(34.226.234.102) 您好!臺灣時間:2021/05/12 10:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳冠廷
研究生(外文):CHEN,KUAN-TING
論文名稱:氧化釕/石墨烯//活性碳非對稱超電容的製備及其電化學特性之研究
論文名稱(外文):Preparation and Electrochemical Characteristics of Asymmetric SupercapacitorsBased on Ruthenium Oxide/Graphene and Active Carbon Hybrid Electrodes  
指導教授:謝達華謝達華引用關係
指導教授(外文):HSIEH,TAR-HWA
口試委員:謝達華何國賢王怡仁
口試委員(外文):HSIEH,TAR-HWAHO,KO-SHANWANG,YI-REN
口試日期:2017-07-03
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系博碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:145
中文關鍵詞:氧化釕五氧化二鉭石墨烯活性碳浸鍍法非對稱超級電容器
外文關鍵詞:ruthenium oxidetantalum pentoxidegrapheneactive carbondippingasymmetric supercapacitor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:244
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文是以修正Hummer法與聯胺還原法,合成石墨烯(Graphene, GR),再以浸鍍法,將不同組成的三氯化釕/五氯化鉭/GR鍍液沉積於鈦基材上,經退火處理後,製備具不同組成的RuO2/GR複合電極為非對稱超級電容器(Asymmetric supercapacitor, ASC)的正極,以活化後之活性碳(AC)為負極,1 M 硫酸鈉為電解液,利用三明治構裝技術,組成RuO2/GR//AC之ASC元件。另外,RuO2/GR對稱型超級電容器(Symmetric supercapacitor, SSC)亦作進一步的討論。結果顯示,於RuO2/GR複合電極中,RuO2可均勻分散於GR層間,可避免RuO2顆粒團聚,同時亦可有效阻止GR片層的堆積。 RuO2/GR複合電極之比電容(Specific capacitance,Csp)值會隨GR添加量的增加而增加,當GR添加量至14 wt.%時,可得最高Csp值為33.74 F/g。於負極的製程中,活性碳(AC)經KOH活化後,可消除AC部份孔洞之銳角,使其多孔結構更具親水性,能較親近硫酸鈉電解質水溶液,當PVDF添加至15 wt.%時,可得最佳稠度的漿料,可均勻塗佈於Ti基材上而製成負極,所得之AC電極最高Csp值為13.94 F/g。RuO2/GR//AC ASC元件的工作電壓可達1.7 V,最高Csp值為9.74 F/g,其能量密度及功率密度分別為14.07 Wh/kg及4.65 kW/kg,經5000次充放電循環RuO2/GR//AC ASC電容保留高達94 %,較RuO2/GR SSC元件具更優異的循環穩定性。
In this study, ruthenium oxide/graphene//active carbon asymmetric supercapacitor (RuO2/GR//AC ASC) were fabricated by using sandwich assembling technique, in which titanium (Ti) foil, RuO2/GR, AC and 1 M Na2SO4 aqueous solution used as the electrode matrix, the positive electrode, the negative electrode and the electrolyte, respectively. GR was prepared by through modified Hummer’s method and hydrazine reduction, where graphite powder behaved as the precursor of synthesized GR. RuO2/GR hybrid electrodes were further prepared by dipping Ti matrix in the containing TaCl3, RuCl3 and GR bath solution (Ta/Ru mole ratio is 0.6) with different concentrations and followed by annealing treatment. AC electrode was prepared by casting method, in which Ti foil, AC/acetylene black/PVDF (Polyvinylidene difluoride) dispersed in 1-methyl-2-pyrrolidene (NMP) solvent acted as the electrode matrix and the AC paste. RuO2/GR symmetric supercapacitors (SSC) are also discussed. In the RuO2/GR hybrid electrode, RuO2 is observed homogeneous dispersed in the GR layer. Not only avoid RuO2 particles agglomeration but also effectively prevent the accumulation of GR layer. The capacitance characteristics of RuO2/GR hybrid electrodes are significantly improved by increasing the GR content. As the proved GR is 14 wt.%, reveals the highest Csp value of 33.74 F/g. In the process of negative electrode, AC activated by KOH, can effectively eliminate some of the acute angle and holes with a porous structure in nature, cause it become more hydrophilic. As the proved PVDF is 15 wt.%, the negative electrode slurry can be evenly coated on the Ti substrate, the best uniform characteristic coating layer of AC can be obtained with the highest Csp value of 13.94 F/g. The RuO2/GR//AC ASC device exhibits a capacitance of 9.74 F/g, the energy density and power density is 14.07 Wh/kg and 4.65 kW/kg, respectively, with a working voltage of 1.7 V. Compare with RuO2/GR SSC, more excellent capacitance retention of 94 % after 5000 cycles at a current density of 1 A/g is observed.
總目錄
摘要 i
Abstract iii
誌謝 v
目錄 vii
表目錄 xii
圖目錄 xiii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
第二章 文獻回顧 6
2.1 儲能元件簡介 6
2.2 超級電容器(Supercapacitor) 9
2.2.1 超級電容器之特性 9
2.2.2 超級容器之分類 12
2.3 電化學電容器電解液的種類 17
2.4 電化學電容器電極材料種類 18
2.4.1 金屬釕氧化物之簡介 21
2.5 石墨烯之簡介 27
2.6 活性碳之簡介 30
2.7 浸鍍法之簡介 31
2.8 EIS (Electrochemical impedance spectroscopy)理論 33
2.8.1 等效電路元件(Equivalent circuit elements) 37
2.8.2 常見電容器電極之等效電路模式 38
第三章 實驗程序 43
3.1 實驗相關藥品 43
3.2 儀器設備 46
3.3 實驗步驟 50
3.3.1 石墨烯之製備 50
3.3.2 鈦電極之製備 52
3.3.3 釕鍍液之製備 52
3.3.4 石墨烯釕鍍液之製備 52
3.3.5 RuO2/GR複合電極之製備 52
3.3.6 aAC之製備 54
3.3.7 aAC/PVDF電極之製備 54
3.3.8 GR電極之製備 54
3.3.9 超電容元件之製備 56
3.4 材料之分析 58
3.4.1 表面型態觀察 58
3.4.2 束縛能分析 58
3.4.3 熱穩定性分析 58
3.4.4 結晶性分析 58
3.4.5 有序化鑑定 59
3.4.6 表面性質 59
3.4.7 厚度鑑定 59
3.4.8 接觸角測定 59
3.5 RuO2/GR複合電極及aAC/PVDF電極電容特性分析 60
3.5.1 循環伏安(Cyclic voltammetry)特性 62
3.5.2 充放電測試(Chrono Potential) 63
3.5.3 阻抗頻譜測試( (Electrochemistry impedance spectroscopy, EIS) 63
3.6 元件之電容特性分析 64
3.6.1 循環伏安(Cyclic voltammetry)特性 64
3.6.2 充放電測試(Chrono Potential) 64
3.6.3 阻抗頻譜測試( (Electrochemistry impedance spectroscopy, EIS) 64
3.6.4 電容與頻率之關係測試 64
3.6.5 漏電流測試(Leakage current test) 65
3.6.6 穩定性測試 65
第四章 結果與討論 66
4.1 石墨烯表面形態 66
4.2 石墨烯之束縛能分析 67
4.3 石墨烯之熱穩定性 69
4.4 石墨烯結晶性分析 71
4.5 石墨烯之有序性的測定 72
4.6 石墨烯表面性質分析 73
4.7 石墨烯厚度鑑定 75
4.8 活性碳表面型態 76
4.9 活性碳接觸角測定 78
4.10 活性碳表面性質分析 79
4.11 RuO2/GR複合電極表面型態 81
4.12 RuO2/GR複合電極之結晶性分析 84
4.13 RuO2/GR複合電極之電容特性分析 86
4.13.1 GR添加量對RuO2/GR複合電極電容特性的影響 86
4.13.2 RuO2/GR-14複合電極電容特性分析 92
4.13.3 電解液對RuO2/GR-14複合電極CV特性分析 94
4.14 aAC/PVDF電極和GR電極之表面型態 96
4.15 aAC/PVDF和GR電極之電容特性分析 97
4.15.1 aAc和PVDF添加量對aAC/PVDF電極電容特性的影響 97
4.15.2 aAC/PVDF-15電極和GR電極電容特性分析 102
4.16 非對稱超電容元件之電容特性分析 106
4.17 非對稱超電容元件與頻率之關係 112
4.18 非對稱超電容元件之漏電流 113
4.19 非對稱超電容元件之能量儲存分析 114
第五章 結論 116
第六章 參考文獻 118

表目錄
Table 2.4 5 Specific capacitance obtained by cyclic voltammetry at various scan rates for RuO2∙xH2O. 26
Table 2.8 1 The types of equivalent circuit and impedance equation. 37
Table 4.6-2 Structural properties of the GR. 74
Table. 4.13-4 Capacitance characteristics of p-RuO2 electrode and RuO2/GR hybrid electrodes. 90
Table. 4.13-9 Capacitance characteristics of RuO2/GR-14 hybrid electrode in 1 M Na2SO4 and 1 M H2SO4 electrolyte. 95
Table 4.15-5 Capacitance characteristics of aAC/PVDF electrodes. 101
Table 4.19-1 Electrochemical characteristics of SC devices. 115

圖目錄
Fig. 1.2 1 Schematic illustration of the RuO2/GR // AC asymmetric supercapacitor. 5
Fig. 2.1 1 traditional capacitor applications. 8
Fig. 2.1 2 Equivalent circuit diagram for supercapacitor. 8
Fig. 2.2 1 Ragone plot of power density versus energy density for electrochemical energy systems.[23] 11
Fig. 2.2 2 Charge and Discharge of electric double layer capacitors.[24] 13
Fig. 2.2 3 Schematic of redox reactions based pseudocapacitance. 14
Fig. 2.2 4 Schematic of Asymmetric supercapacitor.[27] 16
Fig. 2.4 1 The capacitance performance for both carbon-based EDLC electrodes and pseudocapacitor electrodes (including transition metal oxides and conducting polymers).[39] 20
Fig. 2.4 2 (a)Hydrogen content of RuO2 ∙xH2O electrode in sulfuric acid aqueous solution, (b)CV plots of RuO2 ∙xH2O electrode. 25
Fig. 2.4 3 DTG thermographs and specific capacitance of RuO2∙xH2O electrode. 25
Fig. 2.4 4 CV Plots of RuO2 ∙xH2O and RuO2 electrodes. 26
Fig. 2.5 1 Graphene application prediction for 2012~2018. 29
Fig. 2.5 2 Quality and cost profile of graphene. [53] 29
Fig. 2.7 1 Fundamental stages of sol-gel dip-coating (the finer arrows indicate the flow of air).[58] 32
Fig. 2.8 1 Phase diagram showing the relationship between alternating current and voltage at frequency ω. 36
Fig. 2.8 2 The equivalent circuit for resistor and capacitor in series. 41
Fig. 2.8 3 The equivalent circuit for an electrode without diffusion effect. 41
Fig. 2.8 4 The equivalent circuit for an electrode with diffusion effect. 42
Fig. 3.3 1 Preparation of GR. 51
Fig. 3.3-2 Preparation of RuO2/GR electrodes. 53
Fig. 3.3 3 Preparation of aAC/PVDF electrodes. 55
Fig. 3.3 4 Fabrication of the devices. 56
Fig. 3.3 5 Package diagram of RuO2/GR//AC ASC. 57
Fig. 3.5-1 Schematic view of the 3 electrode setup.[63] 61
Fig. 3.5-2 Schematic view of the 2 electrode setup.[63] 61
Fig. 4.1 1 Surface SEM and TEM images of (a, c) GO and (b, d) GR. 66
Fig. 4.2 1 (a) XPS survey of the samples and deconvoluted C 1s spectra of (b) GO, (c) GR. 68
Fig. 4.3-1 Thermogravimetric and derivative thermogravimetic curves of GO in air atmosphere. 70
Fig. 4.3-2 Thermogravimetric and derivative thermogravimetic curves of GR in air atmosphere. 70
Fig. 4.4 1 X-Ray diffraction patterns of GO and GR (Inset: graphite). 71
Fig. 4.5 1 Raman spectra of GO and GR. 72
Fig. 4.6 1 (a) Nitrogen adsorption and desorption isotherm and (b) pore-size distribution for GR. 74
Fig. 4.7–1 (a) AFM images (b) height profile of GR. 75
Fig. 4.8-1 SEM and TEM images of (a, c) AC and (b, d) aAC. 77
Fig. 4.8-2 EDS spectrum of aAC. 77
Fig. 4.9-2 Drops' images for water on (a) AC and (b) aAC surface. 78
Fig. 4.10-1 (a) Nitrogen adsorption and desorption isotherm and (b) pore-size distribution for AC and aAC. 80
Table 4.10-2 Structural properties of the AC and aAC. 80
Fig. 4.11-1 SEM and TEM images of (a, b, e) pristine RuO2 electrode and (c, d, f) RuO2/GR hybrid electrode. 82
Fig. 4.11-2 EDS spectrum (a) and elemental mapping (b) of RuO2/GR hybrid electrode. 83
Fig. 4.12-1 X-Ray diffraction patterns of Ti electrode, p-Ta2O5, p-RuO2 electrodes and RuO2/GR hybrid electrode. 85
Fig. 4.13-1 (a) Cyclic voltammograms p-RuO2 electrode and RuO2/GR hybrid electrodes at a scan rate of 100 mV/s (b) Csp as a function of GR contents based on RuO2/GR hybrid electrodes. 88
Fig. 4.13-2 The galvanostatic charge-discharge curves of p-RuO2 electrode and RuO2/GR hybrid electrodes with current density 2 A/g at (a)1.2 V (b) 1.3 V. 89
Fig. 4.13-3 Nyquist plots of 90
Fig. 4.13-5 Surface images of RuO2/GR with various GR contents (a)14, (b)18 wt.%. 91
Fig. 4.13-6 (a) Cyclic voltammograms of RuO2/GR-14 electrode with a scan rate ranging from 10 mV/s to 1000 mV/s(b) Csp as a function of scan rate based on the CV curves. 93
Fig. 4.13-7 The galvanostatic charge-discharge curves of the RuO2/GR-14 electrode with current density ranging from 1 A/g to 32 A/g. 93
Fig. 4.13-8 Cyclic voltammograms of RuO2/GR-14 electrode with different potentials (a) 1.4 V (b) 1 V in 1 M Na2SO4 and 1 M H2SO4. 94
Fig. 4.14-1 SEM image at low and high resolution for (a, b) aAC/PVDF and (c, d) GR electrode. 96
Fig. 4.15-1 (a) Cyclic voltammograms aAC/PVDF electrodes at a scan rate of 100 mV/s (b) Csp as a function of PVDF contents based on the aAC/PVDF electrodes. 99
Fig. 4.15-2 The galvanostatic charge-discharge curves of the aAC/PVDF electrodes with current density 1 A/g. 100
Fig. 4.15-3 Nyquist plots of aAC/PVDF electrodes (Inset: high frequency region). 100
Fig. 4.15-4 Surface images of aAC/PVDF with various PVDF contents (a)15, (b)18, (c)20 wt.%. 101
Fig. 4.15-6 Cyclic voltammograms of (a) aAC/PVDF -15 and (c) GR electrode with scan rate ranging from 10 mV/s to 1000 mV/s (b, d) Csp as a function of scan rate based on the CV curves. 104
Fig. 4.15-7 The galvanostatic charge-discharge curves of the (a) aAC/PVDF-15 (b) GR electrode with current density ranging from 1 A/g to 32 A/g. 105
Fig. 4.15-8 Nyquist plots of GR electrode (Inset: high frequency region). 105
Fig. 4.16-1 The cyclic voltammetry profiles of the RuO2/GR-14 uesd as the positive electrode and aAC/PVDF-15 uesd as the negative electrode at the same scan rate of 100 mV s-1 in 1 M Na2SO4 electrolyte. 108
Fig.4.16-2 CV curves of the (a) RuO2/GR SSC、(b) RuO2/GR//AC and (c) RuO2/GR//GR ASC at 10 mV/s from the working voltage range of 1.0 V to 1.7 V. 109
Fig. 4.16-3 The galvanostatic charge-discharge curves of the RuO2/GR//AC、RuO2/GR//GR ASC and RuO2/GR SSC at (a) 1.7 V and (b) 1.4 V with current density 1 A/g. 110
Fig. 4.16-4 Nyquist plots of of the RuO2/GR//AC、RuO2/GR//GR ASC and RuO2/GR SSC (Inset: high frequency region). 110
Fig. 4.16-5 Long-term cycling stability of the RuO2/GR//AC、RuO2/GR//GR ASC and RuO2/GR SSC. 111
Fig. 4.17-1 Capacitance as a function of frequency of the RuO2/GR//AC、RuO2/GR//GR ASC and RuO2/GR SSC. 112
Fig.4.18-1 Leakage current measurement of of the RuO2/GR//AC、RuO2/GR//GR ASC and RuO2/GR SSC. 113
Fig.4.19-2 Ragone plots of RuO2/GR symmetric and RuO2/GR//AC, RuO2/GR//GR asymmetric supercapacitors (Inset: Ragone plots of electrochemical energy systems). 115







[1] M. Jana, J.S. Kumar, P. Khanra, P. Samanta, H. Koo, N.C. Murmu, T. Kuila, J. Power Sources, 303 (2016) 222-233.
[2] N. Lina, J. Tiana, Z. Shana, K. Chena, W. Liaoa, Electrochim. Acta, 99 (2013) 219.
[3] F. Gonzalez, Supercapacitor Technologies and Markets 2016(2016).
[4] 高志勇,陳耿陽,吳富其,江萬爵,賴志坤,超高電容器製程技術簡介,工業材料雜誌(2000)。
[5] C. Zhang, H. Zhou, X. Yu, D. Shan, T. Ye, Z. Huang, Y. Kuang, Royal Society of Chemistry, 4 (2014) 11197.
[6] L.Q. Fan, G.J. Liu, J.H. Wu, L. Liu, J.M. Lin, Y.L. Wei, Electrochim. Acta, 137 (2014) 26-33.
[7] B.C. Kim, H.T. Jeong, C.J. Raja, Y.R. Kim, B.B. Cho, K.H. Yu, Synth. Met., 207 (2015) 116-121.
[8] C.C. Hu, C.W. Wang, T.H. Wu, K.H Chang, Electrochim. Acta, 85 (2012) 90.
[9] S. Trasatti, G. Buzzanca, Journal of electroanalytical Chemistry and Interfacial Electrochemistry, 29 (1971) A1.
[10] D. Galizzioli, F. Tantardini, and S. Trasatti, J. Appl. Electrochem, 4 (1974) 57.
[11] J.S. Ye, H.F. Cui, X. Liu, T.M. Lim, W.D. Zhang, F.S. Sheu, Small, 5 (2005) 560.
[12] K. Wang, L. Li, X. Wu, International Journal of Electrochemical Science, 8 (2013) 6574.
[13] N. Diez, P. Díaz, P. Álvarez, Z. González, M. Granda, C. Blanco, R. Santamarí, R. Menéndez, Mater. Lett., 136 (2014) 214.
[14] J.Y. Kim, K.H. Kim, S.B. Yoon, H.K. Kim, S.H. Park, K.B. Kim, Nanoscale, 5 (2013) 6804.
[15] A. Bello, F. Barzegar, D. Momodu, J. Dangbegnon, F. Taghizadeh, M. Fabiane, N. Manyala, J. Power Sources, 273 (2015) 305-311.
[16] E. Redondo, E. Goikolea, R. Mysyk, Electrochim. Acta, (2016).
[17] M. Rajkumar, C.T. Hsu, T.H. Wu, M.G. Chen, C.C. Hu, Progress in Natural Science: Materials International, 25 (2015) 527-544.
[18] A.K. M, S. R, The journal of Physical Chemistry, 115 (2011) 14006.
[19] E. Raymundo-Pin˜ero, V. Khomenko, E. Frackowiak, F. Be´guin, Journal of The Electrochemical Society, 152 (1) A229- A235 (2005).
[20] G. Wang, L. Zhan, Zhang, Journal Chemical Society Reviews, 41 (2012) 797.
[21] J.R. Miller, A.F. Burke, The Electrochemical Society Interface, 17 (2008) 53.
[22] 方偉權,超級電容器電極薄膜材料應用及其製作技術,工業材料雜誌(2008)。
[23] H. joel, Philadelphia unveils new hybrid subway trains that use Prius-like regenerative braking to feed energy back into the grid, ExtremeTech (2014).
[24] Murata Manufacturing co. Ltd.
[25] T.C. Wen, C.C. Hu, J. Electrochem. Soc., 139 (1992) 2158.
[26] N. Y, Y. Y, S. N, Y. O, M. O, A. Y, The Journal of Physical Chemistry C, 117 (2013) 12003.
[27] Kold Ban International co. Ltd.
[28] T. Lia, W. Zhang, L. Zhi, H. Yu, L. Dang, F. Shi, H. Xu, F. Hu, Z. Liu, Z. Lei, J. Qiu, Nano Energy, 30 (2016) 9-17.
[29] X. Liu, P.G. Pickup, J. Power Sources, 176 (2008) 410.
[30] F. Pico, J. Ibanez, M.A. Lillo-Rodenas, A. Linares-Solano, R.M. Rojas, J.M. Amarilla, J.M. Rojo, J. Power Sources, 176 (2008) 417.
[31] Y. Li, K. Huang, D. Zeng, S. Liu, Z. Yao, J. Solid State Electrochem., 14 (2010) 1205.
[32] J.C. Chou, Y.L. Chen, M.H. Yang, Y.Z. Chen, C.C. Lai, H.T. Chiu, C.Y. Lee, Y.L. Chueh, J.Y. Gan, J. Mater. Chem. A, 1 (2013) 8753.
[33] D.P. Dubal, G.S. Gund, R. Holze, H.S. Jadhav, C.D. Lokhande, C.J. Park, Electrochim. Acta, 103 (2013).
[34] E.V. Jelenkovic, K.Y. Tong, Journal of Vaccum Science and Technology B, 22(2004).
[35] P.R. Deshmukh, S.V. Patil, R.N. Bulakhe, S.D. Sartale, C.D. Lokhande, Chem. Eng. J., 257 (2013) 82.
[36] D. Zhao, X. Guo, Y. Gao, F. Gao, ACS Applied Materials & Interfaces, 4 (2012) 5583.
[37] Y. Luo, D. Kong, Y. Jia, J. Luo, Y. Lu, D. Zhang, K. Qiu, C.M. Li, T. Yu, RSC Advances, 3 (2013) 5851.
[38] G. Yu, X. Xie, L. Pan, Z. Bao, Y. Cui, Nano Energy, 2 (2013) 213.
[39] I.H. Kim, K.B. Kim, J. Electrochem. Soc., 151, E7(2004).
[40] T. Liu, W.G. Pell, B.E. Conway, Electrochim. Acta, 42 (1997) 3541.
[41] T.R. Jow, J.P. Zheng, J. Electrochem. Soc.,145 (1998) 49.
[42] T.R. Jow, J.P. Zheng, J. Electrochem. Soc.,142, L6(1995).
[43] B.E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications (POD), (1999).
[44] W. Sugimoto, H. Iwata, K. Yokoshima, Y. Murakami, Y. Takasu. The Journal of Physical Chemistry B, 109 (2005) 7330.
[45] 洪偉修,世界上最薄的材料-石墨烯,康熹化學報報(2009)。
[46] 林國權,石墨烯應用市場與展望,工業材料雜誌(2013)。
[47] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science, 306 (2004) 666.
[48] Y. Chen, X. Zhang, D. Zhang, Y. Ma, J. Alloys Compd., 511 (2012) 251.
[49] Z.S. Wu, D.W. Wamg, W. Ren, J. Zhao, G. Zhou, F. Li, H.M. Cheng, Adv. Funct. Mater., 20 (2010) 3595.
[50] S. Pei, H. M. Cheng, Carbon, 50 (2012) 3210.
[51] S. Pei, J. Zhao, J. Du, W. Ren, H.M. Cheng, Carbon, 48 (2010) 4466.
[52] 陳仲宜,莊允中,奈米鍍膜技術概論(2005)。
[53] 蘇清源,石墨烯量產技術與產業應用,光連雙月刊(2013)。
[54] Tiawan Diesel co. Ltd.
[55] Y. Takasu, T. Nakamura, Y. Murakami, Chemistry letters, 1215(1998).
[56] J.H. Park, O.O. Park, J. Power Sources, 109 (2002) 121.
[57] H.R. Chen, H.H. Lai, J.J. Jow, Mater. Chem. Phys., 125 (2011) 652.
[58] J. Puetz, M.A. Aegerter, Dip Coating Technique, In: Aegerter M and Mennig M, editors. Sol-Gel Technologies for Glass Producers and Users: Springer US, 37(2004).
[59] 鄒宏基,陳自雄,基本電學:交流篇,格致圖書公司(1995)。
[60] L. Shahriary, A.A. Athawale, International Journal of Renewable Energy and Environmental Engineering, 2 (2014) 58-63.
[61] 陳奕良,國立高雄應用科技大學,碩士論文(2015)。
[62] 王詠聖,逢甲大學,碩士論文(2014)。
[63] Autolab Application Note EC08 (2011).
[64] S. Hassan, M. Suzuki, S. Moria, A.A. El-Moneim, Royal Society of Chemistry Advances, 4 (2014) 20479.
[65] Y.G. Wang, Z.D. Wang, Y.Y. Xia, Electrochim. Acta, 50 (2005) 5641.
[66] R. Ramachandran, M. Saranya, V. Velmurugan, Bala, P.C. Raghupathy, S.K. Jeong, A.N. Grace, Applied Energy, 153 (2015) 22-31.
[67] J. Li, Y. Yu, S.J. Bao, Q.Q Sun, Electrochim. Acta, 180 (2015) 187-195.
[68] J. Hao, Y. Liao, Y. Zhong, D. Shu, C. He, S. Guo, Y. Huang, J. Zhong, L. Hu, CARBON, 94 (2015) 879-887.
[69] X. Cui, R. Lv, R.U.R. Sagar, C. Liu, Z. Zhang, Electrochim. Acta, 169 (2015) 342-350.
[70] F.P. Du, J.J. Wang, C.Y. Tang, C.P. Tsui, X.P. Zhou, X.L. Xie, Y.G. Liao, Nanotechnology, 23 (2012) 475.
[71] L. Liu, M. An, P. Yang, J. Zhang, Scientific Reports, 5 (2015) 9055.
[72] P. Wang, H. Liu, Q. Tan, Jun Yang, Royal Society of Chemistry, 4 (2014) 42839.
[73] W.C. Hung, N.W. Pu, Y.M. Liu, Y.Y. Peng, J.N. Shi, M.D. Ger, Journal of Technology, 29 (2014) 193-198.
[74] 蘇清源,石墨烯氧化物之特性與應用前景(2011)。
[75] C.L. Wu, B.T. Chen, Y.Y. Lin, W.C. Tien, G.R. Lin, Y.J. Chiu, Y.J. Hung, A.K. Chu, C.K. Lee, Optics Express, 23 (2015) 26274.
[76] Z.S. Wu, D.W. Wamg, W. Ren, J. Zhao, G. Zhou, F. Li, H.M. Cheng, Adv. Funct. Mater., 20 (2010) 3595.
[77] J. Zhang, J. Jiang, H. Lib, X.S. Zhao, Energy & Environmental Science, 4, 4009-4015 (2011).
[78] 黃翊鳴,國立高雄應用科技大學,碩士論文(2011)。
[79] L. Sui, S. Tang, Y. Chen, Z. Dai, H. Huangfu, Z. Zhu, X. Qin, Y. Deng, G. M. Haarberg, Electrochim. Acta, 182 (2015) 1159-1165.
[80] X.f. Wang, Y. Yin, C. Hao, Z. You, CARBON, (2015) 436-445.
[81] J. Y. Hwang, M. El-Kady, Y. Wang, L.Wang, Y. Shao, K. Marsh, J. M. Ko, R. B. Kaner, Nano Energy, 18 (2015) 57-70.

電子全文 電子全文(網際網路公開日期:20220730)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔