acetogenins from Uvaria tonkinesis. Phytochemistry, 1996. 43(4): p. 793-801.
71. Zhou, G., et al., Calamistrins A and B, Two New Cytotoxic Monotetrahydrofuran Annonaceous Acetogenins from Uvaria calamistrata. J. Nat. Prod., 1999. 62(2): p. 261-264.
72. Raynaud, S., et al., Squamocin and Benzyl Benzoate, Acaricidal Components of Uvaria pauci-ovulata Bark Extracts. Planta Med., 2000. 66(2): p. 173-175.
73. Zhou, G., et al., New Annonaceous Acetogenins from the Roots of Uvaria calamistrata. J. Nat. Prod., 2000. 63(9): p. 1201-1204.
74. Fall, D., et al., Chamuvarinin, an Acetogenin Bearing a Tetrahydropyran Ring from the Roots of Uvaria chamae. J. Nat. Prod., 2004. 67(6): p. 1041-1043.
75. Fall, D., et al., A New Adjacent bis-Tetrahydrofuran Annonaceous Acetogenin from the seeds of Uvaria chamae. Planta Med., 2006. 72(10): p. 938-940.
76. Zhou, G.-X., et al., Calamistrins H and I, Two Linear Annonaceous Acetogenins from the Roots of Uvaria calamistrata Hance. Heterocycles, 2008. 75(4): p. 933-937.
77. Dai, Y., et al., Antiproliferative Acetogenins from a Uvaria sp. from the Madagascar Dry Forest. J. Nat. Prod., 2012. 75(3): p. 479-483.
78. Okorie, D.A., New Benzyldihydrochalcones from Uvaria chamae. Phytochemistry 1977. 16(10): p. 1591-1594.
79. Akendengue, B., et al., Klaivanolide, an Antiprotozoal Lactone from Uvaria klaineana. Phytochemistry, 2002. 59(8): p. 885-888.
80. William, L., J. Lasswell, and C.D. Hufford, Aromatic Constituents from Uvaria chamae. Phytochemistry, 1977. 16(9): p. 1439-1441.
81. Weenen, H., et al., Lucidene, a Bis(benzopyranyl) Sesquiterpene from Uvaria lucida ssp. lucida. J. Org. Chem., 1990. 55(17): p. 5107-5109.
82. Parmar, V.S., et al., A Benzoic Acid Ester from Uvaria narum. Phytochemistry, 1995. 38(4): p. 951-955.
83. Moriyasu, M., et al., Pyrenes and Pyrendiones from Uvaria lucida. J. Nat. Med., 2012. 66(3): p. 453-458.
84. Nkunya, M.H.H., et al., (±)-Schefflone: a Trimeric Monoterpenoid from the Root Bark of Uvaria scheffleri. Phytochemistry, 2004. 65(4): p. 399-404.
85. Macabeo, A., et al., Tetrahydroxanthene-1,3(2H)-dione Derivatives from Uvaria valderramensis. J. Nat. Prod., 2014. 77(12): p. 2711-2715.
86. Yang, X.-N., et al., Amides from Uvaria microcarpa. Chemistry of Natural Compounds, 2010. 46(2): p. 324-326.
87. Hufford, C.D., et al., Syncarpurea, a Novel Metabolite from U. afzelii. Tetrahedron Letters, 1984. 25(4): p. 371-374.
88. Waterman, P.G. and I. Mohammad, Chemistry of the Annonaceae. Structures of Uvarindoles A—D, Four New Benzylated Indole Alkaloids from Uvaria angolensis. J. Chem. Soc., Chem. Commun., 1984(19): p. 1280-1281.
89. Nkunya, M.H.H., H. Weenen, and N.J. Koyi, 3-Farnesylindole from Uvaria pandensis verdc. Phytochemistry, 1987. 26(8): p. 2402-2403.
90. Philipov, S., et al., Phytochemical Study and Cytotoxic Activity of Alkaloids from Uvaria chamae P. Beauv. Pharmazie, 2000. 55(9): p. 688-689.
91. Weenen, H., et al., Tanzanene, a Spiro Benzopyranyl Sesquiterpene from Uvaria tanzaniae Verdc. J. Org. Chem., 1991. 56(20): p. 5865-5867.
92. Tachibana, Y., et al., Mitogenic Activities in African Traditional Herbal Medicines (Part II). Phytomedicine, 1996. 2(4): p. 335-339.
93. Addae-Kyereme, J., et al., Antiplasmodial Activities of some Ghanaian Plants Traditionally Used for Fever/malaria Treatment and of Some Alkaloids Isolated from Pleiocarpa mutica; in vivo Antimalarial Activity of Pleiocarpine. J. Ethnopharmacol., 2001. 76(1): p. 99-103.
94. Asha, K., et al., Antibacterial Activity and Cytotoxicity of Extractives from Uvaria hamiltonii Stem Bark. Fitoterapia, 2003. 71(1-2): p. 159-163.
95. Okpekon, T., et al., Antiparasitic Activities of Medicinal Plants Used in Ivory Coast. J. Ethnopharmacol., 2004. 90(1): p. 91-97.
96. Okoli, A. and C. Iroegbu, Evaluation of Extracts of Anthocleista djalonensis, Nauclea latifolia and Uvaria afzalii for Activity against Bacterial Isolates from Cases of Non-gonococcal Urethritis. J. Ethnopharmacol., 2004. 92(1): p. 135-144.
97. Magassouba, F., et al., Ethnobotanical Survey and Antibacterial Activity of Some Plants Used in Guinean Traditional Medicine. J. Ethnopharmacol., 2007. 114(1): p. 44-53.
98. Kihampa, C., et al., Larvicidal and IGR Activity of Extract of Tanzanian Plants against Malaria Vector Mosquitoes. J. Vector Borne Dis., 2009. 46(2): p. 145-152.
99. Gathirwa, J., et al., Traditional Herbal Antimalarial Therapy in Kilifi District, Kenya. J. Ethnopharmacol., 2011. 134(2): p. 434-442.
100. Adepiti, A. and E. Iwalewa, Evaluation of the Combination of Uvaria chamae (P. Beauv.) and Amodiaquine in Murine Malaria. J. Ethnopharmacol., 2016. 193(4): p. 30-35.
101. Macabeo, A., et al., Antitubercular Activity of the Semi-polar Extractives of Uvaria rufa. Asian Pac. J. Trop. Med., 2012. 5(10): p. 777-780.
102. Adelodun, V., et al., Evaluation of Antitrypanosomal and Anti-inflammatory Activities of Selected Nigerian Medicinal Plants in Mice. Afr. J. Tradit., Complementary Altern. Med., 2013. 10(6): p. 469-76.
103. Nakatani, N., et al., Induction of Apoptosis in Human Promyelocytic Leukemia Cell Line HL-60 by C-Benzylated Dihydrochalcones, Uvaretin, Isouvaretin and Diuvaretin. Biol. Pharm. Bull., 2005. 28(1): p. 83-86.
104. Abdelhamed, S., et al., Identification of Plant Extracts Sensitizing Breast Cancer Cells to TRAIL. Oncol. Rep., 2013. 29(5): p. 1991-1998.
105. Qian, J., et al., Annonaceous Acetogenins Reverses Drug resistance of human Hepatocellular Carcinoma BEL-7402/5-FU and HepG2/ADM Cell Lines. Int. J. Clin. Exp. Pathol., 2015. 8(9): p. 11934-11944.
106. 藍智勤, 台灣產黑潮花裙海葵化學成分及生物活性研究, in 天然藥物研究所. 102, 高雄醫學大學.
107. Cheng, Y.-B., et al., Kuroshines A and B, New Alkaloids from Zoanthus kuroshio. Tetrahedron Lett., 2014. 55(39): p. 5369-5372.
108. Cheng, Y.-B., et al., New Alkaloids from Formosan Zoanthid Zoanthus kuroshio. Tetrahedron, 2015. 71(45): p. 8601-8606.
109. Rao, C.B., et al., Zoanthamine: A Novel Alkaloid from a Marine Zoanthid. J. Am. Chem. Soc., 1984. 106: p. 7983-7984.
110. Rao, C.B., et al., Alkaloids from a Marine Zoanthid. J. Org. Chem., 1985. 50(20): p. 3757-3760.
111. Atta-ur-Rahman, et al., Zoanthaminone, a New Alkaloid from a Marine Zoanthid. Tetrahedron Letters, 1989. 30(49): p. 6825-6828.
112. Kuramoto, M., et al., Structure-Activity Relationship of Norzoanthamine Exhibiting Significant Inhibition of Osteoporosis Bulletin of the Chemical Society of Japan, 1998. 71(4): p. 771-779.
113. Daranas, A.H., et al., New Zlkaloids from a Marine Zoanthid. Tetrahedron, 1999. 55(17): p. 5539-5546.
114. Babu, U.V., S.P.S. Bhandari, and H.S. Garg, Chemical Constituents of Zoanthus Species CDR-83: Cholesta-5,20-dien-3β-ol, a Rare Sterol. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 1996. 35(6): p. 627-629.
115. Daranas, A.H., et al., Epioxyzoanthamine, a New Zoanthamine-type Alkaloid and the Unusual Deuterium Exchange in this Series. Tetrahedron, 1998. 54(27): p. 7891-7896.
116. Daranas, A.H., et al., Epioxyzoanthamine, a New Zoanthamine-type Alkaloid and the Unusual Deuterium Exchange in this Series. Tetrahedron: Asymmetry, 1998. 54(27): p. 7891-7896.
117. Inoue, H., et al., Truncated Norzoanthamine Exhibiting Similar Collagen Protection Activity, toward a Promising Anti-osteoporotic Drug. Bioorg. Med. Chem. Lett., 2014. 24(2): p. 508-509.
118. Rao, C.B., et al., Two New Alkaloids from an Indian Species of Zoanthus. Heterocycles, 1989. 28(1): p. 103-106.
119. Cen-Pacheco, F., et al., Zoaramine, a Zoanthamine-like Alkaloid with a New Skeleton. Org. Lett., 2014. 16(11): p. 2880-2883.
120. Cen-Pacheco, F., et al., New Oxidized Zoanthamines from a Canary Islands Zoanthus sp. Mar. Drugs, 2014. 12(10): p. 5188-5196.
121. Bergmann, W., R.J. Feeney, and A.N. Swift, Contributions to the Study of Marine Products. XXXI. Palysterol and Other Lipid Components of Sea Anemones. J. Org. Chem., 1951. 16(9): p. 1337-1344.
122. Kelecom, A., Studies of Brazilian Marine Invertebrates. VIII. Zoanthosterol, a New Sterol from the Zoanthid Zoanthus Sociatus (Hexacorallia, Zoanthidea). Bull. Soc. Chim. Belg., 1981. 90(9): p. 971-997.
123. Suksamrarn, A., et al., Ecdysteroids from a Zoanthus sp. J. Nat. Prod., 2002. 65(8): p. 1194-1197.
124. Cheng, Y.-B., et al., Ecdysones from Zoanthus spp. with Inhibitory Activity against Dengue Virus 2. Bioorg Med Chem Lett., 2016. 26(9): p. 2344-2348.
125. Babu, U.V., S.P.S. Bhandari, and H.S. Garg, Hariamide, a Novel Sulfated Sphingolipid from a Zoanthus sp. of the Indian Coast. J. Nat. Prod., 1997. 60(12): p. 1307-1309.
126. Yamaguchi, K., et al., Suppressive Effect of Norzoanthamine Hydrochloride on Experimental Osteoporosis in Ovariectomized Mice. Biol. Pharm. Bull., 1999. 22(9): p. 920-924.
127. Kinugawa, M., S. Fukuzawa, and K. Tachibana, Skeletal Protein Protection: the Mode of Action of an Anti-osteoporotic Marine Alkaloid, Norzoanthamine. J. Bone Miner Metab., 2009. 27(3): p. 303-314.
128. Warmerdam, E.G.J.C., et al., Asymmetric Epoxidation of Chiral Allylic Alcohols. Tetrahedron: Asymmetry, 1996. 7(9): p. 2539-2550.
129. Wang, S., et al., Four New Compounds from the Roots of Uvaria macrophylla. J. Asian Nat. Prod. Res., 2005. 7(5): p. 687-694.
130. Ganem, B. and G.W. Holbert, Arene Oxides in Biosynthesis. On the Origin of Crotepoxide, Senepoxide, and Pipoxide. Bioorg. Chem., 1977. 6(3): p. 393-396.
131. Rusnak, F., et al., Subcloning of the Enterobactin Biosynthetic Gene entB: Expression, Purification, Characterization, and Substrate Specificity of Isochorismatase. Biochemistry, 1990. 29(6): p. 1425-1435.
132. D’Auria, J.C., F. Chen, and E. Pichersky, Characterization of an Acyltransferase Capable of Synthesizing Benzylbenzoate and Other Volatile Esters in Flowers and Damaged Leaves of Clarkia breweri. Plant Physiol., 2002. 130(1): p. 466-476.
133. Sakaitani, M., et al., Mechanistic Studies on trans-2,3-Dihydro-2,3-dihydroxybenzoate Dehydrogenase (ent A) in the Biosynthesis of the Iron Chelator Enterobactint. Biochemistry, 1990. 29(29): p. 6789-6798.
134. Teufel, R., et al., Bacterial Phenylalanine and Phenylacetate Catabolic Pathway Revealed. Proc. Natl. Acad. Sci. USA, 2010. 107(32): p. 14390-14395.
135. Liebhold, M. and S.M. Li, Regiospecific Benzylation of Tryptophan and Derivatives Catalyzed by a Fungal Dimethylallyl Transferase. Org. Lett. , 2013. 15(22): p. 5834-5837.
136. El-Sohly, H.N., W.L. Lasswell, and C.D. Hufford, Two New C-Benzylated Flavanones from Uvaria chamae and 13C NMR Analysis of Flavanone Methyl Ethers. J. Nat. Prod. , 1979. 42(3): p. 264-270.
137. Rao, C.B., et al., Zoanthamine; a novel alkaloid from a marine zoanthid. J. Am. Chem. Soc., 1984. 106: p. 7983-7984.
138. Rao, C.B., et al., Alkaloids from a marine Zoanthid. J. Org. Chem., 1985. 50: p. 3757-3760.
139. Seangphakdee, P., et al., Anti-inflammatory and Anticancer Activities of (-)-Zeylenol from Stems of Uvaria grandiflora. ScienceAsia, 2013. 36: p. 610-614.
140. Makni-Maalej, K., et al., Zymosan Induces NADPH Oxidase Activation in Human Neutrophils by Inducing the Phosphorylation of p47phox and the Activation of Rac2: Involvement of Protein Tyrosine Kinases, PI3Kinase, PKC, ERK1/2 and p38MAP Kinase. Biochem. Pharmacol., 2013. 85(1): p. 92-100.
141. Ratajczak-Wrona, W., et al., The Role of MAP Kinases in the Induction of iNOS Expression in Neutrophils Exposed to NDMA: the Involvement Transcription Factors. Advances in Medical Sciences, 2013. 58(2): p. 265-273.
142. López, T., S. López, and C.F. Arias, The Tyrosine Kinase Inhibitor Genistein Induces the Attachment of Rotavirus Particles from the Cell Surface. Virus Res., 2015. 210(2): p. 141-148.
143. Blunt, J.W., et al., Marine Natural Products. Nat. Prod. Rep., 2016. 33(3): p. 382-431.
144. Gribble, G.W., Biological Activity of Recently Discovered Halogenated Marine Natural Products. Mar. Drugs, 2015. 13(7): p. 4044-4136.
145. Yang, S.-C., et al., Propofol Inhibits Superoxide Production, Elastase Release, and Chemotaxis in Formyl Peptide–Activated Human Neutrophils by Blocking Formyl Peptide Receptor 1 J. Immunol., 2013. 190(12): p. 6511-6519.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊