跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/27 01:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳宛筠
研究生(外文):CHEN, WAN-YUN
論文名稱:電漿改質提升聚碳酸酯基板抗霧薄膜附著力之研究
論文名稱(外文):Improvement of Adhesion for Anti-fogging Film Coating on Polycarbonate by Plasma Surface Modification
指導教授:蔡政賢蔡政賢引用關係
指導教授(外文):TSAI, CHENG-HSIEN
口試委員:蔡平賜史順益
口試委員(外文):TSAI, PING-SZUSHIH, SHUN-I
口試日期:2017-06-08
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系博碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:84
中文關鍵詞:抗霧穿透度附著力電漿溶膠凝膠薄膜聚碳酸酯
外文關鍵詞:Anti-FoggingTransmittanceAdhesionPlasmaSol-GelFilmPolycarbonate
相關次數:
  • 被引用被引用:1
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
聚碳酸酯 (Polycarbonate, PC) 常用於汽、機車大燈之保護殼材料,但受到溫度變化,水氣易於車燈內凝結成液滴,若能使PC具有抗霧的功能,將是一大幫助。本研究因此在PC基板上改質提升親水性,浸鍍二氧化矽 (Silicon dioxide, SiO2) 薄膜提高附著力,最後浸鍍高穿透度之二氧化鈦 (Titanium dioxide, TiO2) -二氧化矽薄膜,使複合薄膜具有抗霧功能。 研究先將PC基板以不同溶劑獲得較佳之清洗程序組合後,探討電漿功率、改質時間及不同改質氣體,對基材親水性之影響。接著進行溶膠凝膠浸鍍製備 TiO2-SiO2/SiO2 複合薄膜,並分別比較TiO2-SiO2, SiO2及TiO2-SiO2/SiO2 薄膜之表面特性,以及以亞甲基藍溶液進行複合薄膜光降解測試。
實驗結果顯示:PC基板經去離子水 → 異丙醇 → 鹽酸+甲醇 → 異丙醇之清潔程序效果較佳,所測得水接觸角最低 (77.4°);並於氧氣電漿在150 W及改質時間10 min 後所測得水接觸角最低 (15.6°),表面均方根粗糙度由 0.65 nm上升至 21.1 nm。 在TiO2-SiO2薄膜與PC基板間增加SiO2薄膜顯示可提升附著力 (3B  4B) 與穿透度 (87.9%  90.0%),與改質前之PC基材 (90.1%) 相近。 除此之外,TiO2-SiO2/SiO2 複合薄膜表面平整,厚度約 245 nm,未照光之水接觸角可下降至 14.6°,具可接受之抗霧效能。 未達超親水性乃因化學分析電子光譜顯示複合薄膜為無定形結構,光催化作用不明顯。

Polycarbonate (PC) material is commonly used as the material of vehicle headshade. However, the condensation of water vapor will result in the fog formation on the inner side of PC substrate due to the suddenly reduction of temperature. Therefore, in this study high transmittance and high adhesion of composite films constituted by titanium dioxide (TiO2)-silicon dioxide (SiO2)/SiO2/PC layers will produce. First, a series of clean processes by various solvents with ultrasonic wave oscilation were carried out. Then, an rf plasma with different gases at various applied power or modified time was used to modify the surface of PC in order to enhance the adhesion between PC and films. Finally, a SiO2, TiO2-SiO2 or TiO2-SiO2/SiO2 film(s) was coated on the PC via sol-gel and dip-coating processes.
The results showed that the better clean process of PC substrate was by the followings: deionized water → isopropyl alcohol → hydrochloric acid/methanol (1:1) → isopropyl alcohol, as well as the lowest water contact angle (77.4°) was achieved. Then an oxygen rf plasma operated at 150 W and 10 min of modified time made the lowest water contact angle (15.6°) and improved the roughness from 0.65 nm (RMS) to 21.1 nm (RMS). The results also showed that the adhension was significant increased from 2B (TiO2-SiO2/PC, before plasma modification), 3B (TiO2-SiO2/PC, after plasma modification), to 4B (TiO2-SiO2/SiO2/PC, after plasma modification). In addition, the transparency was elevated from 87.9% (TiO2-SiO2/PC, after plasma modification) to 90.0% (TiO2-SiO2/SiO2/PC, after plasma modification) and was similar to clean PC (90.1%). The surface of the prepared TiO2-SiO2/SiO2/PC (after plasma modification) composite film was smooth (roughness of RMS = 1.59 nm) with a thickness about 245 nm, as well as the water contact angle was only 14.6° at non-illuminated condition to match an acceptable anti-fogging performance. However, the photocatalytic efficiency of the produced composite film is not obvious because the crystallization of TiO2 is amorphous.

摘 要 I
ABSTRACT II
誌 謝 IV
總目錄 V
表目錄 VII
圖目錄 VIII
第一章 前言 1
1-1 研究動機與目的 1
1.2 研究內容 2
第二章 文獻回顧 3
2-1 聚碳酸酯基板之特性及用途 3
2-1-1 聚碳酸酯基板之物理及化學性質 3
2-1-2 聚碳酸酯基板之合成及製造方法 3
2-1-3 聚碳酸酯基板之應用及現況 4
2-2 塑膠基板表面改質 5
2-2-1 紫外線激光照射改質 5
2-2-2 電漿改質 6
2-2-3 薄膜沉積改質 6
2-3 電漿改質 7
2-3-1 電漿原理 7
2-3-2 電漿改質聚合物及其物理與老化現象 12
2-4 抗霧的方法 17
2-5 二氧化鈦光觸媒薄膜 18
2-5-1 二氧化鈦光觸媒性質與光催化原理 18
2-5-2 二氧化鈦光觸媒薄膜之製備 20
2-6 薄膜之光學特性原理 21
2-7 溶膠-凝膠法 22
2-7-1 溶膠-凝膠法之原理 22
2-7-2 溶膠的基本物理及化學特性 23
2-7-3 溶膠-凝膠製備薄膜之方法 24
第三章 實驗設備及方法 26
3-1 實驗設備與藥品 26
3-1-1 藥品與氣體 26
3-1-2 實驗設備 27
3-2 實驗流程與參數設定 29
3-2-1 聚碳酸酯基板清洗方式 30
3-2-2 高週波電漿改質聚碳酸酯基板表面 31
3-2-3 製備二氧化矽溶膠凝膠 32
3-2-4 製備二氧化鈦-二氧化矽溶膠凝膠 33
3-2-5 浸鍍薄膜之聚碳酸酯基板光催化效能 34
3-2-6 實驗參數設定 35
3-3 分析儀器 37
第四章 結果與討論 39
4-1 不同清洗方式對聚碳酸酯基板接觸角之影響 39
4-2 電漿改質聚碳酸酯基板表面性質分析 41
4-2-1 不同電漿氣體對聚碳酸酯基板改質接觸角及表面粗糙度之影響 41
4-2-2 電漿改質後聚碳酸酯基板之老化現象 44
4-3 浸鍍薄膜之特性比較 46
4-3-1 TiO2-SiO2/改質聚碳酸酯基板薄膜特性 46
4-3-2 SiO2/改質聚碳酸酯基板薄膜特性 48
4-3-3 TiO2-SiO2/SiO2/改質聚碳酸酯基板薄膜特性 50
4-4 改質聚碳酸酯基板複合薄膜之表面特徵 52
4-4-1 粗糙度 52
4-4-2 化學鍵結 55
4-4-3 附著力 59
4-4-4 厚度及表面形貌 60
4-5經氧電漿改質之TiO2-SiO2/SiO2薄膜光降解分析 62
第五章 結論與建議 63
5-1 結論 63
5-2 建議 64
參考文獻 65


1.Ang, T. P., Toh, C. S., Han, Y. F., “Synthesis, Characterization, and Activity of Visible-Light-Driven Nitrogen-Doped TiO2-SiO2 Mixed Oxide Photocatalysts”, J. Phys. Chem., 113, 10560-10567, 2009.
2.Ananthakumar, R., Bubramanian, B., Kobayashi, A., Jayachandran, M., “Electrochemical Corrosion and Materials Properties of Reactively Sputtered TiN/TiAlN Multilayer Coatings”, Cream. Int., 38, 477-485, 2012.
3.Akalework, N. G., Pan, C. J., Su, W. N., Rick, J., Tasi, M. C., Lee, J. F., Lin, J. M., Tasi, L. D., Hwang, B. J., “Ultrathin TiO2-Coated MWCNTs with Excellent Conductivity and SMSI Nature as Pt Catalyst Support for Oxygen Reduction Reaction in PEMFCs”, J. Mater. Chem., 22, 20977-20985, 2012.
4.Alam, A. U., Howlader, M. M. R., Deen, M. J., “Oxygen Plasma and Humidity Dependent Surface Analysis of Silicon, Silicon Dioxide and Glass for Direct Wafer Bonding”, J. Solid. State Technol., 2, 515-523, 2013.
5.Aghaei, R., Eshaghi, A., “Optical and Superhydrophilic Properties of Nanoporous Silica-Silica Nanocomposite Thin Film”, J. Alloy. Compd., 699, 112-118, 2017.
6.Brewis, D. M., “Adhesion to Polyethylene and Polypropylene”, Polymer, 22, 7-16, 1981.
7.Bahnemann, D., “Photocatalytic Water Treatment: Solar Energy Applications”, Sol. Energy., 77, 445-459, 2004.
8.Bashouti, M. Y., Pietsch, M., Sardashti. K., Bronstrup, G., Schmitt, S. W., Srivastava, S. K., Ristein, J., Arbiol, J., Haick, H., Christiansen, S., Hybrid Silicon Nanowires: from Basic Research to Applied Nanotechnology, 2012.
9.Bharti, B., Kumar, S., Lee, H. N, Kumar, R., “Formation of Oxygen Vacancies and Ti3+ State in TiO2 Thin Film and Enhanced Optical Properties by Air Plasma Treatment”, Sci. Rep-UK., 1-6, 2016.
10.Cao, L., Jones, A. K., Sikka, V. K., Wu, J., Gao, D., “Anti-Icing Superhydrophobic Coating”, Langmuir, 25, 12444-12448, 2009.
11.Chu, P. K., Chen, J. Y., Wang, L. P., Huang, N., “Plasma-Surface Modification of Biomaterials”, Ade. Mater. Res-Switz. R., 36, 143-206, 2002.
12.Cho, J, S., Han, J., Cuomo, J. J., “Ion Beam Pretreatment of Polymeric Substrate for ITO Thin Film Deposition”, Solid. State. Sci., 10, 941-949, 2008.
13.Chan, C. M., Ko, T. M., “Polymer Surface Modified by Plasma and Photons”, Surf. Sci. Rep., 24, 1-54, 1996.
14.Camara, R. M., Crespo, E., Portela, R., Suarez, S., Bautista, L., Gutierrez, M. F., Sanchez, B., “Enhanced Photocatalytic Activity of TiO2 Thin Films on Plasma-Pretreated Organic Polymers”, Catal. Today, 230, 145-151, 2014.
15.Cong, Y., Zhang, J., Chen, F., Anpo, M., “Synthesis and Characterization of Nitrogen-Doped TiO2 Nanophotocatalyst with High Visible Light Activity”, J. Phys. Chem., 111, 6976-6982, 2007.
16.Chen, D., Jiang, Z., Geng, J., Wang, Q., Yang, D., “Carbon and Nitrogen Co-Doped TiO2 with Enhanced Visible-Light Photocatalytic Activity”, Ind. Eng. Chem. Res., 46, 2741-2746, 2007.
17.Chrysicopoulou, P., Davazoglou, D., Trapalis, C., Kordas, G., “Opticl Properties of very Thin (<100 nm) Sol-Gel TiO2 Films”, The Solid, Film, 323, 188-193, 1998.
18.Diebold, U., ”The Surface Science of Titanium Dioxide”, Surf. Sci. Rep., 48, 53-229, 2003.
19.Diwald, O., Thompson, T. L., Goralski, E. G., Walck, S. D., Yates, J. T., “The Effect of Nitrogen Ion Implantation on the Photoactivity of TiO2 Rutile Single Crystals”, J. Phys. Chem. B., 52-57, 2004.
20.Davies, J. T., Rideal, E. K., Interfacial Phenomena, 2nd Ed., Academic Press for New York, 1963.
21.Elghniji, K., Ksibi, M., Elaloui, E., “Sol-Gel Reverse Micelle Preparation and Characterization of N-Doped TiO2: Efficient Photocatalytic Degradation of Methylene Blue in Water under Visible Light”, J. Ind. Eng. Chem., 18, 178-182, 2012.
22.Eshaghi, A., Pakshir, M., Mozaffarinia, R., “Preparation and Characterization of TiO2 Sol-Gel Modified Nanocomposite Films”, J. Sol-gel. Sci. Techn., 55, 278-284, 2010.
23.Fateh, R., Dillert, R., Bahnemann, D., “Preparation and Characterization of Transparent Hydrophilic Photocatalytic TiO2/SiO2 Thin Films on Polycarbonate”, Langmuir, 29, 3730-3739, 2013.
24.Fateh, R., Ismail, A. A., Dillert, R., Bahnemann, W., “Highly Active Crystalline Mesoporous TiO2 Films Coated onto Polycarbonate Substrates for Self-Cleaning Applications”, J. Phys. Chem. C., 115, 10405-10411, 2011.
25.Fan, C., Chen, C., Wang, J., Fu, X., Ren, Z., Qian, G., Wang, Z., “Black Hydroxylated Titanium Dioxide Prepared Via Ultrasonication with Enhanced Photocatalytic Activity”, Sci. Rep., 1-10, 2015.
26.Fujima, T., Futakuchi, E., Tomita, T., Orai, Y., Sunaoshi, T., “Hierarchical Nanoporous Glass with Antireflectivity and Superhydrophilicity by One-Pot Etching”, Langmuir, 30, 14494-14497, 2014.
27.Gomathi, N., Sureshkumar, A., Neogi, S., ”RF Plasma-Treated Polymers for Biomedical Applications”, Curr. Sci. India, 94, 1478-1486, 2008.
28.Ge, L., Xu, M., Fang, H., “Synthesis of Titanium Oxide Layers on Glass Substrates with Aqueous Refluxed Sols (RS) and Photocatalytic Activities”, J. Mater. Sci., 42, 4926-4934, 2007.
29.Goncalves, R. H., Schreiner, W. H., Leite, E. R., “Synthesis of TiO2 Nanocrystals with a High Affinity for Amine Organic Compounds”, Langmuir, 26, 11657-11662, 2010.
30.Gazal. Y., Dublanche, T. C., Antoine, A., Colas, M., Chazelas, C., Tristant, P., “Elaboration of Nanostructured TiO2/SiO2 Films by Plasma Enhanced Chemical Vapor Deposition at Atmospheric Pressure”, Thin Solid Films, 619, 137-143, 2016.
31.Garcia, C. R., Correa, J., Espalin, D., Barton, J. H., Rumpf, R. C., Wicker, R., Gonzalez, V., “3D Printing of Anisotropic Metamaterials”, Pr. Electromagn, Res. Letters, 34, 75-82, 2012.
32.Hsiao, R. C., Sung, T. L., Liu, C. M., Teii, S., Chan, T. C., Ono, S., Teii, K., Ynag, C. C., Zeng, S. C., "Hydrophilic Stability of Plastic Surfaces Treated in Low- and Atmospheric-Pressure Radio-Frequency Plasma", IEEE. T. Plasma, Sci., 42, 3837-3841, 2014.
33.Hu, S., Li, Y., Lai, F., Zhang, X., Li, Q., Huang, Y., Yuan, X., Chen, J., Wang, H., “Enhanced Electrochemical Performance of LiMn2O4 Cathode with A Li0.34La0.51TiO3-Coated Layer”, Roy. Soc. Ch., 5, 17592-17600, 2015.
34.Irie, H., Watanabe, Y., Hashimoto, K., “Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders”, J. Phys. Chem., 107, 5483-5486, 2003.
35.Jaleh, B., Shahbazi, N., “Surface Properties of UV Irradiated PC-TiO2 Nanocomposite Film”, Appl. Surf. Sci., 313, 251-258, 2014.
36.Jung, M. W., Oh, H. J., Yang, J. C., Shul, Y. G., ”Structural Investigation of the Hydrolysis-Condensation Process of Modified Titanium Isopropoxide”, Bull. Korean. Chem. Soc., 20, 1394-1398, 1999.
37.Jang, J. W., Park, J. W., “Photocatalytic Performance of TiO2 Films Produced with Combination of Oxygen-Plasma and Rapid Thermal Annealing”, Thin. Solid. Films, 520, 193-198, 2011.
38.Jorgensen, C. K., Atoms and Molecules, Academic Press for London, 80, 1962.
39.Kraus, E., Baudrit, B., Heidemeyer, P., Bastian, M., Stoyanov, O., Starostina, I., “Surface Treatment with Ultraviolet Laser for Adhesive Bonding of Polymeric Materials”, J. Adhes., 93, 204-215, 2017.
40.Kim, Y, J., Sun, X., Jones, J. E., Lin, M., Yu, Q., Li, H., "Surface Modification of SERS Substrates with Plasma-Polymerized Trimethylsilane Nanocoating", Appl. Surf. Scl., 331, 346-352, 2015.
41.Kostov, K, G., Hamia, Y, A, A., Mota, R, P., Santos, A, L, R, D., Nascente, P, A, P., “Treatment of Polycarbonate by Dielectric Barrier Discharge (DBD) at Atmospheric Pressure", J. Phys. Conf. Ser., 511, 012075, 2014.
42.Kim, K, S., Ryu, C, M., Park, C, S., Sur, G, S., Park, C, E., “Investigation of Crystallinity Effects on the Surface of Oxygen Plasma Treated Low Density Polyethylene Using X-Ray Photoelectron Spectroscopy”, Polym., 44, 6287-6295, 2003.
43.Kim, A. Y., Kang, M., “Effect of Al-Cu Bimetallic Components in a TiO2 Framework for High Hydrogen Production on Methanol/Water Photo-Splitting”, Int. J. Photoenergy, 2012.
44.Kramarz, K. W., Norton, J. R., Slow Proton Transfer Reactions in Organometallic and Bioinorganic Chemistry, Wiley, 2007.
45.Liston, E., Martinu, L. M., Wertheimer, M. R., “Plasma Surface Modification of Polymers for Improved Adhesion: a Critical Review” J. Adhes., 7, 1091-1127, 1993.
46.Lionti, K., Cui, L., Volksen, W., Dauskardt, R., Dubois, G, Toury, B., “Independent Control of Adhesive and Bulk Properties of Hybrid Silica Coatings on Polycarbonate”, ACS. Appl. Mater. Inter., 5, 11276-11280, 2013.
47.Li, Y., Zhang, J., Zhu, S., Dong, H., Jia, F., Wang, Z., Sun, Z., Zhang, L., Li, Y., Li, H., Xu, W., Yang, B., “Biomimetic Surfaces for High-Performance Optics”, Adv. Mater., 21, 4731-4734, 2009.
48.Lin, Y, S., Lien, S, Y., Wuu, D, S., Huang, Y, X., Kung, C, Y., “Improvement in performance of Si-Based Thin Film Solar Cells with A Nanocrystalline SiO2-TiO2 Layer”, Thin Solid Films, 570, 200-203, 2014.
49.Morent, R., Geyter, N, D., Leys, C., Gengembre, L., Payen, E., “Study of the Ageing Behaviour of Polymer Films Treated with a Dielectric Barrier Discharge in Air, Helium and Argon at Medium Pressure”, Surf. Coat. Tch., 201, 7847-7854, 2007.
50.Mohamed, M. A., Salleh, W. N. W., Jaafar, J., Rosmi, M. S., Mohd, Z. A., Mutalib, M. A., Ismail, A. F., Tanemura, M., “Carbon as Amorphous Shell and Interstitial dopant in Mesoporous Rutile TiO2: Bio-template Assisted Sol-Gel Synthesis and Photocatalytic Activity”, Appl. Surf. Sci., 393, 46-59, 2017.
51.Miloskovska, E., Friedrichs, C., Hristova, B. D., Persenair, O., Duin, M. V., Hansen, M. R., “Chemical Mapping of Silica Prepared Via Sol−Gel Reaction in Rubber Nanocomposites”, Macromolecules, 48, 1093-1103, 2015.
52.Morra, M., Occhiello, E., Garbassi, F., Humphrey, P., Johnson, D., “On the Aging of Oxygen Plasma-Treated Polydimethylsioxane Surfaces”, J. Colloid. Interf. Sci., 137, 11-24, 1990.
53.Mahjoub, M, A., Monier, G., Goumet, C, R., Revert, F., Echabaane, M., Chaudanson, D., Petit, M., Bideux, L., Gruzza, B., “Synthesis and Study of Stable and Size-Controlled ZnO-SiO2 Quantum Dots: Application as A Humidity Sensor” J. Phys. Chem. C., 120, 11652-11662, 2016.
54.Maldonado, C. S., Rosa, J. R., Ortiz, C. J., Ramirez, A. H., Barraza, F. F., Valente, J. S., “Low Concentration Fe-Doped Alumina Catalysts Using Sol-Gel and Impregnation Methods: The Synthesis, Characterization and Catalytic Performance During the Combustion of Trichloroethylene” Materials. 7, 2062-2086, 2014.
55.Metha, M., Kodan, N., Kumar, S., Kaushai, A., Mayrhofer, L., Walter, M., Moseler, M., Dey, A., Krishnamurthy, S., Basu, S., Singh, A. P., “Hydrogen Treated Anatase TiO2: A New Experimental Approach and Further Insights from Theory” Roy. Soc. Ch., 4, 2670-2681, 2016.
56.McCafferty, E., Wightman, J. P., "Determination of the Concentration of Surface Hydroxyl Groups on Metal Oxide Films by A Quantitative XPS Method", Surf. Interface Anal., 26, 549-564, 1998.
57.Pfleging, W., Bruns, M., Welle, A., Wilson, S., “Laser-Assisted Modification of Polystyrene Surfaces for Cell Culture Applications”, Appl. Surf. Sci., 253, 9177-9184, 2007.
58.Paosawatyanyong, B., Supasai, T., Pavarajarn, V., Hodak, S. K., “Hydrophobicity Improvent of PET Fabrics after SF6 Plasma Treatment”, Int. Polym. Proc., 2, 135-139, 2008.
59.Paynter, R. W., “XPS Studies of the Ageing of Plasma-Treated Polymer Surfaces”, Surf. Interface, Anal., 29, 56-64, 2000.
60.Rich, S. A., Dufour, T., Leroy, P., Reniers, F., Nittler, L., Pireaux, J. J., “LDPE Surface Modifications Induced by Atmospheric Plasma Torches with Linear and Showerhead Configurations”, Plasma. Process. Polym., 12, 771-785, 2012.
61.Rich, S. A., Dufour, T., Leroy, P., Reniers, F., "LDPE Surface Modification Induced by Atmospheric Plasma Torches with Linear and Showerhead Configurations", Plasma, Process, Polym., 12, 771-785, 2015.
62.Ren, Y., Ren, Z., Li, J., Wang, S., Yu, J., “Solvothermal Synthesis of Dendritic TiNXOY Nanostructure for Oxygen Reduction Reaction Electrocatalysis”, R. S. C., 5, 106439-106443, 2015.
63.Rodriguez, E. H., Herrera, A. M., Alejandre, E. Z., Lira, M. M., Cruz, W., Torres, M. Z., “Effect of Electrode Type in the Resistive Switching Behaviour of TiO2 Thin Films”, J phys. D. Appl. Phys., 46, 1-6, 2013.
64.Rivera. L. R., Escobar, D., Palacios, V. B., Arango, P. J., Parra, E. R., “Effect of Annealing Process on TiN/TiC Bilayers Grown by pulsed are discharge” Physica B. 407, 3248-3251, 2012.
65.Sharma, R., Holcomb, E., Trigwell, S., Mazumder, M., “Stability of Atmospheric-Pressure Plasma Induced Changes on Polycarbonate Surfaces”, J. Electroceram, 65, 269-273, 2007.
66.Shcherbina, A.A., Chalykh, A.E., “Plasma Chemical Modification of Polymer Surface. Polyethylene Terephthalate”, Prot. Met. Phys. Chem+., 51, 341-346, 2015.
67.Sun, J., Qiu, Y., “The Effects of Gas Composition on the Atmospheric Pressure Plasma Jet Modification of Polyethylene Films”, Plasm, Sci. Technol., 17, 402-407, 2015.
68.Sharma, R., Holcomb, E., Trigwell, S., Mazumder, M., “Stability of Atmospheric-Pressure Indeed Changes on Polycarbonate Surfaces”, J. Eelectrostat, 65, 269-273, 2007.
69.Sathish, M., Viswanathan, B., Viswanath, R. P., Gopinath, C. S., ”Synthesis, Characterization, Electronic Structure, and Photocatalytic Activity of Nitrogen-Doped TiO2 Nanocatalyst”, Chem. Mater., 17., 6349-6353, 2005.
70.Saini, K. K., Sharma, S. D., Chanderkant., Kar, M., Singh, D., Sharma, C. P., “Structural and Optical Properties of TiO2 Thin Films Derived by Sol-Gel Dip Coating Process”, J. Non-cryst. Solids., 353, 2469-2473, 2007.
71.Sui, C., Niu, X., Wang, Z., Yuan, F., Zhu, Y., “Activity and Deactivation of Ru Supported on La1.6Sr0.4NiO4 Perovskite-Like Catalysts Prepared by Different Methods for Decomposition of N2O”, Catal. Sci. Technol., 8505-8515, 2016.
72.Samad, M. A., Satyanarayana, N., Sinha, S. K., “Effect of Air-Plasma Pre-Treatment of Si Substrate on Adhesion Strength and Tribological Properties of a UHMWPE Film” Adhesion, Aspects. in MEMS/NEMS., 223-236, 2013.
73.Shimizu, W., Nakamura, S., Sato, T., Murakami, Y., “Creation of High-Refractive-Index Amorphous Titanium Oxide Thin Films from Low-Fractal-Dimension Polymeric Precursors Synthesized by a Sol-Gel Technique with a Hydrazine Monohydrochloride Catalyst”, Langmuir, 28, 12245-12255, 2012.
74.Silverstein, J., Barreto, O., France, R., "Miniscrews for Orthodontic anchorage: nanoscale chemical surface analyses", Eur. J. Orthodont., 146-153, 2016.
75.Terpilowski, K., Rymuszka, D., Holysz, L., Chibowski, E., “Changes in Wettability of Polycarbonate and Polypropylene Pretreated with Oxygen and Argon Plasma”, Chibowski, E., 2, 155, 2014.
76.Tanaka, K., Yanashima, H., Yako, T., Kamio, K., Sugai, K., Kishida, S., “Aluminum Chemical Vapor Deposition Reaction of Dimethylaluminum Hydride on TiN Studied by X-ray Photoelectron Spectroscopy and Time-Of-Fight Secondary Ion Mass Spectrometry”, Appl. Surf. Sci., 171., 71-81, 2001.
77.Ullah, B., Lei, W., Cao, Q. S., Zou, Z. Y., Lan, X. K., Wang, X. H., Lu, W. Z., “Structure and Microwave Dielectric Bahavior of A-Site-Doped Sr(1-1.5X)CexTiO3 Ceramics System”, J. Am. Ceram. Soc., 1-7, 2016.
78.Van Deynse, A., Cools, P., Leys, C., Morent, R., De Geyter, N., "Surface Modification of Polyethylene in an Argon Atmospheric Pressure Plasma Jet", Surf. Coat. Tech., 276, 384-390, 2015.
79.Wojcieszak, D., Poniedzialek, A., Mazur, M., Domaradzki, J., Kaczmarek, D., Dora, J., “Influence of Plasma Treatment on Wettability and Scratch Resistance of Ag-Coated Polymer Substrates”, Mater. Sci+. Poland., 34, 418-426, 2016.
80.Watanabe, H., Hosoil, T., “Fundamental Aspects of Silicon Carbide Oxidiation”, 565-0871, 2013.
81.Yaghoubi, H., Taghavinia, N., Alamdari, E, K., “Self Cleaning TiO2 Coating on Polycarbonate: Surface Treatment, Photocatalytic and Nanomechanical Properties”, Surf. Coat. Tech., 204, 1562-1568, 2010.
82.Yasuda, H., Gazicki, M., “Biomedical Applications of Plasma Polymerization and Plasma Treatment of Polymer Surfaces”, Biomaterials, 3, 68-77, 1982.
83.Yang, X., Zhu, L., Chen, Y., Bao, B., Xu, J., Zhou, W., “Controlled Hydrophilic/Hydrophobic Property of Silica Films by Manipulating the Hydrolysis and Condensation of Tetraethoxysilane”, Appl. Surf. Sci., 379, 1-9, 2016.
84.Ye, L., Zhang, Y., Song, C., Li, Y., Jiang, B., “A Simple Sol-Gel Method to Prepare Superhydrophilic silica”, Mater. Lett., 188, 316-318, 2017.
85.Yuan, J., Liu, X., Akbulut, O., Hu, J., Suib, S., Kong, J., Stellacci, F., “Superwetting Nanowire Membranes for Selective Absorption”, Nat. Nanotechnol., 3, 332-336, 2008.
86.Yang, Y., Tu, H., Zhang, A., Du, D., Lin, Y., "Preparation and Characterization of Au-ZrO2-SiO2 Nanocomposite Spheres and Their Application in Enrichment and Detection of Organophosphorus Agents", J. Mater Chem., 22, 4977-4981, 2012.
87.Yaremchenko, A. A., Populoh, S., Patricio, S. G., Macias, J., Thiel, P., Fagg, D. P., Weidenkaff, A., Frade, J. R., Kovalevsky, A. V., "Boosting Thermoelectric Performance by Controlled Defect Chemistry Engineering in Ta-Substituted Strontium Titanate", Chem. Mater., 27, 4995-5006, 2015.
88.Kostov, K, G., Hamia, Y, A, A., Mota, R, P., Santos, A, L, R, D., Nascente, P, A, P., “Treatment of Polycarbonate by Dielectric Barrier Discharge (DBD) at Atmospheric Pressure”, J. Phys. Conf. Ser., 511, 2014.
89.Zajickova, L., Subedi, D, P., Bursikova, V., Veltruska, K., “Sturdy of Argon Plasma Treatment of Polycarbonate Substrate and its Effect on Film Deposition”, Acta. Phys. Slovaca, 53, 489-504, 2003.
90.Zhao, M., Li, J., Li, Y., Wang, J., Zuo, Y., Jiang, J., Wang, H., “Gradient Control of Adhesive Force Between Ti/TiO2 Nanotubular Arrays Fabricated by Anodition”, Sci. Rep-UK., 1-5, 2014.
91.Zhong, B., Song, L., Huang, X., Zhang, X., Wen, G., Zhou, Y., “Novel Coaxial SiC-SiO2-BN Nanocable: Large-Scale Synthesis, Formation Mechanism and Photoluminescence property”, J. Mater. Chem., 21, 14432-4440, 2011.
92.方舒玫、歐廷、林敬東、廖代偉,”La2O3摻雜低溫合成介孔銳鈦礦相二氧化鈦”,中國稀土學報,24, 32-36, 2006。
93.史榮波,“聚碳酸酯在汽車玻璃窗上的應用”,上海塑料,2, 22-24, 2016。
94.陳克紹、陳素貞、洪翠嬋、廖淑娟,“表面電漿改質技術在生物醫學工程之應用”,化工技術,17, 106-121, 2009。
95.石豫臺、楊和學,”淺談奈米光觸媒”,科學研習,52, 20-25, 2013。
96.李復生、殷金柱、魏東燁、崔金華、宋光復,“聚碳酸酯應用與合成工藝進展”,化工進展,21, 395-398, 2002。
97.呂宗昕,吳偉宏,”奈米科技與二氧化鈦光觸媒”,科學發展,376, 72-77。
98.吳伊旎,透明可見光催化二氧化鈦自潔表面的製備與鑑定,國立成功大學,碩士論文,2008。
99.吳宇璇,以溶膠凝膠-電漿改質法製備高透明超親水可見光催化薄膜之研究,國立高雄應用科技大學,碩士論文,2015。
100.林昭榮,特殊的界面活性劑與異常的潤濕現象,國立中央大學化學工程與材料工程學系,碩士論文,2008。
101.林佑竹,透明自潔二氧化鈦/二氧化矽奈米粒子薄膜的表面潤濕永續性之研究,國立成功大學化學工程學系,碩士論文,2008。
102.夏明芳、劉定華,“聚碳酸酯合成技術進展”,化學工業與工程技術,21, 18-20, 2000。
103.徐逸民、游閔盛、郭有斌、黃傑、洪昭南,”常壓電漿原理、技術應用”,化工技術,17, 68-85, 2009。
104.陳啟昌、石林、李曉光、王鴻生,“聚碳酸酯合成技術總述”,化工科技,20, 81-84, 2012。
105.陳燕儀、呂世源,”光學膜-光的魔術師”,科學發展,414, 62-67, 2007。
106.陳琪,陽極氧化鋁結構之介電濕潤應用,國立交通大學,碩士論文,2011。
107.張育誠、吳國光、焦鴻文,”疏水性材料”,能源報導,35-37, 2011。
108.黃劍峰,溶膠-凝膠原理與技術,化學工業出版社,2009。
109.董家齊、陳寬任,”奇妙的物質第四態-電漿”,科學發展,354, 52-59, 2002。
110.趙青、劉述章、童洪輝 編著,「等離子體技術及應用」,國防工業出版社,2009。
111.黎孝怡,玻璃面板之抗反射沸石膜,國立中央大學,碩士論文,2007。
112.鄭智鴻,量身訂做的二氧化鈦光觸媒之合成及應用,國立成功大學化工所,碩士論文,2006。
113.賴耿陽 編譯,「電漿工學的基礎」,復文書局,1986。
114.鍾志遠,不同底材(鈦/白金/玻璃/ITO玻璃)對於二氧化鈦薄膜的觸媒特性,國立高雄海洋科技大學輪機工程學系,碩士論文,2009。
115.蘇育依,聚碳酸酯基材製備超親水高透明抗霧薄膜之研究,國立高雄應用科技大學,碩士論文,2017。
116.https://zh.wikipedia.org/wiki/%E6%B0%AF%E5%8C%96%E6%B0%A2

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top