跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/15 14:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃翊媜
研究生(外文):Yi-Chen Huang
論文名稱:錳鎳氧化物薄膜電沉積溫度對電容行為的影響
論文名稱(外文):Effect of electro-deposited temperature of manganese-nickel oxide films on the capacitive behaviors
指導教授:陳龍泉陳龍泉引用關係
指導教授(外文):Lung-Chuan Chen
口試委員:蔡明暸許旭東蔡福人
口試委員(外文):Ming-Liao TsaiHsu, Shih-TongTsai, Fu-Ren
口試日期:2017-07-11
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:108
中文關鍵詞:電容氧化錳電沉積不鏽鋼
外文關鍵詞:capacitancemanganese oxidenickelelectrodepositionstainless steel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:251
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本文利用醋酸錳、醋酸鎳於硫酸鈉電解液中以循環伏安陽極沉積方式在不鏽鋼片上沉積鎳錳氧化物薄膜,探討循環伏安時電鍍液溫度對薄膜物理化學性質及電容行為的影響。薄膜上的鎳錳氧化物並沒有X光繞射(XRD)訊號,而刮除的粉末有birnessite的MnO2(δ-MnO2)微奈米晶粒結構,但並沒有氧化鎳或氫氧化鎳的XRD訊號。氮氣等溫吸脫附實驗指出30℃、50℃、及70℃等3個鍍液溫度製備的樣品(以下簡稱 A30、A50、A70))粉末均顯示第Ⅳ型的吸脫附曲線及H2遲滯行為,指出樣品具有柱狀或細頸且寬體(類似墨水瓶)之中孔結構。0℃製備的樣品(以下簡稱A00)顯示不同型態的吸附等溫線,且以微孔結構為主。4個樣品的比表面積關係為A30>A70>A50>A00。當鍍液溫度由0℃增加至70℃時,薄膜上鎳/(鎳+錳)的原子比例由18.2%降低至9.7%。低溫時,薄膜電沉積速率慢,且有較高濃度鎳核種,薄膜表面為平整結構,隨著溫度升高,A70薄膜為顆粒狀。高倍電子顯微鏡分析指出A00薄膜的微結構為互相纏繞的蟲狀外觀,隨著溫度增加,蟲狀結構增長形成互相連接的桿狀結構,且因為溫度升高,多孔結構更為明顯。70℃製備的純氧化錳呈現平整的表面型態與A70樣品相異。4個測試樣品的比電容關係為A70 > A50 > A30 > A00,其中A70樣品因適當的孔隙結構與比表面積,以及適當的鎳/(鎳+錳)比例(9.7%),因此呈現最大的比電容及最大的截止頻率,顯示電解質易於擴散進入薄膜內部。A00薄膜因為以微孔結構為主,表現型態類似非孔隙(nonporous)物質,因此比電容最小。A70樣品在0.1V/s的掃描速率以下,循環伏安曲線近似矩形外觀,且電流與掃描速率的開方呈現線性關係,顯示良好的可逆性性質。A70樣品在電壓高達1.4V( vs Ag/AgCl)時仍沒有可察覺的氧化反應發生,顯示鎳錳氧化物具有相當高的穩定性。A70樣品經過1000次0.10V/s的循環伏安後,比電容增加約6.4%,推測其原因為重複充放電或循環掃描的過程中,電極薄膜的結構,型態、或是化學組成產生變化,使電極表面的電化學反應性提升、比表面積增加,或是孔隙結構改變等所致。若以理論計算的電極負載量為基礎,本系統的比電容達700F/g以上。
In this paper, nickel manganese oxide (NMO) films were deposited on the stainless steel (SS) sheets by anodic deposition method using manganese acetate and nickel acetate in sodium sulfate electrolyte through cyclic-voltammetric technique. The effects of plating solution temperature on the physical and chemical properties and capacitive behavior of the electrodeposited films were investigated. The NMO film on the SS sheet exhibits no X-ray diffraction (XRD) pattern, while the scraped powder from the NMO film indicates a micro-nanocrystalline grain structure of birnessite MnO2 (δ-MnO2).The samples A30, A50, and A70 prepared in the plating solution temperature of 0, 30, and 50℃, respectively, demonstrate the type Ⅳadsorption-desorption isotherms and H2 hystereses, indicating that these samples possess mesoporous structures similar to columnar or thin necks and wide bodies.While the A00 sample prepared at 0℃ of plating solution is dominated by microporous structure. The specific surface area descends in order of A30 > A70 > A50 > A00. As the temperature of plating solution raises from 0℃ to 70℃, the atomic ratio of nickel to nickel and manganese (Ni/(Ni+Mn)) declines from 18.2% to 9.7%. In addition to low temperature effect, A00 sample grows very slowly as a result of high hetero-nuclei of nickel component, causing the samples with smooth appearance. In contrast, the A70 sample reveals a granular and coarse surface.
High-magnified electron microscope indicates the sample prepared at low temperature is composed with closely packed and intertwined worm-like structures, which are transformed to curved rods with high aspect ratio as the temperature increases. The 70℃-electrodeposited pure manganese oxide films display uniform and smooth exterior, which is apart from that of A70 samples.
The specific capacitances of the four test samples are in the descending order of A70>A50 >A30 >A00, where the A70 sample has the largest specific capacitance due to the appropriate morphology, pore structure, and nickel content. A70 samples also illustrate the highest knee frequency among the tested samples, indicating the most accessible of electrolyte penetrated into the film structures. The A00 sample behaves like a nonporous film and generates the least capacitance which is inhered from the characteristic of microporous structure. The cyclic-voltammetric curves of A70 samples are close to rectangle and the current shows linear dependence with the square root of scan rate, implying a good reversible faradic redox reaction of the pseudocapacitor. A70 samples show strong stabilization against oxidized reactions up to above 1.4 V (vs Ag/AgCl) of the applied potential. The capacitance of A70 sample increase by 6.4% over 1000 cycles at 0.1V/s, which is probably owing to the changes of morphology, pore structure, or chemical component of the electrode films during cycling. The specific capacitance based on the theoretical deposited weigh of manganese oxide reaches 700F/g for the A70 sample.

摘要 i
Abstract iii
致謝 v
目錄 vi
圖目錄 ix
表目錄 xiii
第一章 緒論 1
1.1 前言 1
1.2 儲能裝置的特性 1
1.3 研究動機 3
第二章 實驗原理與文獻回顧 10
2.1 電化學電容器儲電原理 10
2.1.1 電雙層電容器 10
2.1.2 擬電容器 12
2.2 電化學電容器的組態 13
2.3 電容器特性評估 13
2.3.1 循環伏安法 15
2.3.2 計時電位法 16
2.3.3 電化學阻抗分析 17
2.4 超級電容器的電極材料 19
2.4.1 碳材電極 19
2.4.2 導電高分子 22
2.4.3 過渡金屬氧化物/氫氧化物 24
2.4.4 含氧化錳複合材料 28
第三章 實驗步驟與研究方法 51
3.1 研究架構 51
3.2 藥品及儀器 52
3.2.1 藥品 52
3.2.2 器材 53
3.3 錳鎳氧化物薄膜製備 54
3.4 物性測試 55
3.4.1 掃描式電子顯微鏡分析 55
3.4.2 Raman光譜分析 55
3.4.3 比表面積分析儀 56
3.4.4 X光繞射分析(X-ray Diffraction, XRD) 56
3.5 電化學特性 56
3.5.1 電容分析 56
3.5.2 阻抗分析 57
第四章 結果與討論 58
4.1 電沉積鎳錳氧化物(NMO)薄膜的電壓電流關係 58
4.2 不同電壓範圍沉積 NMO的物性分析 63
4.2.1 電子顯微鏡分析 63
4.2.2 能量分散X光譜(EDS)分析 68
4.2.3 X光繞射(XRD)分析 70
4.2.4 紅外線光譜分析 72
4.2.5 比表面積及孔徑分析 74
4.3 電化學特性分析 78
4.3.1 電壓窗範圍 78
4.3.2 循環伏安比電容分析 80
4.3.3 定電流充放電 85
4.3.4 電化學阻抗分析 90
4.4 循環穩定性分析 96
第五章 結論與建議 103
5.1 結論 103
5.2 建議 104
第六章 參考文獻 105
[1] R. Ko¨tz, M. Carlen, Electrochimica Acta 45 (2000) 2483–2498.
[2] H.D. Abruña, Y. Kiya, J.C. Henderson, Physics Today 61 (2008) 43-47.
[3] Zhang Jintao, “Transition-metal-oxide-based nanostructures as supercapacitor electrodes”, Ph.D Thesis, National University of Singapore, 2012.
[4] 教育部儲能科技人才培育資源中心,超高電容器的製作組裝及量測,2013。
[5] K.R. Prasad, N. Miura, Electrochemistry Communications 6 (2004) 1004–1008.
[6] J.P. Zheng, P.J. Cygan, T.R. Jow, J. Electrochem. Soc. 142 (1995) 2699-2703.*
[7] H. Zhou, X. Zou, Y. Zhang, Electrochimica Acta 192 (2016) 259–267.
[8] P. R. Jadhav et al., Electrochimica Acta, 176, 523-532, 2015.
[9] W.F. Wei, et al., Chem. Soc. Rev., 40, 1697-1721, 2011.
[10] Z.M. Hu, et al., Nano Energy, 11, 226-234, 2015.
[11] Rusi, S.R. Majid, Electrochimica Acta 138 (2014)1-8.
[12] Rusi, S.R. Majid, Electrochimica Acta 175 (2015) 193–201
[13] M.H. Tahmasebi, K. Raeissi, M.A. Golozar, A. Vicenzo, M. Hashempour, M. Bestetti, Electrochimica Acta 190 (2016) 636–647.
[14] M.H. Tahmasebi, A. Vicenzo, M. Hashempour, M. Bestetti, M.A. Golozar, K. Raeissi, Electrochimica Acta 206 (2016) 143–154.
[15] T. Nguyen, M. Boudard, L. Rapenne, M.J. Carmezimac, M.F. Montemora, J. Mater. Chem. A, 2015, 3, 10875–10882.
[16] E.-H. Liu, W. Li, J. Li, X.-Y. Meng, R. Ding, S.-T. Tan, Materials Research Bulletin 44 (2009) 1122–1126
[17] 張仍奎,”超高電容器錳氧化物電極之電化學製備法、材料特性以及擬電容行為”,國立成功大學博士論文,2005,台南。
[18] J. Huang, R. Qiao, G. Feng, B.C. Sumpter, V. Meunier, “Modern Theories of Carbon-based Elemental Capacitors” (chap.5 ) in the book of “Supercapacitors” edited by Francois Beguin and Zlzbieto Frqckowiak, Wiley-VCH, 2013, Weinheim, Germany.
[19] G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev., 2012, 41, 797–828.
[20] J. P. Zheng, J. Huang and T. R. Jow, J. Electrochem. Soc., 1997,144, 2026.
[21] E. Conway, Electrochemical Super Capacitors, Kluwer-Plenum, New Yok, 1999.
[22] Y. Wang, Y. Song, Y. Xia, Chem. Soc. Rev., 2016, 45, 5925 – 5950.
[23] J. Zhang, X. S. Zhao, ChemSusChem 2012, 5, 818 – 841.
[24] P.-L. Taberna, P. Simon, “Electrochemical Techniques” (chap.3 ) in the book of “Supercapacitors” edited by Francois Beguin and Zlzbieto Frqckowiak, Wiley-VCH, 2013, Weinheim, Germany.
[25] W. Wei, X. Cui,W.Chen, D.G. Ivey, Journal of Power Sources 186 (2009) 543–550.
[26] Meryl D. Stoller and Rodney S. Ruoff, Energy Environ. Sci., 2010, 3, 1294–1301.
[27] P. L. Taberna, P. Simon, J. F. Fauvarque, Journal of The Electrochemical Society, 2003, 150, A292-A300.
[28] Prakash Ramakrishnan, Sangaraju Shanmugam, Electrochimica Acta 125 (2014) 232–240.
[29] Zaharaddeen S. Iro, C. Subramani*, S.S. Dash Int. J. Electrochem. Sci., 11 (2016) 10628 – 10643.
[30] A.G. Pandolfo, A.F. Hollenkamp, J. Power Sources, 157 (2006) 11-27.
[31] Da-Wei Wang, Feng Li, Min Liu, Gao Qing Lu, and Hui-Ming Cheng, Angew. Chem. Int. Ed. 2008, 47, 373 –376.
[32] J. Huang, B.G. Sumpter, V. Meunier, Chem. Eur. J. 2008, 14, 6614 – 6626
[33] Jian Zhi, Youfu Wang, Sheng Deng, Aiguo Hu, RSC Adv., 2014, 4, 40296-40300.
[34] A. Izadi-Najafabadi, S. Yasuda, K. Kobashi, T. Yamada, D. N. Futaba, H. Hatori, M. Yumura, S. Iijima and K. Hata, “Extracting the Full Potential of Single-Walled Carbon Nanotubes as Durable Supercapacitor Electrodes Operable at 4 V with High Power and Energy Density,” Advanced Materials, Vol. 22, No. 35, 2010, pp. E235- E241. doi:10.1002/adma.200904349
[35] A. K. GEIM AND K. S. NOVOSELOV, nature materials 2007, 6 , 183-191.
[36] Yanwu Zhu, Shanthi Murali, Meryl D. Stoller, K. J. Ganesh, Weiwei Cai, Paulo J. Ferreira,Adam Pirkle, Robert M. Wallace, Katie A. Cychosz, Matthias Thommes, Dong Su,Eric A. Stach, Rodney S. Ruoff, Science 2011, 332 (6037), 1537-1541.
[37] Jun Yan, Junpeng Liu, Zhuangjun Fan, Tong Wei, Lijun Zhang, Carbon, 2012, 50, 2179-2188.
[38] T. Pandolfo, V. Ruiz, S. Sivakkumar, J. Nerkar, “General Properties of Electrochemical Capacitors” (chap.2) in the book of “Supercapacitors” edited by Francois Beguin and Zlzbieto Frqckowiak, Wiley-VCH, 2013, Weinheim, Germany.
[39] Chuang Peng, Jun Jin, George Z. Chen, A comparative study on electrochemical co-deposition and capacitance of composite films of conducting polymers and carbon nanotubes, Electrochimica Acta 53 (2007) 525–537.
[40] C.-C. Hu, K.-H. Chang, M.-C. Lin and Y.-T. Wu, Nano Lett.,2006, 6, 2690-2695.
[41] Hee Y. Lee and J. B. Goodenough, Journal of Solid State Chemistry 144, 220-223 (1999)
[42] Suh-Cem Pang, Marc A. Anderson, Thomas W. Chapmanb, Journal of The Electrochemical Society, 147 (2) 444-450 (2000)
[43] M. Toupin, T. Brousse and D. Be’langer, Chem. Mater., 2004, 16, 3184-3190.
[44] T. Brousse, M. Toupin, R. Dugas, L. Athouel, O. Crosnier and D. Belanger, J. Electrochem. Soc., 2006, 153, A2171–A2180.
[45] Jiaqi Yuan, Zong-Huai Liu, Shanfeng Qiao, Xiangrong Ma, Naicai Xu, Journal of Power Sources 189 (2009) 1278–1283
[46] M. Toupin, T. Brousse and D. Be’langer, Chem. Mater., 2002, 14, 3946-3952.
[47] S. F. Chin, S. C. Pang and M. A. Anderson, J. Electrochem. Soc., 2002, 149, A379-A384.
[48] S. C. Pang, M. A. Anderson and T. W. Chapman, J. Electrochem.Soc., 2000, 147, 444-450.
[49] G. Yu, L. Hu, M. Vosgueritchian, H. Wang, X. Xie, J.R. McDonough, X. Cui, Y. Cui, Z. Bao, Nano Lett. 2011, 11, 2905–2911
[50] G.Yu, L. Hu, N. Liu, H. Wang, M. Vosgueritchian, Y. Yang, Y. Cui, Z. Bao, Nano Lett. 2011, 11, 4438–4442.
[51] J. Yan, E. Khoo, A. Sumboja, P.S. Lee, ACS Nano 4 (2010) 4247-4255.
[52] M. Lia, J.P. Chenga, J. Wangb, F. Liua, X.B. Zhang, Electrochimica Acta 206 (2016) 108–115.
[53] C.-H. Wu, J.-S. Ma, C.-H. Lu, Current Applied Physics 12 (2012) 1190-1194.
[54] S. Faraji, F.N. Ani, Journal of Power Sources 263 (2014) 338-360.
[55] 汪建民,”材料分析”,1998,中國材料科學會,新竹。
[56] 王冠文,”微波輻射及鹼源對化學浴合成氧化鋅/二氧化鈦一維結構應於染料敏化太陽能電池的效應”,崑山科技大學碩士論文,2013,台南。
[57] G. Li, L. Li, J. B-Goates, B.F. Woodfield, J. Am. Chem. Soc., 2005, 127, 8659-8666.
[58] A. Di Fabio, A. Giorgi, M. Mastragostino, F. Soavi, Journal of The Electrochemical Society, 148 (8) A845-A850, 2001.
[59] B. Babakhani, D.G.Ivey, Electrochimica Acta 56 (2011) 4753-4762.
[60] T. Nguyen, M. Boudard, L. Rapenne, M.J. Carmezim, M.F. Montemor, Morphological changes and electrochemical response of mixed nickel manganese oxides as charge storage electrodes, J. Mater. Chem. A 3 (2015) 10875,
[61] W. Wei, X. Cui, W. Chen, D.G. Ivey, Electrochemical cyclability mechanism for MnO2 electrodes utilized as electrochemical supercapacitors, J. Power Sources 186 (2009) 543–550.
[62] L. Athouël, F. Moser, R. Dugas, O. Crosnier, D. Bélanger, T. Brousse, Variation of the MnO2 Birnessite Structure upon Charge/Discharge in an Electrochemical Supercapacitor Electrode in Aqueous Na2SO4 Electrolyte, J. Phys. Chem. C 112 (2008) 7270–7277.
[63] F. Ataherian, K.-T. Lee, N.-L. Wu, Long-term electrochemical behaviors of manganese oxide aqueous electrochemical capacitor under reducing potentials, Electrochim. Acta 55 (2010) 7429–7435.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊