跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/14 16:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳宛倫
研究生(外文):Wan-Lun Wu
論文名稱:大錦蘭莖部化學成分及細胞毒活性之研究
論文名稱(外文):Chemical Constituents and Cytotoxic Activities from the Stem of Anodendron benthamianum
指導教授:張訓碩
指導教授(外文):Hsun-Shuo Chang
口試委員:陳益昇柯宏慧
口試委員(外文):Ih-Sheng ChenHorng-Huey Ko
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:天然藥物研究所碩士班
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:152
中文關鍵詞:大錦蘭莖部夾竹桃科細胞毒
外文關鍵詞:Anodendron benthamianumApocynaceaeStemsLignanCoumarinBenzenoidsSteroidsCytotoxicity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:51
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
大錦蘭(Anodendron benthamianum Hemsl.)屬夾竹桃科(Apocynaceae)錦蘭屬(Anodendron)的攀緣性藤本植物,為臺灣固有種。本研究發現大錦蘭莖部之甲醇抽出物對於人類肝癌細胞(hepatocellular carcinoma cells; SK-Hep-1)、前列腺癌細胞(prostate cancer cells; PC-3)及抗藥性卵巢癌細胞(paclitaxel-resistant ovarian cancer cells; TOV-21G-RTx)等細胞株皆顯現有細胞毒活性,而在高濃度(100 g/ml)時對此三種細胞株的生長皆有抑制作用(細胞存活率皆< 0 %);在低濃度(25 g/ml)作用時對抗藥性卵巢癌細胞仍呈現強效的抑制效果(細胞存活率< 0 %),而肝癌細胞抑制效果次強(細胞存活率0±5 %),抑制前列腺癌細胞效果則稍弱(細胞存活率10±0 %),因本植物對抗藥性卵巢癌細胞具有強的細胞毒殺效果,同時實驗結果亦顯示對於肝癌細胞及前列腺癌細胞也呈現強的抑制效果,故著手進行研究。利用生物活性導向分離試驗及光譜分析法,由大錦蘭莖部之活性乙酸乙酯層萃取分離得到三十個化合物,包括一個新化合物((+)-amisbenzoic acid)及二十九個已知化合物。
Anodendron benthamianum Hemsl. (Apocynaceae) is a climbing shrub , endemic to Taiwan and grows at low to medium altitudes. The methanolic extract of the whole plants of this species showed cytotoxic activity to hepatocellular carcinoma cells (SK-Hep-1), prostate cancer cells (PC-3), and paclitaxel-resistant ovarian cancer cells (TOV-21G-RTx), and the data indicated that the methanolic extract of the stem of A. benthamianum was cytotoxic (survival rate < 0 %) to all the cancer cell lines under high concentration (100 g/ml), as for the low concentration (25 g/ml) showed strong cytotoxicity to TOV-21G-RT and SK-Hep-1 while minor cytotoxic to PC-3 instead. Bioassay-guided fractionation of active ethyl acetate-soluble layer from the stem of A. benthamianum led to the isolation of thirty compounds, including one new compound, (+)-amisbenzoic acid, as well as twenty-nine known compounds. The structures of these isolates were elucidated by spectral analysis. The successive isolation of chemical constituents and their cytotoxicity assay are still in progress.
目錄 I
圖目錄 III
摘要 VII
Abstract VIII
Glossary of Abbreviations IX
第一章、序言 1
第二章、研究動機與目的 4
第三章、錦蘭屬過去文獻回顧 6
第一節、 過去化學成分之研究 6
第二節、 錦蘭屬過去分離之化學成分之結構 10
第四章、萃取與分離 22
第五章、化合物之結構鑑定 28
第一節、 (+)-amisbenzoic acid (1)之結構鑑定 28
第二節、 syringaldehyde (2)之結構鑑定 31
第三節、 -hydroxypropioguaiacone (3)之結構鑑定 34
第四節、 4-hydroxy-3-prenylbenzoic acid (4)之結構鑑定 37
第五節、 vanillic acid (5)之結構鑑定 40
第六節、 3,4-dimethoxyphenol (6)之結構鑑定 43
第七節、 syringic acid (7)之結構鑑定 46
第八節、 3,4-dimethoxybenzoic acid (8)之結構鑑定 49
第九節、 isofraxidin (9)之結構鑑定 52
第十節、 scopoletin (10)之結構鑑定 55
第十一節、(+)-pinoresinol (11)之結構鑑定 58
第十二節、(+)-salilcifoliol (12)之結構鑑定 61
第十三節、(+)-syringaresinol (13)之結構鑑定 64
第十四節、(+)-lariciresinol (14)之結構鑑定 67
第十五節、ficusal (15)之結構鑑定 70
第十六節、(+)-1-hydroxypinoresinol (16)之結構鑑定 73
第十七節、curcasinlignan A (17)之結構鑑定 76
第十八節、4-acetonyl-3,5-dimethoxy-p-quinol (18)之結構鑑定 79
第十九節、-tocopheryl quinone (19)之結構鑑定 82
第二十節、daucosterol (20)之結構鑑定 85
第二十一節、(22E, 24S)-stigmast-4,22-dien-3-one (21)之結構鑑定 88
第二十二節、-sitostenone (22)之結構鑑定 91
第二十三節、mixture of -sitosterol (23) & stigmasterol (24)之結構鑑定 94
第二十四節、mixture of -hydroxysitosterol (25) & (22E, 24S)-stigmast-5,22-dien-3-diol (26) 之結構鑑定 98
第二十五節、 cycloartan-24(30)-en-3-ol (27)之結構鑑定 102
第二十六節、 trans-phytol (28)之結構鑑定 105
第二十七節、 dehydrovomifoliol (29) 之結構鑑定 108
第二十八節、 (-)-loliolide (30) 之結構鑑定 111
第六章、細胞毒活性之測定 114
第七章、結果與討論 117
第八章、實驗部份 119
第一節、 儀器與材料 119
第一節、 萃取與分離 122
第二節、 化合物數據 127
第九章、參考文獻 138
1.Li HL, Huang TC. Apocynaceae in Flora of Taiwan, 2nd ed., Editorial Committee of the Flora of Taiwan, Taipei, Taiwan, 1998; Vol. Ⅳ, pp. 192-219.
2.Health Promotion Administration MoHaW, Annual Statistics Information Service.
3.Sasaki K, Hirata Y. The alkaloids of Anodendron affine Druce. Tetrahedron 1970; 26: 2119-26.
4.Shima K, Hisada S, Inagaki I. Studies on the constituents of Anodendron affine Durce. IV. : Isolation of kaempferol, astragalin and dambonitol from leaves. Yakugaku Zasshi 1972; 92: 507-9.
5.Abe F, Yamauchi T. Affinoside A and companion glycosides from the stem and bark of Anodendron affine (Anodendron. II). Chem Pharm Bull 1982; 30: 1183-93.
6.Abe F, Yamauchi T. Affinosides M and K, cardenolide glycosides from the seeds of Anodendron affine (Anodendron. V). Chem Pharm Bull 1985; 33: 847-52.
7.Fukuyama Y, Ochi M, Kasai H, Kodama M. Insect growth inhibitory cardenolide glycosides from Anodendron affine. Phytochemistry 1993; 32: 297-301.
8.Abe F, Yamauchi T, Fujioka T, Mihashi K. Minor cardenolide glycosides and a cardenolide from the leaves of Anodendron affine (Anodendron. VIII). Chem Pharm Bull 1986; 34: 2774-9.
9.Abe F, Yamauchi T. Affinosides La-Lb, major cardenolide glycosides from the leaves of Anodendron affine (Anodendron. VII). Chem Pharm Bull 1985; 33: 3662-9.
10.Abe F, Yamauchi T. Structures of affinogenin C and affinogenins D-I-D-V from Anodendron affine (Anodendron. III). Chem Pharm Bull 1982; 30: 3897-905.
11.Abe F, Yamauchi T. Reinvestigation of cardenolides from fresh leaves of Anodendron affine. Phytochemistry 1993; 33: 457-9.
12.Hanada R, Abe F, Mōri Y, Yamauchi T. Reinvestigation of cardenolide glycosides from seeds of Anodendron affine. Phytochemistry 1992; 31: 3547-51.
13.Polonia J, Jäger H, v. Euw J, Reichstein T. Die Cardenolide von Anodendron paniculatum (Roxb.) A. DC. Helv Chim Acta 1970; 53: 1253-71.
14.Abe F, Yamauchi T. Glycosyl nervogenic acid esters of carbohydrates from Anodendron affine (Anodendron. VI). Chem Pharm Bull 1985; 33: 2712-20.
15.Hanada R, Abe F, Mori Y, Yamauchi T. Anodendrosins J and K, two sucrose bisglycosylnervogenates from the seeds of Anodendron affine. (Studies on Anodendron. IX). Chem Pharm Bull 1992; 40: 2292-4.
16.Hanada R, Abe F, Mori Y, Yamauchi T. Oxygenated anodendrosins from the seeds of Anodendron affine. (Studies on Anodendron. XI). Chem Pharm Bull 1992; 40: 2913-6.
17.Qin XJ, Lunga PK, Zhao YL, Li JL, Yang XW, Liu YP, Luo XD. Antibacterial prenylbenzoic acid derivatives from Anodendron formicinum. Fitoterapia 2014; 92: 238-43.
18.Yamauchi T, Abe F, Nishishita Y, Okabe H, Shima K, Nishibe S. Pregnanes of Anodendron affine. Phytochemistry 1979; 18: 1240-1.
19.Inagaki I, Hisada S, Shima K. Studies on the constituents of Anodendron affine Durce. I. : Isolation of wogonin, dambonitol, sucrose and some other components from stems. Yakugaku Zasshi 1971; 91: 1133-6.
20.Chang CW, Chang HS, Cheng MJ, Peng CF, Chen IS. Identification of five new minor constituents from the whole plant of Amischotolype hispida. Helv Chim Acta 2015; 98: 347-58.
21.Sribuhom T, Sriphana U, Thongsri Y, Yenjai C. Chemical constituents from the stems of Alyxia schlechteri. Phytochem Lett 2015; 11: 80-4.
22.Baderschneider B, Winterhalter P. Isolation and characterization of novel benzoates, cinnamates, flavonoids, and lignans from riesling wine and screening for antioxidant activity. J Agric Food Chem 2001; 49: 2788-98.
23.Yang YL, Zhou H, Du G, Feng KN, Feng T, Fu XL, Liu JK, Zeng Y. A monooxygenase from Boreostereum vibrans catalyzes oxidative decarboxylation in a divergent vibralactone biosynthesis pathway. Angew Chem Int Ed. 2016; 55: 5463-6.
24.Hu HB, Jian YF, Cao H, Zheng XD. Phenolic compounds from Elsholtzia bodinieri Van''t. J Chin Chem Soc 2007; 54: 1189-94.
25.Kang YF, Liu CM, Kao CL, Chen CY. Antioxidant and anticancer constituents from the leaves of Liriodendron tulipifera. Molecules 2014; 19: 4234-45.
26.Tummatorn J, Khorphueng P, Petsom A, Muangsin N, Chaichit N, Roengsumran S. Convenient synthetic route to a dehydrorotenoid via selective intramolecular aldol condensation of 1,2-diaryl diketone. Tetrahedron 2007; 63: 11878-85.
27.Yuldashev MP, Batirov ÉK, Nigmatullaev A, Malikov VM. Structures of two new flavonoids from Scutellaria ramosissima. Chem Nat Compd 1994; 30: 324-7.
28.Zhao H, Nie T, Guo H, Li J, Bai H. Two new neolignan glycosides from Pittosporum glabratum Lindl. Phytochem Lett 2012; 5: 240-3.
29.Alagiri K, Prabhu KR. Efficient synthesis of carbonyl compounds: oxidation of azides and alcohols catalyzed by vanadium pentoxide in water using tert-butylhydroperoxide. Tetrahedron 2011; 67: 8544-51.
30.Chiang CC, Cheng MJ, Huang HY, Chang HS, Wang CJ, Chen IS. Prenyl coumarins from Fatoua pilosa. J Nat Prod 2010; 73: 1718-22.
31.Ray AB, Chattopadhyay SK, Konno C, Hikino H. Structure of cleomiscosin A, a coumarino-lignoid of Cleome viscosa seeds. Tetrahedron Lett 1980; 21: 4477-80.
32.Panjchayupakaranant P, Noguchi H, De-Eknamkul W, Sankawa U. Naphthoquinones and coumarins from Impatiens balsamina root cultures. Phytochemistry 1995;40: 1141-3.
33.Abdullah N, Salim F, Ahmad R. Chemical constituents of Malaysian Uncaria cordata var. ferruginea and their in vitro α-glucosidase inhibitory activities. Molecules 2016; 21: 525.
34.Fonseca SF, Nielsen LT, Rúveda EA. Lignans of Araucaria angustifolia and 13C NMR analysis of some phenyltetralin lignans. Phytochemistry 1979; 18: 1703-8.
35.Sribuhom T, Sriphana U, Thongsri Y, Yenjai C. Chemical constituents from the stems of Alyxia schlechteri. Phytochem Lett 2015; 11: 80-4.
36.Yamauchi S, Ina T, Kirikihira T, Masuda T. Synthesis and antioxidant activity of oxygenated furofuran lignans. Biosci Biotechnol Biochem 2004; 68: 183-92.
37.Zou GA, Wang Y, Zou ZM, Chen S. Lignans from stems of Croton caudatus var. tomentosus. Chem Nat Compd 2013; 49: 93-4.
38.Miyazawa M, Yamada T, Okuno Y, Utsunomiya H, Inada K-i, Tanaka H, Tatematsu M. Inhibition of Helicobacter pylori motility by (+)-syringaresinol from unripe Japanese apricot. Biol Pharm Bull 2006; 29: 172-3.
39.Xie LH, Akao T, Hamasaki K, Deyama T, Hattori M. Biotransformation of pinoresinol diglucoside to mammalian lignans by human intestinal microflora, and isolation of Enterococcus faecalis strain PDG-1 responsible for the transformation of (+)-pinoresinol to (+)-lariciresinol. Chem Pharm Bull 2003; 51: 508-15.
40.Li YC, Kuo YH. Four new compounds, ficusal, ficusesquilignans A, B, and ficusolide diacetate from the heartwood of Ficus microcarpa. Chem Pharm Bull 2000; 48: 1862-5.
41.Jang SW, Suh WS, Kim CS, Kim KH, Lee KR. A new phenolic glycoside from Spiraea prunifolia var. simpliciflora twigs. Arch Pharmacal Res 2015; 38: 1943-51.
42.Xu JJ, Tan NH. New Lignans from Jatropha curcas Linn. Z Naturforsch B: Chem Sci 2012; 67: 176-80.
43.Wu TS, Yang CC, Wu PL, Liu LK. A quinol and steroids from the leaves and stems of Rhinacanthus nasutus. Phytochemistry 1995; 40: 1247-9.
44.Luo JR, Jiang HE, Zhao YX, Zhou J, Qian JF. Components of the heartwood of Populus euphratica from an ancient tomb. Chem Nat Compd 2008; 44: 6-9.
45.De Pascual Teresa L, Urones JG, Sánchez Marcos I, Ferreras JF, Lithgow Bertelloni AM, Barcala PB. Diterpenoids from Nepeta tuberosa subsp. reticulata. Phytochemistry 1987; 26: 1481-5.
46.Chang MH, Wang GJ, Kuo YH, Lee CK. The low polar constituents from Bidens pilosa L. var. minor (Blume) Sherff. J Chin Chem Soc 2000; 47: 1131-6.
47.Lendl A, Werner I, Glasl S, Kletter C, Mucaji P, Presser A, Reznicek G, Jurenitsch J, Taylor DW. Phenolic and terpenoid compounds from Chione venosa (Sw.) Urban var. venosa (Bois Bandé). Phytochemistry 2005; 66: 2381-7.
48.Ganenko TV, Khamidullina EA, Medvedeva SA. Chemistry of Pinus sylvestris cones. Chem Nat Compd 2006; 42: 612-.
49.Barrero AF, Sanchez JF, Alvarez-Manzaneda EJ, Dorado MM, Haidour A. Terpenoids and sterols from the wood of Abies pinsapo. Phytochemistry 1993; 32: 1261-5.
50.Wang QY, Cui GX, Wu JC, Chen YG. Steroids from Trigonostemon heterophyllus. Chem Nat Compd 2015; 51: 1196-8.
51.Grishko VV, Nogovitsina EM, Ivshina IB. Optimization of conditions for biocatalytic production of stigmast-4-en-3-one. Chem Nat Compd 2012; 48: 432-5.
52.Olennikov DN, Chirikova NK, Tankhaeva LM. Chemical study of Lophanthus chinensis. Chem Nat Compd 2010; 46: 301-2.
53.Xu S, Shang MY, Liu GX, Xu F, Wang X, Shou CC, Cai SQ. Chemical constituents from the rhizomes of Smilax glabra and their antimicrobial activity. Molecules 2013; 18: 5265-87.
54.Zhang X, Geoffroy P, Miesch M, Julien-David D, Raul F, Aoudé-Werner D, Marchioni E. Gram-scale chromatographic purification of β-sitosterol: Synthesis and characterization of β-sitosterol oxides. Steroids 2005; 70: 886-95.
55.Achenbach H, Benirschke G. Joannesialactone and other compounds from Joannesia princeps. Phytochemistry 1997; 45: 149-57.
56.Özipek M, Dönmez AA, Çalış İ, Brun R, Rüedi P, Tasdemir D. Leishmanicidal cycloartane-type triterpene glycosides from Astragalus oleifolius. Phytochemistry 2005; 66: 1168-73.
57.Kolak U, Topçu G, Birteksöz S, Ötük G, Ulubelen A. Terpenoids and steroids from the roots of Salvia blephaochlaena. Turk J Chem 2005; 29: 177-86.
58.Sims JJ, Pettus JA. Isolation of free cis and trans-phytol from the red alga Gracilaria andersoniana. Phytochemistry 1976; 15: 1076-7.
59.Tsai IL, Jeng YF, Duh CY, Chen IS. Cytotoxic constituents from the leaves of Litsea akoensis. Chin Pharm J 2001; 53: 291-301.
60.Kato T, Tsunakawa M, Sasaki N, Aizawa H, Fujita K, Kitahara Y, Takahashi N. Growth and germination inhibitors in rice husks. Phytochemistry 1977; 16: 45-8.
61.Mori K, Khlebnikov V. Carotenoids and degraded carotenoids, VIII – Synthesis of (+)-dihydroactinidiolide, (+)- and (−)-actinidiolide, (+)- and (−)-loliolide as well as (+)- and (−)-epiloliolide. Liebigs Ann Chem 1993; 1993: 77-82.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊