跳到主要內容

臺灣博碩士論文加值系統

(44.211.117.197) 您好!臺灣時間:2024/05/23 10:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周煜
研究生(外文):CHOU, YU
論文名稱:有機改質矽酸鹽水泥複合材料的製備及其保溫節能特性之研究
論文名稱(外文):Study on Preparation, Thermal Insulation and Energy Saving Characteristics of Organic Modified Silicate Cement Composites
指導教授:謝達華謝達華引用關係
指導教授(外文):HSIEH, TAR-HWA
口試委員:王怡仁陳澄河何國賢
口試委員(外文):WANG, YEN-ZENCHEN, CHENG-HOHO, KO-SHAN
口試日期:2018-06-25
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系博碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:93
中文關鍵詞:珍珠岩矽酸鹽壓縮強度熱傳導係數二氧化矽氣凝膠/珍珠岩複合材料
外文關鍵詞:PerliteSilicateCompressive strengthThermal conductivitySilica aerogel/perlite composites
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文是以商用矽酸鹽水泥(SC)為基材,水為介質,粗珍珠岩(CP)、混凝土發泡劑、有機改質CP及自製氣凝膠/CP等為隔熱骨材,並藉由掃描式電子顯微鏡、傅立葉轉換紅外光譜儀、熱重分析儀、比表面積與孔隙度分析儀、接觸角分析儀、熱傳導儀及壓縮強度測定機等之量測與分析,探討有機改質隔熱骨材對SC複合材料的力學及保溫節能特性影響及相互間關係。結果顯示,添加混凝土發泡劑可提升複材內部空隙,有效降低熱傳導係數,但會導致壓縮強度的降低。於有機改質CP程序中會破壞珍珠岩蜂窩狀多孔結構,導致熱傳導係數提升,但破碎的結構會填補複材內部空隙,導致壓縮強度的上升。以負壓吸附法,可成功製備低熱傳導係數且較高強度之二氧化矽氣凝膠/珍珠岩(ACP)複合材料。保溫節能結果顯示,SC-苯基三甲氧基矽烷-ACP(20 wt%)之複材,於200oC固化後具高壓縮強度3.76 kgf/cm2、低熱傳導係數0.102 W/m·K及高節能率68.49%。
In this study, organic modified silicate cement composites (SCs) were fabricated by using general mixing method, where commercial SC, water, coarse perlite (CP), concrete foaming agents, and organic modified CP as well as aerogel/coarse perlite (ACP) acted as substrate, medium, insulation aggregate, foaming agents, and organic modified aggregates, respectively. The ACPs were prepared by using negative pressure absorption method. The mechanic properties, thermal insulation and energy saving characteristics of SCs were studied by scanning electron microscope (SEM), fourier transform infrared spectrometer (FTIR), thermogravimetric analyzer (TGA), specific surface area and porosimetric analyzer (BET), contact angle, thermal conductivity analyzer, and compression strength instrument. Results showed that the addition of concrete foaming agents can effectively increase the number of void in the SC, resulting in the thermal conductivity and compressive strength are reduced. During the CP modification process, the cellular porous structure of CP can be destroyed, leading in an increase in the thermal conductivity, however, the compressive strength of SC is significantly increased due to the broken CP structure refill into to the gaps in the SC. The ACP can be successfully prepared by the negative pressure absorption method. As for thermal insulation and energy-saving analysis, SC-Phenyltrimethoxysilane-ACP (20 wt%) composite exhibits higher compressive strength (3.76 kgf/cm2), lower thermal conductivity (0.102 W/m·K), and higher energy saving rate (68.49%) than those of SC-ACPs after cured at 200°C.
摘要 i
Abstract iii
致謝 v
目錄 vii
表目錄 x
圖目錄 xii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
第二章 文獻回顧 4
2.1 水硬性膠凝材料特性 4
2.2 影響水硬性膠凝材料性質之因素 5
2.2.1 孔隙率 5
2.2.2 水灰比 8
2.2.3 添加材-工業廢棄物 10
2.2.4 添加材之影響 13
2.2.5 養護條件對HBM性質的影響 16
2.3 水泥發泡劑的種類 19
2.4 珍珠岩疏水改質 21
2.5 二氧化矽氣凝膠 (Silica Aerogel) 22
2.5.1 影響溶膠-凝膠過程之因素 23
2.5.2 氣凝膠乾燥方法介紹 27
2.6 節能率的計算 29
第三章 實驗程序 33
3.1 實驗藥品 33
3.2 儀器設備 36
3.3 實驗步驟 41
3.3.1 矽酸鹽/隔熱骨材/混凝土發泡劑(Silicate cement/Insulation aggregate/Concrete foaming agent, SC/IA/CFA)試塊之製備 41
3.3.2 矽酸鹽/改質隔熱骨材(Silicate/Modified insulation aggregate, SC/MIA)試塊之製備 42
3.3.3 二氧化矽氣凝膠(Silica aerogel)之製備 44
3.3.4 矽酸鹽/二氧化矽氣凝膠/粗珍珠岩(Silicate/Aerogel/Coarse perlite, SC/ACP)之製備 45
第四章 結果與討論 47
4.1 SC/隔熱骨材/混凝土發泡劑複材性質 47
4.2 SC/有機改質隔熱骨材複材之鑑定 52
4.2.1 SC/有機改質隔熱骨材複材性質 52
4.2.2 有機改質CP之影響 54
4.3 二氧化矽氣凝膠之鑑定 56
4.3.1 二氧化矽氣凝膠性質分析 56
4.3.2 二氧化矽氣凝膠/粗珍珠岩之影響 63
4.4 保溫節能率計算 65
4.5 乾密度與熱傳導係數之經驗方程式 67
第五章 結論 69
第六章 參考文獻 71
【1】Y.M. Han, G.S. Dong, D.S. Choi, Constr. Build. Mater., 21 (2007) 362-369.
【2】K. Gobakis, D. Kolokotsa, N. Maravelaki-Kalaitzaki, V. Perdikatsis, M. Santamouris, Energy Build., 89 (2014) 196-205.
【3】J. Yang, X.U. Ling-Ling, L. Wang, Z.B. Zhang, F. Liu, J. Nanjing Univ. Technol., 30 (2008) 78-82.
【4】X. Xue, H. Liu, J. Guo, Shanghai Coat. 52(1), 9-12 (2014).
【5】P. Pantazopoulou, G. Batis, A. Routoulas, Anti-Corros. Methods Mater., 48 (2001) 107-116.
【6】C. Liu, Chine Coat., 36 (2007) 401-420.
【7】Z. Zhang, K. Wang, B. Mo, X. Li, X. Cui, Energy Build., 87 (2015) 220-225.
【8】L. Chen, W. Han, Z. Li, T. Wei, C.J. Xiao, Adv. Mater. Res., 233-235 (2011) 2443-2446.
【9】Min Hon Technology CO., Comparison of fire insulation materials for petrochemical enterprises, 2001.
【10】譚大璐,土木材料,新文京開發出版股份有限公司,2001.
【11】Eva Kuzielová, Matúš Zˇ emlicˇka, Eva Bartonicˇkov Martin T. Palou, Constr. Build. Mater., 135 (2017) 306-314.
【12】Dejian Shen, Jinliang Jiang, Wenting Wang, Jiaxin Shen, Guoqing Jiangb, Constr. Build. Mater., 146 (2017) 410-418.
【13】T Abadjieva, P Sephiri, Department of Civil Engineering, University of Botswana.
【14】M Delucchi, G Cerisola, Constr. Build. Mater., 15 (2001)351-359.
【15】Y Ohama, Adv. Cem. Based Mater., 5 (1997) 31-40.
【16】P Aı̈tcin, Constr. Build. Mater., 9 (1995) 13-17.
【17】Y.M Zhang, T.J Napier-Munn, Powder Technol., 83 (1995) 245-252.
【18】K.N Yu, R.V Balendran, S.Y Koo, T Cheung, Environ. Sci. Technol., 34 (2000) 2284-2287.
【19】肖忠明,王昕,工業廢渣在水泥生產中的應用,中國建材工業出版社,2009。
【20】Wan Norsariza Wan Husin, Izwan Johari, AIP Conference Proceedings, 1885 (2017) 020131.
【21】T. Bakharev, Cem. Concr. Res., 35 (2005) 658–670.
【22】Deng-Deng Zheng ,Tao Ji , Can-Qiang Wang ,Chun-Jing Sun , Xu-Jian Lin ,Khandaker Muhammed Anwar Hossain, Constr. Build. Mater., 106 (2016) 415-421.
【23】Mindess, S.Young, J. F., Darwin, D., Concrete, Prentice-Hall, Pearson Education, Inc., Upper Saddle River, NJ, United States of America., 2002
【24】Zeyad T. Ahmed, David W. Hand, ACS Sustainable Chemistry & Enginerring., 2 (2015) 216-223.
【25】D.J. Corr, J. Lebourgeois, P.J.M. Monteiro, S.J. Bastacky, E.M. Gartner, Cem. Concr. Res., 32 (2002) 1025-1031.
【26】H.N.Atahan, C.CarlosJr, S.Chae, P.J.M.Monteiro, J.Bastacky, Cem. Concr. Compos., 30 (2008) 566-575.
【27】Eva Kuzielová, Ladislav Pach, Martin Palou, Construction and Building Materials, 125 (2016) 998-1004.
【28】S. Yilmazer, M.B. Ozdeniz, Build. Environ. 40 (2005) 309–316.
【29】I.M. Budaiwi, A.A. Abdou, M.S. Al-Homoud, Journal of Naval Architecture and Marine Engineering, 8 (2002) 125–132.
【30】賴炎暉,國立中山大學材料科學研究所,碩士論文(2006).
【31】HRUBESH L W., Chem. Ind., 24 (1990) 824–827.
【32】G.C. BOND, S. FLAMERZ, Appl. Catal., 33 (1987) 219–230.
【33】J. FRICKE, A. EMMERLING, Chemistry, Spectroscopy and Applications of Sol-Gel Glasses, (1992) 37–87.
【34】C.A.M. MULDER, J.G. VAN LIEROP, Springer Berlin Heidelberg:Aerogels, (1986) 68–75.
【35】A. V. RAO, A. PARVATHY RAO, G. M. PAJONK, J. Mater. Sci., 40 (2005) 3481–3489.
【36】A. Venkateswara Rao, Manish M. Kulkarni, D.P. Amalnerkar, Tanay Seth, Appl. Surf. Sci., 206 (2003) 262-270.
【37】Song He, Dongmei Huang, Haijiang Bi, Zhi Li, Hui Yang, Xudong Cheng, J. Non-Cryst. Solids, 410 (2015) 58-64.
【38】Poonam M. Shewale, A. Venkateswara Rao, Jyoti L. Gurav, A. Parvathy Rao, J. Porous Mater., 16 (2009) 101-108
【39】C.J. BRINKER, K.D. KEEFER, D.W. SCHAEFER, R.A. ASSINK, B.D. KAY, C.S. ASHLEY, J. Non-Cryst. Solids, 63 (1984) 45-59.
【40】R. AELION, A. LOEBEL, F. EIRICH, J. Am. Chem. Soc., 72 (1950) 5705-5712.
【41】Ralph K. Iler, The Chemistry of Silica, 1979.
【42】Subramaniam Iswar, Wim J. Malfait, Sandor Balog, Frank Winnefeld, Marco Lattuada, Matthias M. Koebel, Microporous Mesoporous Mater., 241 (2017) 293-302.
【43】P.H. Tewari, A.J. Hunt, and K.D. Lofftus, Aerogels, (1986) 31-37.
【44】G.M.Pajonk, M.Repellin-Lacroix, S.Abouarnadasse, J.Chaouki, D.Klavana, J. Non-Cryst. Solids, 121 (1990) 66-67.
【45】Sung-Woo Hwang, Tae-Youn Kim, Sang-Hoon Hyun, Microporous Mesoporous Mater., 130 (2010) 295-302.
【46】F. Schwertfeger, D. Frank, M. Schmidt, J. Non-Cryst. Solids, 225 (1998) 24-29.
【47】Yuelei Pan, Song He, Lunlun Gong, Xudong Cheng, Congcong Li, Zhi Li, Zhong Liu, Heping Zhang, Mater. Des., 113 (2017) 246-253.
【48】Zhi Li, Xudong Cheng, Lunlun Gong, Qiong Liu, Shuai Li, J. Non-Cryst. Solids, 481 (2018) 267-275.
【49】Sharad D. Bhagat, Yong-Ha Kim, Young-Soo Ahn, Jeong-Gu Yeo, Appl. Surf. Sci., 253 (2007) 3231-3236.
【50】Maria de Fatima Julio, Laura M. Ilharco, Microporous Mesoporous Mater., 199 (2014) 29-39.
【51】Xiao Wang and Sadhan C. Jana, ACS Appl. Mater. Interfaces, 5 (2013) 6423-6429.
【52】Yuelei Pan, Song He, Xudong Cheng, Zhi Li, Congcong Li, Yajun Huang, Lunlun Gong, J. Sol-Gel Sci. Technol., 82 (2017) 594-601.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊