跳到主要內容

臺灣博碩士論文加值系統

(44.210.149.205) 您好!臺灣時間:2024/04/12 23:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳韋安
研究生(外文):Chen, Wei-Ann
論文名稱:鈷鎳氧化物覆載於膨脹介相碳微球或石墨烯應用於超級電容器電極
論文名稱(外文):Preparation of nickel cobaltite supported on expanded mesocarbon microbeads or graphene sheets as electrode materials for supercapacitors
指導教授:吳茂松
指導教授(外文):Wu, Mao-Sung
口試委員:卓錦江吳茂松李志聰
口試委員(外文):Jow, Jiin-JiangWu, Mao-SungLee, Jyh-Tsung
口試日期:2017-07-25
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系博碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:120
中文關鍵詞:鈷鎳氧化物還原氧化石墨烯還原膨化介相碳微球超級電容器
外文關鍵詞:Nickel cobaltiteReduced graphene oxideReduced expanded mesocarbon microbeadsSupercapacitors
相關次數:
  • 被引用被引用:0
  • 點閱點閱:480
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
本研究分為兩部份,第一部份是利用化學法改質介相碳微球(mesocarbon microbeads, MCMBs),使用混和酸、強氧化劑及加熱方式製備膨脹介相碳微球(expanded mesocarbon microbeads, eMCMBs),並以電泳動將eMCMB沉積於發泡鎳網中,在還原氣氛下燒結成具蓬鬆球狀結構之還原膨脹介相碳微球電極(reduced eMCMBs, reMCMBs)。reMCMB電極可作為高導電性骨架支撐片狀鈷鎳氧化物。其蓬鬆球狀結構使電解液容易滲透,並可以減緩氧化還原反應對於鈷鎳氧化物之應力破壞。以微波合成法製備的片狀鈷鎳氧化物為介孔材料,可提供許多表面積與電解液進行氧化還原反應,使得離子傳輸距離縮短。片狀鈷鎳氧化物均勻覆蓋於reMCMBs,其在1.25 mA cm-2 的電流密度下有260 mF cm-2的電容值比鈷鎳氧化物(140 mF cm-2)高,經過循環壽命測試2000圈後,可保持94%的電容保持率。
第二部分為將氧化石墨烯以電泳動沉積於發泡鎳網中,並以水熱合成法製備鈷鎳氧化物複合電極,利用還原氣高溫燒結使其還原。藉由石墨層間距離增加,使得鈷鎳氧化物與電解液接觸面積增加。在2.5 mA cm-2 的電流密度下有686 mF cm-2的電容值,且經過循環壽命測試1000圈後,可保持70%的電容保持率。

The study is divided into two parts: the first part is the preparation of expanded mesocarbon microbeads (eMCMBs) by chemical oxidation of MCMB graphite powder. The eMCMBs were attached to the skeleton of nickel foam through electrophoretic deposition. After heat treatment in reducing atmosphere, the eMCMBs were converted into reduced eMCMBs (reMCMBs). The nickel foam with attached reMCMBs could be used as a highly conductive skeleton to support nickel cobaltite nanoflakes. The reMCMBs were fluffy spherical structure which could accommodate electrolyte solution, afforded current collector, and function as a stress buffer to alleviate electrode damage. Microwave synthesis of thin nickel cobaltite film with mesoporous could provide large amounts of pores for penetration of electrolyte solution, a huge interfacial area for facile redox reactions, and short transport distance for ions and electrons. Nickel cobaltite grown around nickel foam with attached reMCMBs could deliver a high specific capacitance of 260 mF cm-2 at 1.25 mA cm-2, greater than that grown around nickel foam (140 mF cm-2) and good capacitance retention (about 94% after 2000 cycles).
The second part is to deposit graphene oxide on nickel foam as skeleton to support active materials. The nickel cobaltite composite electrode was prepared by hydrothermal synthesis, followed by heat treatment in reducing atmosphere. The GO was converted into reduced GO (rGO). The interlayer distance of rGO was increased after treatment. The nickel cobaltite grown on rGO could increase the contact area between electrode and electrolyte. Nickel cobaltite grown around nickel foam with attached rGO could deliver a high specific capacitance of 680 mF cm-2 at 5 mA cm-2 and capacitance retention of about 70% after 1000 galvanostatic charge-discharge cycles.

中文摘要 I
Abstract Ⅱ
致謝 Ⅳ
主目錄 Ⅴ
表目錄 Ⅸ
圖目錄 Ⅹ
第一章 緒論 1
1-1 前言 1
1-2超級電容器之介紹 3
1-2-1 電容器儲電原理與機制 4
1-2-2 超級電容器儲能機制種類 10
1-2-3 超級電容器電極材料種類 14
1-2-4 超級電容器之電解液種類 16
1-3石墨烯簡介 19
1-4介相碳微球簡介 23
1-5 鈷鎳氧化物簡介 24
1-5-1電化學沉積法 27
1-5-2化學合成法 28
1-5-3溶膠-凝膠法 28
1-5-4水熱合成法 29
1-5-5微波合成法 31
1-6 水熱合成法基本原理 33
1-7 微波輻射加熱法簡介 36
1-8 電泳動沉積法介紹 38
1-8-1電泳動沉積原理 39
1-8-2 電泳動懸浮液種類 41
1-8-3影響電泳動沉積之因素 42
1-9研究動機 44
第二章 實驗方法與步驟 45
2-1 實驗架構與內容 45
2-1-1鎳鈷氧化物電極試片 45
2-1-2鎳鈷氧化物複合電極試片 45
2-1-3物性測試 46
2-1-4電性測試 46
2-2實驗基材前處理 47
2-3化學法製備膨脹介相碳微球 48
2-4 電泳動懸浮液製備 49
2-5製備reMCMB及氧化石墨烯電極 50
2-6微波合成法製備鈷鎳氧化物與複合電極 53
2-7水熱合成法製備鈷鎳氧化物與複合電極 54
2-8刮刀塗佈法製備活性炭電極 55
2-9材料物理分析 56
2-10電化學特性分析 57
2-11 實驗藥品與器材 61
2-12實驗儀器 63
2-13 材料特性分析儀器 65
第三章 結果與討論 66
3-1 X-ray鑑定鈷鎳氧化物 67
3-2 X-ray分析各碳材層間距離 69
3-3鈷鎳氧化物與複合電極之比表面積分析 73
3-4結構型態分析 77
3-4-1 NiCO2O4電極與複合電極表面型態分析 77
3-4-2 NiCO2O4電極與複合電極內部結構分析 84
3-4-3 H-NiCO2O4電極與複合電極表面型態分析 88
3-4-4 H-NiCO2O4電極與複合電極內部結構分析 92
3-5 NiCO2O4電極與複合電極電化學分析 96
3-5-1 發泡鎳網基材之電化學測試 96
3-5-2 循環伏安法測試 97
3-5-3 計時電位法分析 99
3-5-4 交流阻抗分析 101
3-5-5 循環壽命分析 103
3-6 H-NiCO2O4電極與複合電極電化學分析 106
3-6-1循環伏安法測試 106
3-6-2計時電位分析 108
3-6-3循環壽命分析 110
第四章 實驗結論 111
4-1 還原膨化介相碳微球支撐片狀奈米結構鈷鎳氧化物複合電極 111
4-2 還原氧化石墨烯支撐線狀奈米結構之鈷鎳氧化物複合電極 113
參考文獻 115

參考文獻
【1】A. G. Pandolfo, A. F. Hollenkamp, Carbon properties and their role in supercpacitors, Journal of Power Sources, 157 (2006) 11-27 .
【2】薛立人, 高性能電容器, 工業材料, 166期 (2000).
【3】胡啟章, 電化學原理與方法, 五南圖書出版股份有限公司, (2011) p.4.
【4】M. S. Halper, J. C. Ellenbogen, Supercapacitors: a brier overview, Mitre Nanosystems Group, (2006).
【5】吳佳芳, 電化學陰極沉積法製備氫氧化鎳與鎳磷化物應用於超級電容器與染料敏化太陽能電池電極材料, 碩士論文, 國立高雄應用科技大學化學工程與材料工程系研究所 (2013).
【6】M. Vangari, T. Pryor, and L. Jiang, Supercapacitors: review of materials and fabrication methods, Journal of Energy Engineering, 139 (2012) 72-79.
【7】C. Zheng, J. Gao, M. Yoshio, Non-porous activated mesophase carbon microbeads as a negative electrode material for asymmetric electrochemical capacitors, Journal of Power Sources, 231 (2006) 29-33.
【8】R. Noor, A. Raja, M. Asyadj, Systematic gap analysis of carbon nanotube-based lithium-ion batteries and electrochemical capacitors, Renewable and Sustainable Energy Reviews, 75 (2017) 644-659.
【9】X. Geng, L. Li, F. Li, Carbon nanotubes/activated carbon hybrid with ultrahigh surface area for electrochemical capacitors, Electrochimica Acta, 168 (2015) 25-31.
【10】H. Wu, Y. Zhang, L. Cheng, Graphene based architectures for electrochemical capacitors, Energy Storage Materials, 5 (2016) 8-32.
【11】V. C. Lokhande, A. C. Lokhande, C. D. Lokhande, J. H. Kim, T. Ji, Supercapacitive composite metal oxide electrodes formed with carbon, metal oxides and conducting polymers, Journal of Alloys and Compounds, 682 (2016) 381-403.
【12】J. Kwona, J. H. Kima, S. H. Kang, C. J. Choic, J. A. Rajesha, K.S. Ahn, Facile hydrothermal synthesis of cubic spinel AB2O4 type MnFe2O4 nanocrystallites and their electrochemical performance, Applied Surface Science, 413 (2017) 83-91.
【13】陳怡倫, 以陽極沉積法製備之氧化錳的材料特性與擬電容性 質, 碩士論文, 國立成功大學材料科學及工程學系, (2004).
【14】薛立人, 導電高分子於高儲能電容器上之應用, 工業材料 176期 145頁 (2001).
【15】高智勇, 超高電容器製程技術簡介, 工業材料 166期 第113頁(2000)
【16】C. P. Tien, W. J. Liang, P. L. Kuo, H. S. Teng, Electric double layer capacitors with gelled polymer electrolytes based on poly (ethylene oxide) cured with poly(propylene oxide) diamines, Electrochimica Acta, 53 (2008) 4505-4511.
【17】沈森燦, 顏瑞賓, 董健光, 中碳負極材料開發歷程, 中工高雄會刊, 第4期 (2011).
【18】宋健民, 石墨烯的綠能應用(上), 工業材料雜誌, 285期 162頁 (2010).
【19】宋健民, 石墨烯的綠能應用(下), 工業材料雜誌, 286期 162頁 (2010).
【20】黃淑娟, 石墨烯材料的應用與展望, 工業材料雜誌, 304期 62頁 (2012).
【21】蘇清源, 石墨烯氧化物之特性與應用前景, 物理雙月刊, 33卷 2期 163頁(2011).
【22】S. Park, R. S. Ruoff, Chemical methodes for the production of graphene, Nature Nanotechnology, 4 (2009) 217-224.
【23】W. S. Hummers Jr, R. E. Offman, Preparation of graphitic oxide, Journal of the American Chemical Society, 80 (1958) 1339-1339.
【24】S. Yang, H. Song, X. Chen, Expansion of mesocarbon microbeads, Carbon, 44 (2006) 730-733.
【25】陳信安, 膨脹介相碳微球與直接碳化金屬有機配位聚合物作為鋰離子電池陽極之研究, 碩士論文, 高雄應用科技大學化學工程與材料工程系, (2015)
【26】C. Yuan, B. Gao, L. Su, X. Zhang, NiO loaded on hydrothermally treated mesocarbon microbeads (h-MCMB) and their supercapacitive behaviors, Solid State Ionics, 178 (2008) 1859-1866.
【27】D. P. Dubala, P.G. Romerob, B. R. Sankapald, R. Holzea, Nickel cobaltite as an emerging material for supercapacitors: An over view, Nano Energy, 11 (2015) 377-399.
【28】http://nptel.ac.in/courses/113104005/lecture3/3_9.htm.
【29】Z. Wu, Y. Zhu, X. Ji, NiCo2O4-based materials for electrochemical supercapacitors, Journal of Materials Chemistry A, 2 (2014) 14759-14772.

【30】L. Ma, X. Shen, H. Zhou, Z. Ji, K. Chen, G. Zhu, High performance supercapacitor electrode materials based on porous NiCo2O4 hexagonal nanoplates/reduced graphene oxide composites, Chemical Engineering Journal, 262 (2015) 980-988.
【31】V. Gupta, S. Gupta, N. Miura, Electrochemically synthesized nanocrystalline spinel thin film for high performance supercapacitor, Journal of Power Sources, 195 (2010) 3757-3760.
【32】R. R. Salunkhe, K. Jang, H. Yua, S. Yua, T. Ganesh, S. H. Han, H. Ahn, Chemical synthesis and electrochemical analysis of nickel cobaltite nanostructures for supercapacitor applications, Journal of Alloys and Compounds, 509 (2011) 6677-6682.
【33】C. T. Hsu, C. C. Hu, Synthesis and characterization of mesoporous spinel NiCo2O4 using surfactant-assembled dispersion for asymmetric supercapacitors, Journal of Power Sources, 242 (2013) 662-671.
【34】T. Wu, J. Li, L. Hou, C. Yuan, L. Yang, X. Zhang, Uniform urchin-like nickel cobaltite microspherical superstructures constructed by one-dimension nanowires and their application for electrochemical capacitors, Electrochimica Acta, 81 (2012) 172-178.
【35】F. Deng, L. Yu, M. Sun, T. Lin, G. Cheng, B. Lan, F. Ye, Controllable Growth of Hierarchical NiCo2O4 Nanowires and nanosheets on carbon fiber paper and their morphology-dependent pseudocapacitive performances, Electrochimica Acta 133 (2013) 382-390.
【36】D. S. Sun, Y. H. Li, Z. Y. Wang, X. P. Cheng, S. Jaffer, Y. F. Zhang, Understanding the mechanism of hydrogenated NiCo2O4 nanograss supported on Ni foam for enhanced-performance supercapacitors,Journal of Materials Chemistry A, 4 (2016) 5198-5204.
【37】G. He, L. Wang, H. Chen, X. Sun, X. Wang, Preparation and performance of NiCo2O4 nanowires-loaded graphene as supercapacitor material, Materials Letters, 98 (2013) 164-167.
【38】C. C. Tseng, J. L. Lee, Y. M. Liu, M. D. Ger, Y. Y Shu, Microwave-assisted hydrothermal synthesis of spinel nickel cobaltite and application for supercapacitors, Journal of the Taiwan Institute of Chemical Engineers, 44 (2013) 415-419.
【39】V. H. Nguyen, J. J. Shim, Microwave-assisted synthesis of porous nickel cobaltite with different morphologies in ionic liquid and their application in supercapacitors, Materials Chemistry and Physics, 176 (2016) 6-11
【40】莊萬發, 超微粒子材料技術, 復漢出版社, (1995)
【41】Q. Wang, B. Liu, X. Wang, S. Ran, L. Wang, D. Chen and G. Shen, Morphology evolution of urchin-like NiCo2O4 nanostructures and their applications as psuedocapacitors and photoelectrochemical cells, Journal Materials Chemistry, 22 (2012) 21647-21653.
【42】黃俞瑄, 以水熱法合成法製備Bi1-xYxO1.5粉體之研究, 碩士論文, 國立台北科技大學材料科學與工程研究所, (2011)
【43】林君怡, 以微波法製備奈米二氧化鈦之研究, 碩士論文, 國立台北科技大學化學工程系, (2008).
【44】李建武, 生物化學實驗原理和方法, 藝軒圖書出版社, P114~146, (1999).
【45】黃士瑋, 使用電泳沉積研磨加工改善放電微孔精度之研究, 碩士論文, 中央大學機械工程研究所, (2003)。
【46】劉禹輝,電泳沉積氧化鋅鍍層及其性質, 碩士論文, 國立成功大學材料科學與工程學系, (2004).
【47】林坤壕, 電泳動沉積氧化鎳複合電極及其電化學性質探討, 碩士論文, 國立高雄應用科技大學化學工程與材料工程系, (2009)
【48】X. Gong, J. P. Cheng, F. Liu, L. Zhang, X. Zhang, Nickel-cobalt hydroxide microspheres electrodepositioned on nickel cobaltite nanowires grown on Ni foam for high-performance pseudocapacitors, Journal of Power Sources, 267 (2014) 610-616.
【49】許樹恩,吳泰伯, X光繞射原理與材料結構分析, 中國材料科學學會, 1996.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top