跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/07 19:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳英智
研究生(外文):Ying-Jr Chen
論文名稱:探討阿魏酸對甲醛及反式-2,4-癸二烯醛誘發肺部上皮細胞毒性之作用
論文名稱(外文):To investigate the effect of ferulic acid on formaldehyde and trans, trans-2,4-decadienal induced cellular toxicity in pulmonary epithelial cells
指導教授:彭瓊瑜彭瓊瑜引用關係
指導教授(外文):Chiung-Yu Peng
口試委員:李建宏張志欽
口試委員(外文):Chien-Hung LeeChih-Ching Chang
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:公共衛生學系職業安全衛生碩士班
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:69
中文關鍵詞:甲醛反式-24-癸二烯醛阿魏酸A549細胞株細胞存活率
外文關鍵詞:FormaldehydeTranstrans-24-decadienalFerulic acidA549 human lung epithelium cellsCell viability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:279
  • 評分評分:
  • 下載下載:50
  • 收藏至我的研究室書目清單書目收藏:0
甲醛與反式-2,4-癸二烯醛(t,t-2,4-DDE)皆為烹飪油煙中存在的物質,家中有定時烹飪以及以烹飪為主的職業皆容易暴露在此兩種物質的環境中,故有必要分析此兩種物質的毒性作用並對此做生物性反應評估。抗氧化物的攝取對於生活節奏越加緊湊與繁忙的都會人來說是一簡便能增進建康的方法,而阿魏酸已在許多研究中被證實具有抗發炎與抗自由基等功效,為具有許多優點的抗氧化物。本研究的目的為研究甲醛與t,t-2,4-DDE對人類肺部細胞的生物效應,並藉由添加阿魏酸來評估阿魏酸的抗氧化能力。本研究利用人類肺腺癌細胞株暴露甲醛與t,t-2,4-DDE,在暴露後加入阿魏酸來培養細胞,以3- (4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay與Cell counting kit - 8 (CCK-8) assay分析細胞存活率。以MTT assay的結果顯示當細胞暴露於5至50 mM濃度的甲醛持續1至4小時細胞存活率皆顯著下降,暴露50 mM濃度的甲醛持續1小時細胞存活率減少至53%,而暴露時間增加至4小時細胞存活率更減少至13%。暴露於100至400 µM的t,t-2,4-DDE達1小時細胞存活率顯著下降,於400 µM的t,t-2,4-DDE細胞存活率減少至22%,暴露時間增長到2至4小時,暴露50 µM的t,t-2,4-DDE即造成細胞存活率顯著下降,暴露於400 µM的t,t-2,4-DDE持續2小時與4小時細胞存活率分別為24%與15%。CCK-8 assay的結果顯示當暴露於濃度10至50 mM的甲醛持續1至4小時其細胞存活率有顯著地下降,暴露於50 mM的甲醛持續1小時細胞存活率減少至69%,暴露同濃度甲醛4小時細胞存活率減少至57%。暴露於100至400 µM的t,t-2,4-DDE持續1至4小時細胞存活率會顯著下降,暴露於400 µM的t,t-2,4-DDE持續1小時細胞存活率減少至35%,暴露同濃度的t,t-2,4-DDE持續4小時細胞存活率減少至23%。阿魏酸抗氧化能力實驗結果顯示,暴露甲醛後有添加阿魏酸在細胞存活率有顯著地上升,暴露1小時30 mM的甲醛細胞存活率上升23%,其餘濃度上升約10%,而暴露於t,t-2,4-DDE後添加阿魏酸測出的細胞存活率上升幅度較小,僅在暴露1小時200 µM的t,t-2,4-DDE上升12%,其餘濃度上升皆不及10%。而隨著暴露毒物時間越長,阿魏酸對暴露在較高濃度細胞的細胞存活率影響越小,暴露2小時30至50 mM的甲醛以及暴露2小時400 µM的反式-2,4-癸二烯醛細胞存活率變化均不及5%。依本研究結果推斷,阿魏酸的抗氧化力具一定的範圍,當暴露毒物的濃度越高、暴露時間越長,以致細胞存活率過低時阿魏酸的抗氧化能力就不顯著。
Formaldehyde and trans, trans-2,4-decadienal (t,t-2,4-DDE) are two common chemicals in cooking oil fumes. Besides, formaldehyde is considered as an important indicator of indoor air quality. IARC classified formaldehyde as a group 1 carcinogen in 2012. This information reveals the importance of these two aldehydes in our daily life and their toxic effect on human being. Antioxidants play an important role preventing from diseases and improving human health nowadays. Ferulic acid is one of popular antioxidants having the abilities of anti-inflammation, scavenger of free radicals, and even anti-cancer. The aims of this study were to investigate cell viabilities of A549 human lung epithelium cells exposed to formaldehyde and trans, trans-2,4-decadienal using MTT assay and CCK-8 assay and to investigate the antioxidation effect of ferulic acid on the exposed A549 cells. In MTT assay, our results showed A549 cells exposed to formaldehyde concentrations greater than 5 mM for 1 to 4 h reduced cell viabilities. The cell viabilities reduced to 53% and 13%, when A549 cells exposed to 50 mM formaldehyde for 1 h and 4 h, respectively. Exposed to t,t-2,4-DDE concentrations ≥ 100 µM for 1h and those concentrations ≥ 50 µM for 2 to 4h also reduce cell viabilities. The cell viabilities reduced to 22% and 15%, when cells exposed to 400 µM t,t-2,4-DDE for 1h and 400 µM t,t-2,4-DDE for 4h, respectively. The same phenomena were shown in the results of CCK-8 assay. The results of ferulic acid antioxidation capability test showed ferulic acid treatment may increase cell viabilities of A549 cells. Exposed to 30 mM formaldehyde for 1h, cell viability increased 23%. As for t,t-2,4 DDE exposure, ferulic acid treatment slightly improved cell viabilities of A549 cells, in which the cell viability increased 12% for cell exposed to 200 µM t,t-2,4-DDE for 1h. The antioxidation effect of ferulic acid may not obvious while cells exposed to either high concentrations or long exposure time of formaldehyde and t,t-2,4-DDE.
致謝 I
目錄 III
表目錄 VI
圖目錄 VI
摘要 VIII
Abstract X
第一章 前言 1
1-1 研究背景 1
1-2 研究目的 3
第二章 文獻探討 4
2-1 甲醛(Formaldehyde) 4
表 2-1甲醛之化學編號與別名及物理化學性質 6
2-2 反式-2,4-癸二烯醛(Trans, trans-2,4-decadienal) 7
表 2-2反式-2,4-癸二烯醛之化學編號與別名及物理化學性質 8
2-3 阿魏酸(Ferulic acid) 9
表 2-3阿魏酸之化學編號與別名及物理化學性質 11
第三章 材料與方法 12
3-1 研究架構 12
3-2實驗器材與藥品配製 13
3-3藥品配製 14
3-4細胞之培養與處理 16
3-4-1細胞介紹與培養方式 17
3-4-2細胞培養液的配製 18
3-4-3細胞之暴露處理 19
3-5暴露危害機制與生物效應指標探討 22
3-5-1 MTT assay 23
3-5-2 CCK-8 assay 25
3-6數據分析方法 26
第四章 結果與討論 27
4-1 A549細胞暴露於甲醛之生物效應 27
4-1-1以MTT assay評估A549細胞暴露甲醛之細胞存活率 27
4-1-2以CCK-8 assay評估A549細胞暴露甲醛之細胞存活率 30
4-2 A549細胞暴露於反式-2,4-癸二烯醛之生物效應 33
4-2-1以MTT assay評估A549細胞暴露tt-DDE之細胞存活率 33
4-2-2以CCK-8 assay評估A549細胞暴露tt-DDE之細胞存活率 36
4-3 阿魏酸於A549細胞暴露醛類物質後之抗氧化能力 39
4-3-1阿魏酸對A549細胞暴露甲醛後之抗氧化能力 41
4-3-2阿魏酸對A549細胞暴露tt-DDE後之抗氧化能力 45
4-3-3阿魏酸對A549細胞暴露兩種醛類物質抗氧化能力之差異 49
4-4 研究限制 50
第五章 結論與建議 51
5-1 結論 51
5-2 建議 52
參考文獻 53
1.Swenberg JA, M.B., Lu K, Rager JE, Fry RC, Starr TB., Formaldehyde carcinogenicity research: 30 years and counting for mode of action, epidemiology, and cancer risk assessment., in Toxicol Pathol. 2013.
2.IARC., Chemical Agents and Related Occupations. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Volume 100F, 2012.
3.Wu SC, Y.G., Sheu F, Mutagenicity and identification of mutagenic compounds of fumes obtained from heating peanut oil. J Food Prot., 2001.
4.Wang CK, C.L., Chang H, Yang CH, Tsai MH, Tsai HT, Lin P., Pulmonary changes induced by trans,trans-2,4-decadienal, a component of cooking oil fumes. Eur Respir J., 2010.
5.S.M.A. Kawsar, E.H., N. Nahar, Y. Ozeki, Identification and Quantification of Phenolic Acids in Macrotyloma uniflorum by Reversed Phase-HPLC. J Plant Physiol., 2008.
6.Tsao R, D.Z., Separation procedures for naturally occurring antioxidant phytochemicals. J Chromatogr B Analyt Technol Biomed Life Sci., 2004.
7.Nichenametla SN, T.T., Barney DL, Exon JH., A review of the effects and mechanisms of polyphenolics in cancer. Crit Rev Food Sci Nutr., 2006.
8.Zhang X, L.D., Jiang R, Li H, Wan J, Li H., Ferulic acid exerts antitumor activity and inhibits metastasis in breast cancer cells by regulating epithelial to mesenchymal transition. Oncol Rep., 2016.
9.Ho SS, Y.J., Chu KW, Yeung LL., Carbonyl emissions from commercial cooking sources in Hong Kong. J Air Waste Manag Assoc., 2006.
10.Heck Hd, C.M., The implausibility of leukemia induction by formaldehyde: a critical review of the biological evidence on distant-site toxicity. Regul Toxicol Pharmacol, 2004.
11.Merk O, S.G., Significance of formaldehyde-induced DNA-protein crosslinks for mutagenesis. Environ Mol Mutagen., 1998.
12.Teng S, B.K., Pourahmad J, Moridani M, Easson E, Poon R, O''Brien PJ, The formaldehyde metabolic detoxification enzyme systems and molecular cytotoxic mechanism in isolated rat hepatocytes. Chem Biol Interact., 2001.
13.Kuehner S, H.K., Speit G., Characterization of formaldehyde''s genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol., 2013.
14.Zhang BY, S.Y., Chen X, Dai J, Jiang ZF, Li N, Zhang ZB., Protective effect of curcumin against formaldehyde-induced genotoxicity in A549 Cell Lines. J Appl Toxicol., 2013.
15.Saito Y, N.K., Yoshida Y, Niki E., Cytotoxic effect of formaldehyde with free radicals via increment of cellular reactive oxygen species. Toxicology., 2005.
16.Arici S, K.S., Dogru S, Cayli S, Arici A, Suren M, Karaman T, Kaya Z., Central nervous system toxicity after acute oral formaldehyde exposure in rabbits: An experimental study. Hum Exp Toxicol., 2014.
17.Salonen H, P.A., Lappalainen S, Riuttala H, Tuomi T, Pasanen P, Back B, Reijula K., Volatile organic compounds and formaldehyde as explaining factors for sensory irritation in office environments. J Occup Environ Hyg., 2009.
18.Costa S, G.-L.J., Coelho M, Coelho P, Costa C, Silva S, Porto B, Laffon B, Teixeira JP., Cytogenetic and immunological effects associated with occupational formaldehyde exposure. J Toxicol Environ Health A., 2013.
19.Pan KL, H.W., Hsu MH, Lee HL, Liu HJ, Cheng CW, Tsai MH, Shen MY, Lin P., Identification of trans,trans-2,4-decadienal metabolites in mouse and human cells using liquid chromatography-mass spectrometry. Chem Res Toxicol., 2014.
20.Frankel, E.N., Secondary products of lipid oxidation. Chem Phys Lipids., 1987.
21.Wu SC, Y.G., Effects of cooking oil fumes on the genotoxicity and oxidative stress in human lung carcinoma (A-549) cells. Toxicol In Vitro., 2004.
22.Chang LW, L.W., Lin P., Trans, trans-2,4-decadienal, a product found in cooking oil fumes, induces cell proliferation and cytokine production due to reactive oxygen species in human bronchial epithelial cells. Toxicol Sci., 2005.
23.Srinivasan M, S.A., Menon VP., Ferulic Acid: therapeutic potential through its antioxidant property. J Clin Biochem Nutr., 2007.
24.Buanafina MM, L.T., Hauck B, Dalton S, Timms-Taravella E, Morris P., Targeting expression of a fungal ferulic acid esterase to the apoplast, endoplasmic reticulum or golgi can disrupt feruloylation of the growing cell wall and increase the biodegradability of tall fescue (Festuca arundinacea). Plant Biotechnol J., 2010.
25.Roy D. Hartley, E.C.J., Phenolic components and degradability of cell walls of grass and legume species. Phytochemistry., 1977.
26.Tilay A, B.M., Kishenkumar J, Annapure U., Preparation of ferulic acid from agricultural wastes: its improved extraction and purification. J Agric Food Chem., 2008.
27.Janicke B, H.C., Krogh M, Onning G, Akesson B, Cirenajwis HM, Oredsson SM., The antiproliferative effect of dietary fiber phenolic compounds ferulic acid and p-coumaric acid on the cell cycle of Caco-2 cells. Nutr Cancer., 2011.
28.Stagos D, K.G., Magiatis P, Mitaku S, Anagnostopoulos K, Kouretas D., Effects of plant phenolics and grape extracts from Greek varieties of Vitis vinifera on Mitomycin C and topoisomerase I-induced nicking of DNA. Int J Mol Med., 2005.
29.Fong Y, T.C., Hu HT, Fang HY, Chen BH, Wu CY, Yuan SS, Wang HD, Chen YC, Teng YN, Chiu CC., Inhibitory effect of trans-ferulic acid on proliferation and migration of human lung cancer cells accompanied with increased endogenous reactive oxygen species and β-catenin instability. Chin Med., 2016.
30.Das U, M.K., Sinha M, Datta S, Das DK, Chakraborty A, Ghosh M, Saha KD, Dey S., Role of ferulic acid in the amelioration of ionizing radiation induced inflammation: a murine model. PLoS One., 2014.
31.Manikandan R, B.M., Thiagarajan R, Pandi M, Arulvasu C, Prabhu NM, Saravanan R, Esakkirajan M, Palanisamy S, Dhanasekaran G, Nisha RG, Devi K, Latha M., Ameliorative effect of ferulic acid against renal injuries mediated by nuclear factor-kappaB during glycerol-induced nephrotoxicity in Wistar rats. Ren Fail., 2014.
32.Panneerselvam L, S.K., Arumugam A, Senapathy JG., Ferulic acid modulates fluoride-induced oxidative hepatotoxicity in male Wistar rats. Biol Trace Elem Res., 2013.
33.Xiaoping Yuan, J.W., Huiyuan Yao, Antioxidant activity of feruloylated oligosaccharides from wheat bran. Food Chem, 2005.
34.Ramar M, M.B., Raman T, Priyadarsini A, Palanisamy S, Velayudam M, Munusamy A, Marimuthu Prabhu N, Vaseeharan B., Protective effect of ferulic acid and resveratrol against alloxan-induced diabetes in mice. Eur J Pharmacol., 2012.
35.Lo KY, Z.Y., Tsai HF, Sun YS., Effects of shear stresses and antioxidant concentrations on the production of reactive oxygen species in lung cancer cells. Biomicrofluidics., 2013.
36.Nasr Bouzaiene N, K.J.S., Kovacic H, Chekir-Ghedira L, Ghedira K, Luis J, The effects of caffeic, coumaric and ferulic acids on proliferation, superoxide production, adhesion and migration of human tumor cells in vitro. Eur J Pharmacol, 2015.
37.Lim SK, C.H., Park MJ, Kim DI, Kim JC, Kim GY, Jeong SY, Rodionov RN, Han HJ, Yoon KC, Park SH., The ER stress-mediated decrease in DDAH1 expression is involved in formaldehyde-induced apoptosis in lung epithelial cells. Food Chem Toxicol., 2013.
38.Foster KA, O.C., Mayer MM, Avery ML, Audus KL., Characterization of the A549 cell line as a type II pulmonary epithelial cell model for drug metabolism. Exp Cell Res., 1998.
39.Persoz C, A.S., Leleu C, Momas I, Seta N., An in vitro model to evaluate the inflammatory response after gaseous formaldehyde exposure of lung epithelial cells. Toxicol Lett., 2010.
40.Steinritz D, M.N., Pohl C, Papritz M, Stenger B, Schmidt A, Kirkpatrick CJ, Thiermann H, Vogel R, Hoffmann S, Aufderheide M., Use of the Cultex® Radial Flow System as an in vitro exposure method to assess acute pulmonary toxicity of fine dusts and nanoparticles with special focus on the intra- and inter-laboratory reproducibility. Chem Biol Interact., 2013.
41.Tang T, G.R., Könczöl M, Modest C, Armbruster B, Mersch-Sundermann V., Investigations on cytotoxic and genotoxic effects of laser printer emissions in human epithelial A549 lung cells using an air/liquid exposure system. Environ Mol Mutagen., 2012.
42.Frei, M., Cell Viability and Proliferation. Biofile, 2010.
43.T., M., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods., 1983.
44.Masood F, C.P., Yasin T, Hasan F, Ahmad B, Hameed A., Synthesis of poly-(3-hydroxybutyrate-co-12 mol % 3-hydroxyvalerate) by Bacillus cereus FB11: its characterization and application as a drug carrier. J Mater Sci Mater Med., 2013.
45.Tominaga H, I.M., Ohseto F, Sasamoto K, Hamamoto T, Suzuki K, Watanabe M A water-soluble tetrazolium salt useful for colorimetric cell viability assay. Anal. Commun., 1999.
46.Fatisson J, Q.I., Wilkinson KJ, Tufenkji N., Physicochemical characterization of engineered nanoparticles under physiological conditions: effect of culture media components and particle surface coating. Colloids Surf B Biointerfaces., 2012.
47.Tyihák E, B.J., Timár F, Rácz G, Szende B., Formaldehyde promotes and inhibits the proliferation of cultured tumour and endothelial cells. Cell Prolif., 2001.
48.Lin P, L.H., Cheng HI, Chen CY, Tsai MH, Liu HJ., Metabolomic profiling of mice urine and serum associated with trans-trans 2, 4-decadienal induced lung lesions by liquid chromatography-mass spectrometry. Anal Bioanal Chem., 2014.
49.Lin PP, Y.M., Liao PC, Wu HY, Chang LW, Tsai HT, Tyan YC., Proteomic analysis of proteins associated with tt-DDE induced toxicity in BEAS-2B cells. Biochem Biophys Res Commun., 2008.
50.Peng CC, C.C., Wang HE, Chang CH, Chen KC, Chou KY, Peng RY., Cytotoxicity of ferulic Acid on T24 cell line differentiated by different microenvironments. Biomed Res Int., 2013.
51.Hsieh CL, P.C., Cheng YM, Lin LY, Ker YB, Chang CH, Chen KC, Peng RY., Quercetin and ferulic acid aggravate renal carcinoma in long-term diabetic victims. J Agric Food Chem., 2010.
52.Fahrioğlu U, D.Y., Elmas L, Seçme M., Ferulic acid decreases cell viability and colony formation while inhibiting migration of MIA PaCa-2 human pancreatic cancer cells in vitro. Gene., 2016.
53.Pluemsamran T, O.T., Panich U., Caffeic acid and ferulic acid inhibit UVA-induced matrix metalloproteinase-1 through regulation of antioxidant defense system in keratinocyte HaCaT cells. Photochem Photobiol., 2012.
54.Tsai CM, Y.G., Sun FM, Yang SF, Weng CJ., Assessment of the anti-invasion potential and mechanism of select cinnamic acid derivatives on human lung adenocarcinoma cells. Mol Pharm., 2013.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top