(18.232.50.137) 您好!臺灣時間:2021/05/06 17:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林育江
研究生(外文):LIN, YU-JIANG
論文名稱:以水熱合成法製備rGO/Bi2O3超電容複合電極材料之研究
論文名稱(外文):Preparation and Characterization of rGO/Bi2O3 Composites by Hydrothermal Synthesis for Supercapacitor Electrode
指導教授:楊文都楊文都引用關係
指導教授(外文):YANG, WEIN-DUO
口試委員:楊文都林文崇楊乾信
口試委員(外文):YANG, WEIN-DUOLIN, WEN-CHURNGYANG, CHIEN-HSIN
口試日期:2017-06-22
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系博碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:112
中文關鍵詞:水熱法石墨烯氧化鉍超級電容器
外文關鍵詞:hydrothermal methodgraphenebismuth oxidesupercapacitor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:150
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
首先利用Improved Hummer’s method製備出氧化石墨烯(GO),再依不同重量比配製GO與硝酸鉍之混合溶液 (1:0.1、1:0.3、1:0.6、1:0.9及1:1.2),並以水熱合成法將GO還原成石墨烯(rGO),最後以煆燒的方式製備rGO/Bi2O3之複合物。研究顯示,以水熱合成法製備rGO,其含氧官能基會受到移除而導致石墨烯團聚的比例增加,使G band波數最低。當GO與硝酸鉍重量比為1 : 0.6時,rGO/Bi2O3之G band波數最高,石墨烯剝離效果最好。於1 M KOH電解液中,進行rGO及rGO/Bi2O3之電化學特性分析;結果得知,石墨烯及其複合物,主要的電荷儲存機制為電雙層作用;由C-V曲線得知,隨著硝酸鉍含量的提升,rGO/Bi2O3具有更高的電容值。以電流密度為1 A/g進行測試,負載前rGO電容值為84.6 F/g,而GO與硝酸鉍重量比為1 : 1.2時,rGO/Bi2O3具有最高電容值196 F/g。以EIS分析,rGO/Bi2O3相較於rGO,具有更低的阻抗和更優秀的電容行為,意旨使用水熱合成法製備rGO/Bi2O3確實能應用於超級電容之碳電極。
In this study, reduced graphene/ bismuth oxide composites were prepared at various weight ratios, GO and bismuth nitrate at 1: 0.1, 1: 0.3, 1: 0.6, 1: 0.9 and 1: 1.2, respectively, by the improved Hummer's method. During the process, the mixed solutions were prepared, then, rGO was obtained by hydrothermal method. Finally, the complex of rGO / Bi2O3 was prepared by calcination after hydrothermal treatment.
The results show that the remove of oxygen- containing functional groups in rGO are increase as the increase of graphene agglomeration, and the Raman shifts wave-number of G band tending to the lowest. When the weight ratio of GO to bismuth nitrate at 1: 0.6, the G band wave-number of rGO/Bi2O3 is the highest, and the stripping effect of graphene is the best.
The electrochemical characteristics of rGO and rGO/Bi2O3 were also examined in 1 M KOH electrolyte. The results showed that the dominated charge storage mechanism of them are attributed to the electric double layer behaviors. Studied by CV curves, the content of bismuth nitrate is increased, and rGO/Bi2O3 has a higher capacitance. The rGO capacitance is 84.6 F/g, and the rGO/Bi2O3 at 1: 1.2 exhibits a maximum capacitance of 196 F/g at 1 A/g. By EIS analysis, rGO/Bi2O3 shows lower impedance compared to rGO, exhibiting a better capacitance behavior. It reveals rGO/Bi2O3 obtained by hydrothermal synthesis method can be used for the application of carbon-electrode for super capacitor.

中 文 摘 要 I
Abstract II
誌謝 IV
目錄 V
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1.1前言 1
1.2研究動機 2
1.3研究目的 3
第二章 文獻回顧 4
2.1超級電容器簡介 4
2.1.1電化學影響因素 5
2.2超級電容原理介紹 10
2.2.1電雙層架構(Electrical double layer) 10
2.2.2電雙層電容器(Electric double-layer capacitor, EDLC) 12
2.2.3擬電容器(Pseudocapacitor) 15
2.3石墨烯(Graphene)材料介紹 17
2.4石墨烯製備方法與檢驗 19
2.4.1氧化石墨烯(Graphene Oxide, GO) 23
2.4.2製備還原氧化石墨烯 24
2.5 氧化鉍材料性質 28
2.6水熱合成法 (Hydrothermal method) 30
第三章 實驗方法與步驟 32
3.1實驗藥品 32
3.2實驗儀器 33
3.3 分析儀器介紹 34
3.2.1 X-ray繞射分析儀 34
3.2.2拉曼光譜儀(Raman Spectrum) 36
3.2.3高解析場發射型掃描式電子顯微鏡 37
3.2.4解析型掃描穿透式電子顯微鏡 38
3.2.5 傅立葉紅外光譜儀 39
3.2.6 多功能掃描探針顯微鏡 40
3.2.7 熱重力分析 41
3.2.8 BET 比表面積分析儀 42
3.3 實驗流程 44
3.3.1 以Improved Hummer’s method製備氧化石墨烯 44
3.3.2 以水熱合成法製備rGO/Bi2O3之複合物 46
3.4電化學測試 49
3.4.1循環伏安法(Cyclic voltammetry) 50
3.4.2充放電測試 51
第四章 結果與討論 52
4.1 氧化石墨烯材料分析 52
4.2 探討rGO及rGO/Bi2O3之材料分析 58
4.3 探討GO、rGO與rGO/Bi2O3之電化學特性 78
第五章 結論 89
參考文獻 91


[1]S. S. Oncel, Green energy engineering: opening a green way for the future, J. Clean. Prod., 1-6, 2016.
[2]L. Basiricò and G. Lanzara, A monolithic functional film of nanotubes/cellulose/ionic liquid for high performance supercapacitors, J. Power Sources, 271, 589-596, 2014.
[3]Y. Wang, J. Chen, J. Cao,Y. Liu, Y. Zhou, J. Hu Ouyang, and D. Jia, Graphene/carbon black hybrid film for flexible and high rate performance supercapacitor, J. Power Sources, 271, 269-277, 2014.
[4]S. Zheng, Z. S. Wu, S. Wang, H. Xiao, F. Zhou, C. Sun, X. Bao, and H. M. Cheng, Graphene-based materials for high-voltage and high-energy asymmetric supercapacitors, Energy Storage Mater., 70-97, 2017.
[5]R. Hu, X. Xiao, S. Tu, X. Zuo, and J. Nan, Synthesis of flower-like heterostructured β-Bi2O3/Bi2O2CO3 microspheres using Bi2O2CO3 self-sacrifice precursor and its visible-light-induced photocatalytic degradation of o-phenylphenol, Appl. Catal. B Environ., 163, 510-519, 2015.
[6]X. Wang, S. X. Zhao, L. Dong, Q.-L. Lu, J. Zhu, and C.-W. Nan, One-step synthesis of surface-enriched nickel cobalt sulfide nanoparticles on graphene for high-performance supercapacitors, Energy Storage Mater., 6, 180-187, 2017.
[7]L. J. Xie, J. F. Wu, C. M. Chen, C. M. Zhang, L. Wan, J. L. Wang, Q. Q. Kong, C. X. Lv, K. X. Li, and G. H. Sun, A novel asymmetric supercapacitor with an activated carbon cathode and a reduced graphene oxide-cobalt oxide nanocomposite anode, J. Power Sources, 242, 148-156, 2013.
[8]L. Jiang, X. Yuan, J. Liang, J. Zhang, H. Wang, and G. Zeng, Nanostructured core-shell electrode materials for electrochemical capacitors, J. Power Sources, 331, 408-425, 2016.
[9]方偉權,「超高電容氣電極薄膜材料應用及其製作技術」,工業材料雜誌,257期,2008。
[10]Z. Gao, X. Liu, J. Chang, D. Wu, F. Xu, L. Zhang, W. Du, and K. Jiang, Graphene incorporated, N doped activated carbon as catalytic electrode in redox active electrolyte mediated supercapacitor, J. Power Sources, 337, 25-35, 2016.
[11]H. Chen, L. Yu, J. M. Zhang, and C. P. Liu, Construction of hierarchical NiMoO4@MnO2 nanosheet arrays on titanium mesh for supercapacitor electrodes, 42, 18058-18063, 2016.
[12]化學工程學會,超高電容器的發展專刊,超高電容器的發展專輯前言,第60卷第5期,1-2,2013。

[13]J. Shabani Shayeh, A. Ehsani, M. R. Ganjali, P. Norouzi, and B. Jaleh, Conductive polymer/reduced graphene oxide/Au nano particles as efficient composite materials in electrochemical supercapacitors, Appl. Surf. Sci., 353, 594-599, 2015.
[14]X. Zhang, X. Wang, L. Jiang, H. Wu, C. Wu, J. Su, Effect of aqueous electrolytes on the electrochemical behaviors of supercapacitors basedon hierarchically porous carbons, J. Power Sources, 216, 290-296, 2012.
[15]L. Wei, G. Yushin, Nanostructured activated carbons from naturalprecursors for electrical double layer capacitors, Nano Energy, 1, 552-565, 2012.
[16]W. J. Cho, C. G. Yeom, B. C. Kim, K. M. Kim, J. M. Ko, K. H. Yu,Supercapacitive properties of activated carbon electrode in organicelectrolytes containing single-and double-cationic liquid salts, Electrochimica Acta , 89, 807-813, 2013.
[17]K. Tõnurist, T. Thomberg, A. Jänes, I. Kink, E. Lust, Specific performance of electrical double layer capacitors based on different separator materials in room temperature ionic liquid, Electr. Com., 22, 77-80, 2012.
[18]凌錚,「金屬氧化物/活性炭非對稱超級電容器的組裝及影響因素」,蘭州理工大學碩士論文,2011。
[19]Y. Cai, Y. Luo, H. Dong, X. Zhao, Y. Xiao, Y. Liang, H. Hu, Y. Liu, and M. Zheng, Hierarchically porous carbon nanosheets derived from Moringa oleifera stems as electrode material for high-performance electric double-layer capacitors, J. Power Sources, 353, 260-269, 2017.
[20]Q. Abbas and D. Pajak, Electrochimica Acta Effect of binder on the performance of carbon/carbon symmetric capacitors in salt aqueous electrolyte, 140, 132-138, 2014.
[21]E. Frackowiak, Q. Abbas, F. B´eguin, Carbon/carbon supercapacitors,
Journal of Energy Chemistry, 22, 226-240, 2013.
[22]Z. Q. Hao, J. P. Cao, Y. Wu, X. Y. Zhao, L. Zhou, X. Fan, Y. P. Zhao, and X. Y. Wei, Preparation of porous carbons from waste sugar residue for high performance electric double-layer capacitor, Fuel Process. Technol., 162, 45-54, 2017.
[23]K. Bohinc, G. V. Bossa, and S. May, Incorporation of ion and solvent structure into mean-field modeling of the electric double layer, Adv. Colloid Interface Sci.,5, 1-15, 2017.
[24]黃信傑,「氧化石墨烯光催化還原製備超級電容器之碳電極材料」,成功大學化學工程系,碩士論文,6-7,2012。
[25]S. Bazrafshan and A. Rajabpour, International Journal of Heat and Mass Transfer Thermal transport engineering in amorphous graphene : Non-equilibrium molecular dynamics study, Int. J. Heat Mass Transf., 112, 379-386, 2017.
[26]A. K. Geim, K. S. Novoselov, The rise of graphene, Nat. Mater., 6, 183-191, 2007.
[27]A. K. Geim, Graphene: Status and prospects, Science 324, 5934, 1530-1534, 2009.
[28]H. Xie, T. Cao, F. J. Rodríguez-lozano, E. K. Luong-van, and V. Rosa, “Graphene for the development of the next-generation of biocomposites for dental and medical applications,” Dent. Mater., 33, 765-774, 2017.
[29]K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Ultrahigh electron mobility in suspended graphene, PACS, 146, 351-355, 2008.
[30]L. Z. Fan, J. L. Liu, R. U. Din, X. Yan, X. i. Qu, The effect of reduction
time on the surface functional groups and supercapacitive performance of graphene nanosheets, Carbon, 50, 3724-3730, 2012.
[31]蘇清源,石墨烯量產技術與產業應用,光連雙月刊,No.108.,2013年11月。
[32]A. C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects, J. Power Sources, 143, 47-57, 2007.
[33]Y. Zhao, X. Li, M. Wang, L. Zhang, B. Chu, C. Yang, Y. Liu, D. Zhou, and Y. Lu, Constructing sub-10-nm gaps in graphene-metal hybrid system for advanced surface-enhanced Raman scattering detection, J. Alloys Compd., 720, 139-146, 2017.
[34]M. S. Dresselhaus, Phil. Trans, Raman spectroscopy as a probe of graphene and carbon nanotubes, R. Soc. A 28 366 1863, 2008.
[35]Y. Zhao, X. Li, M. Wang, L. Zhang, B. Chu, C. Yang, Y. Liu, D. Zhou, and Y. Lu, Constructing sub-10-nm gaps in graphene-metal hybrid system for advanced surface-enhanced Raman scattering detection, J. Alloys Compd., 720, 139-146, 2017.
[36]W. Zhao, W. Chen, Y. Yue, and S. Wu, In-situ two-step Raman thermometry for thermal characterization of monolayer graphene interface material, Appl. Therm. Eng., 113, 481-489, 2017.
[37]H. Peng, M. Sun, D. Zhang, D. Yang, H. Chen, R. Cheng, and J. Zhang, Surface & Coatings Technology Raman spectroscopy of graphene irradiated with highly charged ions, Surf. Coat. Technol., 306, 171-175, 2016.
[38]D. Graf, F Molitor, K Ensslin, C. Stampfer, A. Jungen, C, Hierold, Wirtz, Raman imaging of graphene, J. Power Sources, 143, 44-46, 2007.
[39]Y. P. Zhang, J. J. Xu, Z. H. Sun, C. Z. Li, C. X. Pan, Preparation of graphene and TiO2 layer by layer composite with highly photocatalytic efficiency, Progress in Natural Science: Materials International, 21, 467-471, 2011.
[40]S. Sekhar, M. J. Kim, K. S Yeom, S. S. A. An, H. Ju, D. K. Yi, Trends in Analytical Chemistry Raman spectrum of graphene with its versatile future perspectives, Trends Anal. Chem., 80, 125-131, 2016.
[41]B. C. Brodie, Philos., On the Atomic weight of graphite, Trans. R. Soc. London, 149, 249-259, 1859.
[42]L. Staudenmaier, verfahen zur Darstellung der Graphitsdure, Ber. Dtsch. Chem. Ges., 31, 1481-1487, 1898.
[43]W. S. Hummers, R. E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc., 80, 1339-1339, 1958.
[44]D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev., 39, 228-240, 2010.
[45]E. C. Vermisoglou, T. Giannakopoulou, G. Romanos, M. Giannouri, N. Boukos, C. Lei, C. Lekakou, C. Trapalis, Effect of hydrothermal reaction time and alkaline conditions on the electrochemical properties of reduced graphene oxide, Appl. Surf. Sci., 358, 100-109, 2015.
[46]F. N. I. Sari and J. M. Ting, One step microwaved-assisted hydrothermal synthesis of nitrogen doped graphene for high performance of supercapacitor, Appl. Surf. Sci., 355, 419-428, 2015.
[47]E. H. Jo, J. -H. Choi, S.-R. Park, C. M. Lee, H. Chang, and H. D. Jang, size and structural effect of crumpled graphene balls on the electrochemical properties for supercapacitor application, electrochim. Acta, 222, 58-63, 2016.
[48]齊敬,Bi2O3/TiO2奈米管陣列薄膜的製備及其可見光催化性能研究,哈爾濱工業大學,544,4,2014。
[49]M. Mehing, From molecules to bismuth oxide-based materials: Potential homo- and heterometallic precursors and model compounds, Coordination Chemistry Reviews, 251, 974-1006, 2007.
[50]余勇,溶膠-凝膠法製備Bi2O3薄膜及其光催化性質研究,哈爾濱工業大學,66,2008。
[51]G. W. Morey, Hydrothermal synthesis of advanced ceramic powders, American Ceramic Society bulletin, 67, 1673-1678, 1988.

電子全文 電子全文(網際網路公開日期:20221231)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔